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Measuring errors caused by deformation (flattening) of a measured object appear under the influence of pressure force and weight of the 
measured object. Plastic strain, arising at the contact of a measured object and an undeformable contact tip of a measuring device, can be 
calculated by applying the Hertz plastic solution and the hypothesis of plastic strain. In a small area of contact between two bodies 
pressing against one another with force F, there appears the so-called contact stress. It can sometime reach very high values, exceeding the 
yield point, even when the contact pressure is relatively small. In the present work, the authors describe a theoretical solution to the 
problem of plastic strain between two bodies. The derived relationships enable to calculate force F during measurements of a deformable 
object by means of an instrument with an undeformable, spherical measuring tip. By applying the τmax hypothesis, a solution was obtained 
for the force F in an inexplicit form. The theoretical solution was verified with the digital simulation and experimental measurement. With 
the FEM method, the limit length gage was modeled in interaction with the measured shaft of a diameter d larger than the nominal one of 
Δl value. 
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1.  INTRODUCTION 

The accuracy of the measurement is affected by 
unavoidable deflection and deformation of the contacting 
surfaces under the gaging force in all measurements of 
contact type [1]. In reality, both the gap gage and the 
measured detail underwent deformation [2], but in the 
simplified model the plastic deformations under the pressure 
of the undeformable stylus could be calculated with the 
elastic solution proposed by H. Hertz and the hypothesis of 
the plastic deformation, using, e.g., the FEM simulation 
method. Its verification could be performed either with 
simple inspection methods like air gaging [3] or with 
advanced 3D surface topography analysis devices [4]. 

When two contacting solid bodies are pressed to one 
another with force F, the contact pressure causing stresses in 
the material appears in the small area of the mutual contact. 
Even though the gaging force is low, the small areas of the 
contact points develop high contact pressures [5]. The local 
force sometimes rises up substantially and even crosses the 
plastic deformation limits despite the fact that the force itself 
is relatively small.  

This problem appears especially in case of all categories of 
fixed gages of high stiffness. The contact of the fixed gage 
with the measured object takes place on the small surface, 

which causes high gaging pressure. The construction of the 
fixed gage and the geometrical profile of the measured 
object require relatively small force applied to the fixed 
gage by the operator. However, it may result in large contact 
pressure on the small surface, which leads to permanent 
plastic deformation of the measured surface [6]. The same 
problem appears also in the automation of the 
manufacturing processes. Contact conditions are critical to 
achieve the adequate force of measuring robot grippers [7], 
[8]. Too high contact pressure and inappropriate shape of 
the grip end may cause undesirable flattening of the surface 
structure of the workpiece, especially in case of soft metals. 

In the present work, a limit length gage was taken as an 
example of such a measurement in order to assess the plastic 
deformation of the shaft surface within a value equal to the 
roughness height. First, the shaft was prepared, so that its 
diameter was close to the upper tolerance. Then it was 
measured with the fixed gage, so that some force had to be 
applied. Next, in order to assess the deformation caused by 
the contact pressure, a profilogram was made. 

Because the deformations caused by the external factors 
and weight of the measured objects are very small, the 
respective surface is very small, too. It was assumed for the 
calculation and MES simulation purposes that both surfaces 
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and the body of the limit length gage are undeformable. In 
order to obtain clearly distinguishable results, the material of 
the measured shaft was chosen of lower strength. Harder 
materials of higher Re are suffering plastic deformation from 
the measurement force in smaller degree. On the other hand, 
harder material would cause substantial impact on the fixed 
gage, which would no more be considered undeformable. In 
the calculation example, the force was determined which 
would cause the plastic deformation of the measured shaft of 
a value 0.01 mm. 
 
2.  THE CONTACT PRESSURE CALCULATION 

According to the theory proposed by H. Hertz, in two 
objects of regular profile curvature, the component stress 
along z-axis, for 0x y= =  (Fig.1.) becomes the main one 
and can be calculated from the following formulae (1) [9]. 

 

 
 

Fig.1.  Scheme of contact of two bodies with regular shapes, the 
squeezing force F, according to H. Hertz (general case). 
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  (1) 

 
where σr, σz – the radial and axial stresses corresponding 
with the main stresses σ1, σ2; ν – Poisson’s number, a – 
contact substitute radius according to Hertz, q – pressure 
according to Hertz. 

In the contact area and the adjacent ones, there appears the 
3D tension state. Thus, the pressure force calculations could 
be based on the respective strain hypotheses. The material of 
the measured object can receive the stresses of the values 
above the yield strength, which defines the plastic limit. It 
may be explained by the fact that in the pressured points, 
there is the strain state calculated for the three-axes squeeze. 
Hence, if the maximal stress τmax hypothesis (Coulomb-
Tresca-Guest) [10], [11] is applied, the contact pressure F 
could be calculated as follows: 

 
1 2 .
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=      (2) 

 
After putting (1) to (2), it is received: 

 (3) 

 
After proper transformations, the values 0.5 ,max eRτ =

 and  could be included into 

(3), where Re – yield stress, Rzmax – maximal asperity height. 
Then the equation will take the following form: 

 
 (3a) 

 
From here, the equation for the force F could be written as 

(4) below: 

 
(4) 

 
In the equation (4), a becomes the substitute semi-axis of 

the ellipse and the b semi-axis appears:  It may 
be calculated as follows: 
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where E – Young’s modulus. 

On the other hand, , where pk  – 

curvature of the measured object profile, kk  – curvature of 
the measurement stylus, so 

( )
i

i
k∑  – the values of the 

curvatures of the typical measurements described in detail, 
e.g., in [12]. The equation of implicit form is obtained, 

because force F is determined by two equations: (4) and (5). 
The force may be calculated from them using the digital 
simulation, and for that purpose it was introduced to the 

numerical solution as the replacement of  then 
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Equation (5) may be transformed into the below form: 
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where A  may be assumed for the analyzed process as a 
known value, because ν, E and 

( )
i

i
k∑  are unequivocally 

determined. When two formulae (6) and (7) are compared, it 
could be derived: 
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After summation and transformation of some parts, which 

is shown below, (8) could be rewritten [9]: 
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However, when  then 
 

 

 
Multiplying by x, the result is 
 

       (8b) 

 

Assuming  and squaring both sides of the 

 
equation, (8b) becomes the polynomial of 8th degree. 
 

Because the parameter B is determined unequivocally with 
known values of Re, ν, E and 

( )
i

i
k∑  as well as the given 

roughness value Rzmax, the value x can be calculated: 
 

(9) 

 
With the available computer program (e.g., Mathematica, 

Derive, etc.), the variable x could be calculated from (9), 
choosing the correct square root from the solutions. When 
the appropriate x is ascribed to the given roughness Rzmax, 
the pressure force can be calculated, which causes the 
plastic deformation in the roughness dimensions during the 
measurement: 

 

       (10) 

 
This way, the pressure force F value was found, which 

caused the permanent deformation of the measured object in 
the contact area with the undeformable surface of the fixed 
gage. The parameter A, which appears in (10) is dependent 
on the Poisson’s number, Young’s modulus and the values 
of the contacting surface curvatures. The material properties 
described by (6) and (7) are rather implicit ones, but the 
parameter A could be derived as a simple function. 

 
3.  CALCULATION EXAMPLE  

Fig.2. presents the scheme of two objects’ contact during 
the measurement of the shaft diameter d with the limit 
length gage. The pressure force F should be calculated, and 
the force Q applied to the gage. The values were: 50d =  
mm; Rzmax = 0.01 mm; 300eR = MPa; 52.1 10E = ⋅ MPa;  

0.3.ν =  
The pressure force F is calculated form the formula (10) 

with previous calculation of x from the polynomial (9). Then 
A and B are calculated from the below equations: 
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After the values are introduced, it is calculated as follows: 
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   Then the polynomial takes the following form: 
 

 

 
 

Then, from the computer solution the approximated 
positive square roots are obtained { }0, 9, 4, 9, 6, 2, 7 .x ∈  
Putting the largest value 9x =  to the F formula, it is 
obtained: 

 

 
 

From Fig.2., the relation between the forces Q and F is as 
follows: 

 

 
 

where α – the sliding angle and ρ – the friction angle, both 
dependent on the shaft dimensions and its deformation 
during the measurement. 

It should be noted that the obtained result confirms quite 
reasonably the theoretic solution of the formula (10) giving 
the F force as dependent on the deformation of the measured 
object. 

 

α

ρ

α
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Fig.2.  Limit length gage in contact with a shaft of diameter larger 
than d with Δl: Q – the operator’s force; T – the friction force; F – 
the force normal to the surface of the gage surface; ρ – the friction 
angle; α – the sliding angle. 
 

The simulations were performed in the system Ansys 
Workbench 14.0, using the module “static structural.” The 
geometry model was built with Solid Edge ST5, considering 
the actual diameter of the shaft d = 50 mm. The deformation 
condition was assumed to be 3-dimensional. The grid was 
made out of 4-sided elements for overall dimensions of the 

grid 0.5 mm [13]. Then the grid density was increased in the 
contact area using the tool “sphere of influence” with the 
cell dimensions of 0.01 mm. Then the conditions of the 
contact were set as follows: the contact surfaces and the 
body of the gage were assumed as undeformable (Rigid 
body – Ansys), friction between the elements was assumed 
negligibly small (the appropriate tool was used which was 
“friction less support” – Ansys). The standard elastic and 
plastic model of the matter was taken like in the papers [14], 
[15] from the Ansys library for “structural steel.” In the 
simulation, we assumed an elasto-plastic model of material 
with nonlinear work hardening described by the Ludwik-
Hollomon exponential equation σ = Cεn, where C – work-
hardening coefficient, n – work-hardening exponent. This 
relationship is commonly used in simulation programs of the 
processes of cold plastic working, and it proves sufficiently 
accurate. For the simulation, the exponent n = 0.15 was 
chosen. The other data were assumed the same as in 
theoretical calculations: 

 
Re = 300 MPa; E = 2.1∙105 MPa; ν = 0.3. 

 
In Fig.3. the results of measured surface deformation with 

undeformable limit length gage simulation are presented. In 
the contact area, the stresses cross the plasticity limits and 
cause the plastic deformation. Fig.4. presents the results of 
the overall deformation simulations in the contact area 
between the gage and the shaft surface. 

 

 
 
Fig.3.  Diagram of the material deflection during the measurement 
of the shaft d=50 mm with the limit length gage, calculated against 
criteria of maximal reduced strain proposed by Huber – Mises – Hencky. 
 

 
 
Fig.4.  Diagram of the material deflection in the contact area of the 
gage surface with the shaft, calculated against criteria of maximal 
reduced strain proposed by Huber – Mises – Hencky. 
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For the same data concerning the material, the simulation 
analysis was performed for the shaft diameters 10÷50 mm 
forcing them into the undeformable bounds that were 
0.01 mm smaller than the diameter of the examined shaft. 
Such conditions correspond with the reality when the 
measured shaft slightly crosses the upper tolerances. In all 
simulated cases, some plastic deformation took place in the 
contact area. Fig.5. presents the graph with the deformation 
values. It is seen that the deformation is almost the same for 
any simulated diameter. It could be explained considering 
that the deformation took place in a very small surface area, 
so the shaft diameter has negligible impact on its value. 

 

 
 

Fig.5.  FEM simulation results for the deformed shafts of diameters 
10÷50 mm. 

 
There is no need to analyze the trend revealed in Fig.5. 

between 0.004 and 0.005 mm of the deformation depth. For 
the measuring task performed by the fixed gage, meant to 
check the dimension within the assumed tolerances, the 
resolution below 1 μm is not required.  

 
4.  EXPERIMENTAL VERIFICATION  

To correlate the simulation results with the real 
deformation caused by the limit length gage, the following 
experiment was performed. The series of shafts were made 
out of steel with plasticity Re=300 MPa, like in the case of 
FEM simulations, roughness Ra=3.47 µm and Ra =6.47 µm. 
The diameter of the shaft was made 50.010 ± 0.002 mm 
compared to the 50±0.001 mm dimension of the limit length 
gage. Next, the shaft was manually put into the gage. In the 
contact area, there appeared the reflecting imprint indicating 
plastic deformation of the surface layer. In Fig.6. there is a 
photograph, where the contact zone is visibly different from 
the rest of the shaft surface. The plastic deformation caused 
by measurement looks distinguishably brighter. The depth 
of the contact zone (ca. 5 μm) related to the rest of the 
undeformed shaft surface is clearly seen in the profilograms 
in Fig.7. 

It was assumed that neither in-depth analysis of the 3D 
topography characteristics was required, nor its impact on 
the roughness parameters [16]. To assess the depth of 
deformation, the measurement was made with the 
profilometer. The vertical zoom was set ×1000 because the 
deformation of several micrometers was expected. The 
horizontal zoom was set ×5 in order to distinguish the width 
of the limit length gage (9 mm). The examples of the 

obtained profilograms are presented in Fig.7. The mean 
distances between asperities are the result of the machining 
technology, especially feed and the cutting edge geometry. 
Form the profiles it is seen that these values are ca. 0.3 mm 
(Fig.7.a) and 0.1 mm (Fig.7.b). 

 

 
 

Fig.6.  The photograph of the surface after  
the experiment (zoom ×7). 
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Fig.7.  Profilograms of the deformed surface: a) the area of the 
formed peaks of the surface Ra=6.47 µm; b) the area of the surface 
Ra=3.47 µm. 
 

In Fig.7. the lines corresponding with the peaks of the 
roughness and the ones corresponding with the peaks in the 
deformed area were added. It is clearly seen that the 
measuring force caused the distinguishable and measurable 
deformation in the 9 mm long contact zone. In case of 
roughness, both Ra=3.47 µm and Ra=6.47 µm, the depth of 
deformation was ca. 5÷10 µm. Those deformations were the 
effect of the typical inspection made by the operator, with 
no additional force applied or even specific resistance noted 
by the operator. 

The experimental results were very similar to the ones 
obtained by the FEM simulation. They confirmed that the 
deformation depth does not depend on the diameter of the 
measured shaft, and it takes place only in the surface area of 
asperities. 
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5.  CONCLUSIONS 
In case of the contact measurement, the stylus or the fixed 

gage surfaces are in contact with the measured surface in a 
very small area. Thus, very large values of contact pressure 
appear, especially in case of the fixed gages measurement, 
when dimensions of the measured detail are close to the 
upper tolerance or cross it to a very small extent. Of great 
importance is also the geometric profile of the measured 
detail and the construction details of the applied fixed gage, 
which may cause very high contact pressure on the 
measured surface even though the operator does not apply 
extensive force to the gage. 

The theoretical analysis performed for the limit length 
gage measurement of the shaft diameter d = 50 mm found 
that there may appear permanent plastic deformation of 0.01 
mm. The MES simulation confirmed that such deformation 
is, indeed, possible. However, the deformation values 
obtained from the simulation were substantially lower than 
those from theoretical calculation according to the theory 
proposed by Hertz. The possible difference may lay in the 
fact that the theoretical calculations do not include the 
phenomenon of material strengthening. In turn, the 
experimental results are very close to the FEM simulation. 
The plastic deformations of the measured shaft caused by 
the measuring force are located in the outer surface area. 
When the details are made out of stronger and harder 
materials, the deformations caused by the measurement or 
the weight of the measured element are very small. Thus, 
the plastic deformations in those cases are seen as scratches 
or rubs of the surface. 
 
REFERENCES 
[1] Curtis, M., Farago, F. (2014).  Handbook of 

Dimensional Measurement. Industrial Press, Inc. 
[2] Bialas, S., Humienny, Z., Zach, P. (2004). Verification 

errors due to elasticity of gap gauges. In 8th 
International Symposium on Measurement and Quality 
Control in Production: Symposium Erlangen,  October 
12-15, 2004. Düsseldorf: VDI Verlag, VDI-Bericht 
1860, 457-469. 

[3] Jermak, Cz.J., Rucki, M. (2012).  Air Gauging: Static 
and Dynamic Characteristics. International Frequency 
Sensor Association (IFSA) Publishing. 

[4] Wieczorowski, M., Mamalis, A.G., Rucki, M., 
Lavrynenko, S.N. (2008). Interferometry and scanning 
microscopy in asperity measurement of biomedical 
surfaces. Nanotechnology Perceptions, 4, 265-288. 

[5] Dotson, C.L. (2016). Fundamentals of Dimensional 
Metrology. Cengage Learning. 

[6] Messerschmidt, U. (2010). Dislocation Dynamics 
During Plastic Deformation. Springer.   

[7] Kluz, R., Trzepiecinski, T. (2015). Analysis of the 
optimal orientation of robot gripper for an improved 
capability assembly process. Robotics and 
Autonomous Systems, 74, 253-266. 

[8] Kluz, R., Trzepiecinski, T. (2014). The repeatability 
positioning analysis of the industrial robot arm. 
Assembly Automation, 34 (3), 285-295. 

[9] Kowalik, M. (2008). Calculation of squeezing forces 
during longitudinal rolling for the final passage. The 
Archive of Mechanical Engineering, LV (2), 81-91. 
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