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The paper focuses on two methods of evaluation of successfulness of speech signal enhancement recorded in the open-air magnetic 
resonance imager during phonation for the 3D human vocal tract modeling. The first approach enables to obtain a comparison based on 
statistical analysis by ANOVA and hypothesis tests. The second method is based on classification by Gaussian mixture models (GMM). 
The performed experiments have confirmed that the proposed ANOVA and GMM classifiers for automatic evaluation of the speech 
quality are functional and produce fully comparable results with the standard evaluation based on the listening test method. 
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1.  INTRODUCTION 

Construction of 3D articulatory models is necessary for 
better representation of the human vocal tract function and 
the subsequent articulatory speech synthesis. For this reason, 
the audio signal must be recorded simultaneously with the 
image scanning [1]. The magnetic resonance imaging (MRI) 
device is used to obtain the vocal tract images of the 
articulating person that lies in the scanning area while the 
MR sequence is running [2], [3]. The MRI equipment 
consists of a gradient coil system producing three orthogonal 
linear magnetic fields for spatial scanning. The function of 
these gradient coils is accompanied by an acoustic noise due 
to rapidly changing Lorentz forces during fast switching 
inside the weak static field environment [4]. The speech 
signal recorded under such conditions may be analyzed only 
if the adequate signal-to-noise ratio is achieved [5]. Several 
different methods can be used for reduction of the acoustic 
noise generated in the MRI scanner [6]-[9]. The problem of 
processing the speech signal in the presence of noise may be 
solved by various techniques, e.g., the blind source 
separation by independent component analysis [10]. In our 
previous research, the noise reduction method was based on 
the fact that the mentioned acoustic noise of the MRI 
machine is a periodic signal with its fundamental frequency 
that may be filtered and processed in the spectral domain 
[11]-[12]. 

Objective or subjective criteria can be used for evaluation 
of enhancement. The subjective ones are based on auditory 
evaluation by listeners using various categories, such as the 
mean opinion score, ABX test for comparison of two speech 
signals with the third one, recognition of expressive speech, 

annotation of the speech corpus, etc. [13]). The objective 
approaches for measuring the speech signal quality [14] 
comprise, for example, evaluation of differences between the 
speech spectral envelopes [11] or spectral distances [12], etc. 
These features may be compared and matched using the 
statistical approaches, like the analysis of variances 
(ANOVA) [15], [16] or hypothesis tests [17], [18]. The final 
evaluation in these approaches bears the form of a 
recognition score that can be obtained by the methods based 
on artificial neural networks, the nearest neighbor [19], 
vector quantization classifiers [20], hidden Markov models 
[21], and support vector machines (SVM) [22]. However, 
predominantly, the Gaussian mixture models (GMM) [23] 
are used. The best results are usually achieved by a fusion of 
different recognition methods, e.g., combination of GMM 
with SVM used for speaker recognition in the same way as 
for language recognition [24]. 

The paper describes the experiments that use the statistical 
methods based on the ANOVA analysis and the hypothesis 
tests and, on the other hand, the GMM-based speech quality 
classifier. Both approaches are used for automatic 
evaluation of the speech quality after utilization of three 
different methods of speech enhancement. The motivation 
of the work was to find an alternative approach to the 
standard listening tests. It is important in the cases of small 
audible (or even indiscernible) differences or when their 
collective realization is problematic, etc. The main 
advantage of this system is its automatic functioning without 
human interaction and the possibility of direct numerical 
matching of the obtained results using the objective 
comparison criterion. 
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2.  METHODS 
A.  Noise Suppression in speech signal 

We analyze functionality and successfulness of application 
of three different methods of the acoustic noise suppression 
for enhancement of the speech signal recorded during 
phonation in the MRI environment: 
1. The first noise reduction method (further called as Nsup1) 

is based on limitation of the real cepstrum of the noisy 
speech and clipping the peaks corresponding to the 
harmonic frequencies of the acoustic noise [11]. This 
method works well when the basic pitch period of the 
human voice differs from the repeating period of the 
running MR scan sequence [12]. In this case, the speech 
signal with the superimposed noise is recorded by one 
pick-up microphone. 

2. The second tested noise suppression approach (Nsup2) 
uses a subtraction between the short-time spectra of the 
audio signals recorded by two microphones: the first one 
recording the speech together with the acoustic noise, the 
second one recording only the acoustic noise [11].  

3. The third method (Nsup3) is based on spectral subtraction 
of the MR scan periodic noise from the same noise 
superimposed on the speech signal, however, both short-
time spectra are estimated from the recording picked-up 
by the same microphone [12]. 

The source-filter speech synthesizer with cepstral 
parameterization of the impulse response of the vocal tract 
model is used for the reconstruction after the noise 
suppression in all cases. Each of the applied methods uses 
different arrangement and practical realization of the 
recording process as well as the pick-up microphone(s) 
location [12]. 

 
B.  ANOVA-based classification of the speech signal 

The first part of our speech quality evaluation after 
application of different methods of noise suppression in the 
speech signal recorded in the environment of the open-air 
MRI device working with the weak magnetic field is based 
on the ANOVA analysis. This approach focuses on testing 
whether there is a common mean of speech features from 
several groups. Besides the ANOVA F-test giving the ratio 
of variances between and within groups [16], the hypothesis 
probability resulting from the Wilcoxon test [25] or the 
Mann-Whitney U test [26] comparing whether two samples 
come from identical distributions with equal medians or they 
do not have equal medians, the Ansari-Bradley hypothesis 
test [27] is used to specify whether two distributions are the 
same or they differ in their variances. For a chosen 
significance level the resulting logical value “0” denotes that 
the null hypothesis cannot be rejected and the value “1” 
indicates that it can be rejected.  

In the developed classification method the speech spectral 
properties and prosodic parameters extracted from the clean 
speech are stored in the database DBOrig, from the speech 
with MRI noise in DBNfonat, and from the de-noised speech 
in the databases DBNsup1..N, treated separately for male and 
female voices. These speech features and parameters are 
processed by the one-way ANOVA analysis and then the 

histograms of the occurrences are calculated – see the block 
diagram in Fig.1. Three comparison methods are used for 
each of the speech features and the following parameters are 
determined: 
1. absolute distance between group means of the original 

speech and the speech enhanced by the methods DOT1-3 
after the multiple comparison applied to ANOVA 
statistical results – see visualization in Fig.2.a), 

2. hypothesis probability based on the Ansari-Bradley or 
the Wilcoxon test, 

3. relative RMS distance DRMSrel between the histograms of 
features extracted from the DBOrig and DBNsup1-N, as 
documented by an example in Fig.2.b). 
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Fig.1.  Block diagram of ANOVA-based classifier for evaluation of 
the enhanced speech signals. 
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Fig.2.  Visualization example of the distance between group means 
a) and relative RMS distance between the histograms b) for the 
first cepstral coefficient. 
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calculated for each of the comparison methods 
(ANOVA/hypothesis test/RMS between histograms) – see 
the demonstration example in Fig.3. Then, the best order 
with the maximum occurrence is used for calculation of the 
final order of mean values for every tested enhanced signal 
group as the final evaluation value – see the visualization by 
bar-graphs in Fig.4. 
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Fig.3.  Demonstration example of histograms of order occurences 
of distances between group means (ANOVA) calculated from all 
NSF features for three tested noise suppression methods. 
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Fig.4.  Visualization example of mean values of winner orders per 
used evalution methods for three tested de-noising approaches a), 
calculated final order as a result for tested de-noising approaches 
b). 

 
C.  GMM-based evaluation of the speech signal quality 

Primarily, the GMMs represent a linear combination of 
multiple Gaussian probability distribution functions of the 
input data vector [23]. The covariance matrix and the vector 
of means together with the weighting parameters have to be 
determined from the input training data. For the mixture of 
Gaussians the use of maximum likelihood gives no closed-
form analytical solution which would be an ideal case, so the 
expectation-maximization (EM) iteration algorithm is used 
for maximizing the likelihood functions [15]. The initial 
parameters for the EM algorithm are first of all the number 
of mixtures NMIX and the number of iterations. In general, the 
elements of the feature vectors could be correlated so that 
rather a high number of mixture components and a full 

covariance matrix would be necessary for sufficient 
approximation. On the other hand, the GMM with a diagonal 
covariance matrix is usually used in speaker identification 
[23] due to its lower computational complexity. The GMM 
classifier returns the probability score that the tested speech 
signal belongs to the GMM model. 

In the standard realization of the GMM classifier, the 
resulting class is given by the maximum overall probability 
of all obtained scores (T, n) corresponding to N output classes 
using the feature vector T from the currently processed 
speech signal. The main idea of the proposed evaluation 
method is based on the correlation between the score maxima 
obtained using the models of the clean speech (further called 
Orig) and the speech with the MRI noise (Nfonat). The 
obtained normalized score values for the enhancement 
methods Nsup1-3 are next ordered using the 'ascend' sorting 
for the clean speech models and the 'descend' sorting for the 
noisy speech. Finally, the mean score order values in the 
range of 1-3 (for comparison with the results achieved by the 
listening tests where “1” represented the best, “2” average, 
and “3” the worst speech quality) are used for the speech 
quality evaluation – see an example in Fig.5. The functional 
block diagram of the whole evaluation method of the speech 
signal enhancement is shown in Fig.6. 
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Fig.5.  Example of score order determination: partial results for 
female speaker summarized for all five vowels a), final score as the 
speech quality evaluation results b). 

 

 
 
Fig.6.  Block diagram of the GMM-based classifier for evaluation 
of the MRI noise suppression in the speech signal. 
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D.  Determination of features of the speech signal 
In the area of the GMM-based speaker [28]-[30], as well as 

the acoustic signal recognition [31], the most commonly used 
spectral features are mel-frequency cepstral coefficients 
together with energy and prosodic parameters. In our 
experiments the features differ for ANOVA-based evaluation 
and GMM-based classification of the speech signal quality. 
The analysis of the input sentence begins with segmentation 
and determination of the fundamental frequency F0 from the 
segmented input signal. Next, the smoothed spectral 
envelope and the power spectral density from the weighted P 
frames of the speech signal are computed for determination 
of basic and supplementary spectral features. The basic 
spectral properties are expressed by the statistical parameters 
as centroid (SC), flatness (SF), spread, skewness, kurtosis, 
etc. As supplementary spectral features the following 
parameters are used: spectral decrease (tilt), harmonics-to-
noise ratio (HNR), Shannon, Rényi, or Tsallis spectral 
entropy (SHE/RSE/TSE), etc. For voiced speech description, 
the first two formant positions F1, F2 and their ratio F1/F2 are 
also used in our experiments. The cepstral coefficients {cn} 
obtained during the process of cepstral analysis, giving 
information about spectral properties of the human vocal 
tract, are also successfully used in the feature vectors. The 
supra-segmental properties include also the speech signal 
energy expressed by the first cepstral coefficient (Enc0) or by 
the autocorrelation function (Enr0). The prosodic parameters 
consist of two types of energy parameters calculated from the 
differential microintonation signal F0DIFF, zero crossing 
frequency FZCR, jitter, and shimmer. 

These speech features are stored to different databases 
depending on the input signal used (DBOrig, DBNfonat, and 
DBNsup1..N) – see the block diagram in Fig.7. For the GMM-
based experiments, every vector of P speech features is 
subsequently processed to obtain NSF representative 
statistical values (mean, median, rel. maximum, rel. 
minimum, etc.). 

 

 
 
Fig.7.  Block diagram of the feature database creation from the 
speech spectral properties and supra-segmental parameters. 

3.  MATERIAL AND EXPERIMENTS 
A.  Speech signal recording and processing 

Our experiments were carried out with the open-air MRI 
equipment E-scan OPERA working with the low magnetic 
induction of 0.178 Tesla [32]. The speech and noise signals 
were recorded using the Behringer condenser microphone 
connected to a separate personal computer via the XENYX 
502 mixer and UCA202 audio interface. The audio signals 
were originally sampled at 32 kHz and then resampled to 
16 kHz. The microphone picking up the speech was placed at 
the position of 150 degrees as documented by the photo of 
the experimental arrangement in Fig.8. where the tested 
person lies at 180 degrees. The microphone recording the 
noise only was placed at 30 degrees. The distance of the 
microphones from the MRI device central point was 60 cm, 
and they were situated vertically in the middle between both 
gradient coils. 

 
 
 
 
 

 
a) 

 
 
 
 
 
 
 
b)  
 
Fig.8.  Arrangement of speech and noise recording in the E-scan 
OPERA: examined person with a pick-up microphone a), principal 
angle diagram of the MRI scanning area b). 
 

The recorded speech and noise signals were used for 
creation of the database consisting of five separately 
phonated long vowels “a”, ”e”, “i”, “o”, and “u” from three 
male and two female non-professional speakers with time 
duration interval from 8 to 15 sec. For each of the tested 
vowels, two types of recordings were carried out. The first 
one corresponds to the “clean” speech signal of phonation 
without any MRI noise, only with the superimposed 
background noise of the temperature stabilizer [12]. The 
second one is composed of phonation during execution of the 
MR sequence SSF-3D which is usually applied for MR 
scanning of the human vocal tract [33]. 

The input feature vector with the length experimentally set 
to NSF=16 consisted of a mix of the basic and supplementary 
spectral and prosodic features. For the ANOVA-based 
evaluation experiment, the following speech features were 
used: {Enc0, Enr0, tilt, SC, flatness, HNR, SHE, RSE, TSE, c1 
– c3, F0DIFF, F0ZCR, jitter, and shimmer}. In the case of GMM 
training and classification the input vector contained 
statistical representative values of the supra-segmental 
parameters {F0DIFF, jitter, and shimmer}, the basic spectral 
features determined from the spectral envelopes {F1/F2, SC, 
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tilt}, and the supplementary spectral parameters {HNR, 
flatness, SHE}. 

The Ansari-Bradley hypothesis test was finally used in the 
ANOVA-based evaluation experiment due to higher 
consistency of the produced probability results with the 
absolute distances between group means. In the GMM-based 
evaluation experiment, a simple diagonal covariance matrix 
of the GMM as well as the number of mixtures NMIX=8 were 
finally applied because of their lower computational 
complexity and relatively good final discriminability of the 
summary results for all three evaluated methods. 

The described analysis and processing of the speech and 
noise signals were currently realized in the Matlab 
environment (ver. 2012a), using especially the “Signal 
Processing” and “Statistics” toolboxes. The Ian T. Nabney 
“Netlab” pattern analysis toolbox [34] was used for 
implementation of basic functions for the proposed GMM 
classifier. 

 
B.  Performed evaluation experiments 

The subjective evaluation was carried out by the listening 
test called “Evaluation of better sound after MRI noise 
suppression” by means of the automated internet application 
located at http://www.lef.um.savba.sk/scripts/itstposl2.dll 
[35]. This listening test had been accessed by twenty nine 
listeners in the time period from February 1 to 28, 2017. Our 
listening test experiment consisted of 10 evaluation sets, each 
comprising 5 long vowel utterances by male and female 
voices selected randomly from the speech corpus, so 30 
recordings were evaluated in total. For each of the vowel 
recordings the listener had to choose from four possibilities: 
“sounds best”, “sounds average”, “sounds worst” or “cannot 
be determined” – see an example of a screenshot of the 
listening test in Fig.9. The results obtained in this way are 
presented in Fig.10. 

 

 
 

Fig.9.  Example of a screen shot of the internet server realization of 
the listening test; first evaluation set, the first two samples already 
evaluated, the third one currently playing. 

The two basic experiments were focused on verifying the 
functionality of the developed ANOVA and GMM speech 
quality classifiers. This step was accompanied by the 
detailed analysis of the noise suppression method and the 
speaker type (male/female) – see the partial results in 
Fig.11. and Fig.12. Finally, the overall obtained values (for 
all processed vowels and speakers) are matched with the 
results achieved by the standard listening test method – see 
Table 2. 
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Fig.10.  3D visualization of the evaluation results obtained by the 
listening test method. 
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Fig.11.  Bar-graph comparison of the final order obtained by the 
ANOVA evaluation aproach for each of the five tested speakers. 
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Fig.12.  The bar-graph comparison of the GMM-based automatic 
evaluation results separately for male, female, and both genders of 
tested speakers, summarized for all five vowels. 

 
Table 2.  Final numerical comparison of obtained evaluation orders 
rescaled to the range of 1-3 (1=”best”, 2=“average”, 3=”worst”). 
 

Method Nsup1 Nsup2 Nsup3 
Listening test 1.52 2.48 1.97 
ANOVA-based 1.87 2.34 2.09 
GMM-based 1.76 2.41 1.84 
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4.  CONCLUSION 
The performed experiments have confirmed that both 

proposed automatic classifiers based on statistical approach 
work correctly and produce results comparable with those 
attained by the standard listening tests. It was verified on the 
speech material after the MRI noise suppression consisting 
of the records of the five basic vowels from five voluntary 
persons examined in the open-air MRI device during the 3D 
scanning of human vocal tract. 

As documented by the obtained results, the applied setting 
of the basic parameters for ANOVA and GMM evaluation 
approaches produces variability of the results for the 
male/female speakers (see the obtained scores in Fig.11.). On 
the other hand, the analysis of dependence of the obtained 
results on different types and different numbers of speech 
parameters used in the input feature vectors must also be 
performed. Finally, the computation complexity analysis of 
the current realization in the Matlab environment revealed 
that optimization and implementation in a higher programing 
language is necessary for real-time processing and 
classification. 
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