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The paper presents a new and original method of m-point estimation of sinusoidal signal amplitude. In this method, an m-point estimator is 
calculated on the basis of m initial signal samples. The way the estimator is constructed is explained. It is shown that the starting point for 
constructing the estimator is two initial signal samples. Next, in order to determine the estimator general form, three and m subsequent 
initial signal samples appearing in a signal period are used. Some special cases of an estimator are considered. Such an estimator is 
compared with a four-point estimator proposed by Vizireanu and Halunga. It is shown that the m-point estimator makes it possible to 
estimate the signal amplitude more accurately. 
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1.  INTRODUCTION 

Signal estimation methods can be divided into two main 
groups. The first group includes methods for parameter 
estimation in the time domain (least squares method, 
correlation methods) [1]. The second group includes 
methods for parameter estimation in the frequency domain 
(FFT and DFT) [2]. Each of these methods is characterized 
by a specific level of computational complexity. This level 
depends on the amount of data or on the number of the 
operations which lead to determining the parameters. 
Generally, an increasing amount of data or operations results 
in an increased level of the method accuracy, but also in 
extended calculation time. In measurement systems with a 
digital measurement algorithm in which, besides the 
accuracy, also the cost and calculation time count, it is 
suggested that methods making it possible to estimate signal 
parameters on the basis of the least possible number of 
samples should be used. Such methods include point 
methods making it possible to estimate signal parameters in 
the time domain on the basis of signal samples. 

The subject matter of the paper focuses on the issue of 
sinusoidal signal amplitude. A new and original method of 
m-point amplitude estimation is presented. In this method, 
an m-point amplitude estimator is calculated on the basis of 
m initial signal samples. The way the estimator is 
constructed is described. It is shown that the starting point 
for constructing the estimator is two initial signal samples. 
Next, in order to determine the estimator general form, three 
and m subsequent initial sinusoidal signal samples occurring 
in the signal period are used. In the literature, point 
estimators of sinusoidal signal parameters are amply 
represented and find many practical applications [3]-[5]. 

Especially noteworthy are the estimators proposed by 
Vizireanu and Halunga, among which a four-point signal 
amplitude estimator ought to be singled out [6]. Particular 
cases of an m-point estimator are considered. Such an 
estimator is compared with the four-point Vizireanu and 
Halunga estimator. In order to compare the estimators, 
simulations and a measurement experiment have been 
carried out consisting of the acquisition of samples of the 
sinusoidal signal. Maximum errors of the estimators are 
determined. Based on this, it is shown that the m-point 
estimator makes it possible to estimate the signal amplitude 
more accurately. 
 
2.  SINUSOIDAL SIGNAL AND ITS SAMPLES 

Let x(t), t∈R be a sinusoidal signal with the amplitude 
A∈R+\{0}, the DC component A0∈R, the period T∈R+\{0} 
and the initial phase ϕ∈R. Then 

 

( ) 0
2πsin φx t A A t
T

 = + + 
 

                   (1) 

 
Let us assume that the signal x(t) is uniformly sampled 

with the number of samples M∈N\{0, 1}. Then the samples 
 

[ ] 0x sin 2π φ ,  0,1,..., 1
s

fi A A i i N M
f

 
= + + = ⋅ − 

 
    (2) 

 
where f = 1/T, fs, and N∈N\{0} are, respectively, the 
frequency, the sampling frequency, and the number of signal 
periods. Synchronous sampling being the case, the 
frequency fs is an integer M-multiple of the basic frequency 
f. It means that 
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[ ] 0
2πx sin φi A A i
M

 = + + 
 

                  (3) 

 
3.  METHODS OF POINT ESTIMATION OF SINUSOIDAL SIGNAL 
AMPLITUDE 
A.  Three-point method 

In the three-point method, an estimator enabling to 
estimate amplitude A on the basis of three initial samples 
x[i] of signal x(t) is constructed. The starting point for 
constructing the estimator is two initial signal samples. 

Let 2 ≤ m < M, m∈N\{0, 1} be the number of equations in 
an equation system which can be defined on the basis of (3). 
Let us assume m = 2 and A0 = 0. Then M ≥ 3 and 

 
[ ] ( )

[ ]

x 0 sin φ  

2πx 1 sin φ

A

A
M

=

 = + 
 

                     (4) 

 
Solving system of equations (4) with respect to A, we 

obtain 
 

( ) [ ] [ ]

( ) ( )

2
1

x 0 x 1
2π 2πsin φ 1 cos cos φ sin

pA

M M

+
=

    + +        

      (5) 

 
Assuming 

( )

( )

( ) [ ] [ ]

2
1

2
2

2
3

2π1 cos  

2πsin

x 0 x 1

p

p

p

Z
M

Z
M

Z

 = +  
 

 =  
 

= +

                     (6) 

 
then on the basis of (4)-(6), we obtain the equation 
 

( )
( )

[ ] ( ) ( )( ) [ ] ( )

2
2 3

1 2
2 2

1 2
x 0 x 0

sign cos φ 1

p
p

p p

Z
A

Z Z
A A

=
 

+ −  
 

  (7) 

 
where sign(z), z∈R is the signum function [7]. Substituting 
amplitude A for A1

(2p) and solving equation (7) with respect 
to A, we obtain that 
 

( ) [ ]
( )

( ) [ ]
( ) ( )

( )( )
( )

( )

2 2 22
2 1 312

1 22 2
2 2

1
2 22

3
2

2

x 0 1 2x 0

         

p pp
p

p p

p

p

Z ZZ
A

Z Z

Z

Z

      = + −       

   +     

   (8) 

We proceed similarly in the case when m = 3 and A0 = 0. 
Then M ≥ 4, and the system determined on the basis of (3) 
assumes the form 

 

[ ] ( )

[ ]

[ ]

x 0 sin φ  

2πx 1 sin φ  

4πx 2 sin φ

A

A
M

A
M

=

 = + 
 
 = + 
 

                    (9) 

 
Solving system of equations (9) with respect to A, we 

obtain 
 

( ) [ ] [ ] [ ]3
1

x 0 x 1 x 2pA
D

+ +
=                   (10) 

Where 

( )

( )

2π 4πsin φ 1 cos cos

2π 4π    cos φ sin sin

D
M M

M M

    = + +    
    

    + +    
    

         (11) 

 
Assuming 

( )

( )

( ) [ ] [ ] [ ]

3
1

3
2

3
3

2π 4π1 cos cos

2π 4πsin sin

x 0 x 1 x 2

p

p

p

Z
M M

Z
M M

Z

   = + +   
   

   = +   
   

= + +

            (12) 

 
then on the basis of (9)-(12), we obtain the equation 
 

( )
( )

[ ] ( ) ( )( ) [ ] ( )

3
3 3

1 2
3 3

1 2
x 0 x 0

sign cos φ 1

p
p

p p

Z
A

Z Z
A A

=
 

+ −  
 

 (13) 

 
Substituting amplitude A for A1

(3p) and solving equation 
(13) with respect to A, we obtain that 
 

( ) [ ]
( )

( ) [ ]
( ) ( )

( )( )
( )

( )

2 3 33
3 1 312

1 23 3
2 2

1
2 23

3
3

2

x 0 1 2x 0

          

p pp
p

p p

p

p

Z ZZ
A

Z Z

Z

Z

      = + −       

   +     

   (14) 

 
Since functions sin(2π/M), cos(2π/M), sin(4π/M), and 

cos(4π/M) in equations (6) and (12) are not represented by 
samples x[i] of signal x(t), then quantities (8) and (14) do 
not yet constitute descriptions of point estimators. Note 
though that the sample 
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[ ] [ ] [ ]4π 2πx 2 sin φ 2cos x 1 x 0A
M M

   = + = −   
   

      (15) 

 
From the above equation it follows that [8] 

 
[ ] [ ]

[ ]
x 0 x 22πcos

2x 1M
+  = 

 
                   (16) 

 
Since for M ≥ 3 the function sin(2π/M) > 0, then based on 

(16) we obtain 
 

[ ] [ ]( )
[ ]

[ ] [ ]
[ ]

[ ] [ ]( )
[ ]

[ ] [ ]( )
[ ]

2

2

2

2

2

2

x 0 x 22πsin 1
4x 1

x 0 x 2x 0 x 24πsin 1
x 1 4x 1

x 0 x 24πcos 1
2x 1

M

M

M

+  = − 
 

++  = − 
 

+  = − 
 

        (17) 

 
Substituting the expressions in equation (17) for the 

expressions in equation (6), we obtain 
 

( ) [ ] [ ]
[ ]

( ) [ ] [ ]( )
[ ]

( ) [ ] [ ]

2
1

2
2

2 2

2
3

x 0 x 2
1

2x 1

x 0 x 2
1

4x 1

x 0 x 1

p

p

p

Z

Z

Z

+
= +

+
= −

= +

                 (18) 

 
We proceed similarly with equation (12). Substituting the 

expressions in equation (17) for the expressions in equation 
(12), we obtain 
 

( ) [ ] [ ] [ ]
[ ]

[ ] [ ]( )

( ) [ ] [ ] [ ]
[ ]

[ ] [ ]( )
[ ]

( ) [ ] [ ] [ ]

3
1 2

2
3

2 2

3
3

x 0 x 1 x 2
x 0 x 2

2x 1

x 0 x 2x 0 x 1 x 2
1

x 1 4x 1

x 0 x 1 x 2

p

p

p

Z

Z

Z

+ +
= +

++ +
= −

= + +

     (19) 

 
In this way, quantities (8) and (14) become point 

estimators of amplitude A of signal x(t). One of the initial 
conditions for calculating a three-point estimator is the 
assumption that the sample x[1] ≠ 0. Moreover, situations 
ought to be excluded from the calculations in which, due to 
the estimator and signal sample construction, it is not 
possible to carry out the mathematical operations of 
extraction of roots and division. Fixing the initial conditions 
makes it possible to calculate the estimator correctly. 

At this point, some clarification is called for. Equation (8) 
does not, contrary to what its name suggests, constitute  
a description of a two-point estimator, but of a three-point 
estimator. It follows from the fact that the functions in 
equation (17) are calculated on the basis of three samples 
x[i] of signal x(t). Furthermore, in this paper, such an 
estimator is denoted by the symbol A1

(3p)* and is called 
three-point estimator. Let us take note that the following 
theorem holds true. 

 
Theorem 1. If M ≥ 4, then A1

(3p) = A1
(3p)*. 

 
Proof. Based on the components of equation (18), we obtain 
 

( )

( )
[ ] [ ] [ ]

[ ] [ ] [ ]( )
[ ]

( )

( )
[ ] [ ]

[ ] [ ]( )
[ ]

( ) ( )

( )( )
[ ] [ ] [ ]( )

[ ] [ ] [ ]

2
1

2 2
2

2

2
3

2 2
2

2

2 2
1 3

22
2

x 0 2x 1 x 2

x 0 x 2
2x 1 1

4x 1

x 0 x 1

x 0 x 2
1

4x 1

2x 1 x 0 x 1
x 0 2x 1 x 2

p

p

p

p

p p

p

Z

Z

Z

Z

Z Z

Z

+ +
=

+
−

+
=

+
−

+
= −

− +

           (20) 

 
If M ≥ 4, then estimator (8) assumes the form 

 

( ) ( ) [ ] [ ]
[ ] [ ] [ ]

[ ] [ ] [ ] [ ]( )
[ ] [ ] [ ]

[ ] [ ] [ ]( )
[ ] [ ]( ) [ ]

[ ] [ ] [ ] [ ]( )
[ ] [ ]( ) [ ]

3 * 2 2
1 1

1
2 22

2 2

2 2

2 2

4x 1
x 0

x 0 2x 1 x 2

4x 1 x 0 x 0 x 1 4x 1 x 0 x 1
 

x 0 2x 1 x 2 x 0 x 2 4x 1

4x 1 x 0 x 2 x 1
         .

x 0 x 2 4x 1

p pA A
  

= = −    − + 

+ + + −
− + + − 

−
=

+ −

(21) 

 
On the other hand, based on the components of equation 

(19), we obtain 
 

( )

( )
[ ] [ ]

[ ] [ ] [ ]( )
[ ]

( )

( )
[ ]

[ ] [ ]( )
[ ]

( ) ( )

( )( )
[ ] [ ] [ ]( )

[ ] [ ]( ) [ ]

3
1

3 2
2

2

3
3
3 2

2
2

3 3 2
1 3

2 2 23
2

x 0 x 2

x 0 x 2
2x 1 1

4x 1

x 1

x 0 x 2
1

4x 1

2x 1 x 0 x 2

x 0 x 2 4x 1

p

p

p

p

p p

p

Z

Z

Z

Z

Z Z

Z

+
=

+
−

=
+

−

+
= −

+ −

        (22) 
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Hence for M ≥ 4, estimator (14) assumes the following 
form  
 

( ) [ ] [ ]
[ ] [ ]( ) [ ]

[ ]
[ ] [ ]( ) [ ]

[ ] [ ] [ ] [ ]( )
[ ] [ ]( ) [ ]

[ ] [ ] [ ] [ ]( )
[ ] [ ]( ) [ ]

43 2
1 2 2

1
224

2 22 2

2 2

2 2

4x 1
x 0

x 0 x 2 4x 1

4x 0 x 1 x 0 x 24x 1

x 0 x 2 4x 1 x 0 x 2 4x 1

4x 1 x 0 x 2 x 1
       

x 0 x 2 4x 1

pA
  
  = −   + − 

+ − +
+ − + − 

−
=

+ −

 (23) 

 
Thus A1

(3p) = A1
(3p)*. 

 
A serious drawback of the estimators A1

(3p) and A1
(3p)* is 

that in calculations they do not include the DC component 
A0 of signal x(t). It turns out, however, that in certain special 
cases, estimator A1

(3p)* can allow for such a component. It 
takes place when initial phase ϕ of signal x(t) assumes the 
value, e.g., ϕ = 0 or ϕ = π/2. Let us take into account 
estimator A1

(3p)*. Let us assume m = 2, A0∈R, and ϕ = kπ, 
k∈Z. Then M ≥ 3 and 

 
[ ] ( )0 0x 0 sin πA A k A= + =                 (24) 

 
Based on (5) and (24), we obtain 

 
( ) [ ] [ ]

( )

[ ] [ ]03 *
1

x 0 x 1 2 x 1 x 0
2π 2πsin φ sin φ sin

p A
A

M M

+ − −
= =

   + +   
   

        (25) 

 
Since the functions in equations (16) and (17) assume the 

form 
 

[ ] [ ]
[ ]( )

[ ] [ ]
[ ] [ ]( )

[ ] [ ]( )
[ ] [ ]( )

0

0

2

2

x 0 x 2 2 x 2 x 02πcos
2 x 1 2 x 1 x 0

x 2 x 02πsin 1
4 x 1 x 0

A
M A

M

+ − −  = =  − − 

−  = − 
  −

     (26) 

 
then 
 

( ) [ ] [ ]

[ ] [ ]( )
[ ] [ ]( )

[ ] [ ]( )
[ ] [ ]( ) [ ] [ ]( )

3 *
1 2

2

2

2 2

x 1 x 0

x 2 x 0
1

4 x 1 x 0

2 x 1 x 0
          

4 x 1 x 0 x 2 x 0

pA
−

=
−

−
−

−
=

− − −

      (27) 

 

Let us assume that m = 2, A0∈R, and ϕ = π/2 + 2kπ. Then 
M ≥ 3 and 
 

[ ] 0 0
πx 0 sin 2 π
2

A A k A A = + + = + 
 

           (28) 

 
Based on (5), (24) and (26), we obtain 

 
( ) [ ] [ ]

( )

[ ] [ ] [ ] [ ]
[ ] [ ]
[ ] [ ]( )

03 *
1

x 0 x 1 2
2πsin φ sin φ

x 1 -x 0 2 x 1 -x 0 2
          

2π x 2 x 01 cos 1
2 x 1 x 0

p A
A

M
A A

M

+ −
=

 + + 
 

+ +
= =

− + + 
  −

       (29) 

 
Substituting amplitude A for A1

(3p) and solving equation 
(29) with respect to A, we obtain that 
 

( ) [ ] [ ]( )
[ ] [ ] [ ]

2
3 *

1
2 x 1 x 0

3x 0 4x 1 x 2
pA

−
=

− +
                (30) 

 
If M ≥ 4, then according to Theorem 1, equations (27) and 

(30) can be applied to calculate estimator A1
(3p), when ϕ = kπ 

and ϕ = π/2 + 2kπ, respectively. 
 

B.  m-Point method 
Proceeding with the previous analysis, an m-point 

estimator of amplitude A of signal x(t) can be devised. 
Let 2 ≤ m < M be the number of equations in an equations 

system which can be defined based on (3). Let us assume A0 
= 0. Then 

 
[ ] ( )

[ ]

[ ] ( )

x 0 sin φ

2πx 1 sin φ

2πx 1 sin 1 φ

A

A
M

m A m
M

=

 = + 
 

 − = − + 
 


            (31) 

 
Solving system (31) with respect to A, we obtain 

 
( ) [ ] [ ] [ ]
1

x 0 x 1 ... x 1mp m
A

D
+ + + −

=             (32) 

 
where 
 

( ) ( )

( ) ( )

2π 2πsin φ 1 cos .... cos 1

2π 2π    cos φ sin ... sin 1

D m
M M

m
M M

    = + + + −    
    

    + + + −    
    

   (33) 
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Assuming 
 

( )

( )

( ) [ ]

1

1
0
1

2
0
1

3
0

2πcos   

2πsin  

x

mmp

r
mmp

r
mmp

r

Z r
M

Z r
M

Z r

−

=
−

=
−

=

 =  
 

 =  
 

=

∑

∑

∑

                  (34) 

 
then on the basis of (31)-(34), we obtain the equation 
 

( )
( )

[ ] ( ) ( )( ) [ ] ( )

3
1 2

1 2
x 0 x 0

sign cos φ 1

mp
mp

mp mp

Z
A

Z Z
A A

=
 

+ −  
 

(35) 

 
Substituting amplitude A for A1

(mp) and solving equation 
(35) with respect to A, we obtain that 

 

( ) [ ]
( )

( ) [ ]
( ) ( )

( )( )
( )

( )

2

1 312
1 2

2 2

1
2 2

3

2

x 0 1 2x 0

         

mp mpmp
mp

mp mp

mp

mp

Z ZZ
A

Z Z

Z

Z

      = + −       

   +     

(36) 

 
Quantity (36) is not yet a point estimator of amplitude A of 

signal x(t). Let us take into account that for r∈N the 
functions [7] 
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0

0

πsin cos sin sin
2

πcos cos sin cos
2

r
k r k

k
r

k r k

k

r
r x x x r k

k

r
r x x x r k

k

−

=

−

=

   = −   
  

   = −   
  

∑

∑
   (37) 

 
Hence 

 
( )

( )

( )

( )

1

1
0 0

1

2
0 0

2π 2πcos sin

π          cos
2

2π 2πcos sin

π         sin
2

m rmp k r k

r k

m rmp k r k

r k

r
Z

k M M

r k

r
Z

k M M

r k

−
−

= =

−
−

= =

     =      
    

 ⋅ −  
 

     =      
    

 ⋅ −  
 

∑ ∑

∑ ∑
       (38) 

 
Utilizing equations (16) and (17), we finally obtain that 

( ) [ ] [ ]
[ ]

[ ] [ ]( )
[ ]

( )

( ) [ ] [ ]
[ ]

[ ] [ ]( )
[ ]

( )
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    (39) 

 
In this way, quantity (36) becomes an m-point estimator of 

amplitude A of signal x(t). The initial conditions for the 
calculations of the estimator are the same as they are in the 
case of a three-point estimator. 

Similarly to the case of estimator A1
(3p)*, a situation can be 

considered in which the DC component A0 is taken into 
account while calculating estimator A1

(mp). We assume that 
A0 ≠ 0, M ≥ 3 and ϕ = kπ, k∈Z. Then, based on (24) and 
(36), we obtain 
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C.  Four-point method 
In a four-point method, the Vizireanu and Halunga 

estimator is used [6]. Such an estimator is calculated based 
on four initial samples x[i] of the sinusoidal signal x(t). If all 
four signal samples assume different values, then 
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is a four-point estimator of amplitude A of signal x(t). The 
main advantage of estimator A1

(4p) is the fact that it allows to 
estimate amplitude A on the basis of the samples of which 
we only know that they are samples of  
a sinusoidal signal. Such an estimator also allows for DC 
component A0 of signal x(t). Apart from the said advantages, 
estimator A1

(4p) also has some drawbacks. The most serious 
one is due to the initial condition (x[0] ≠ x[1] ≠ x[2] ≠ x[4]) 
imposed on the estimator. For example, the estimator value 
cannot be known when x(t) is a theoretical sinusoidal signal 
with initial phase ϕ = 0 sampled with the number of samples 
M = 6. In the literature, other point estimators have been 
described. The three- and five-point amplitude A estimators 
proposed by Wu and Hong can serve as examples [9]. 
Vizireanu and Halunga have shown that the Wu and Hong 
three-point estimator is in fact a special case of their own 
four-point estimator [10]. 
 
4.  SIMULATION RESULTS 

We shall assume that the estimation of amplitude A is 
carried out when the sinusoidal signal x(t) is disturbed by 
the Gaussian noise n(t) with the standard deviation σn∈R+. 
As a result of this operation, we obtain the signal y(t) = x(t) 
+ n(t) whose samples 

 
[ ] [ ]y[ ] x ni i i= +                        (44) 

 
Let us define by 
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2

1SNR 10log
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and expressed in decibels signal-to-noise ratio [11]. Then 
 

2 1log SNR
2 10σ 10
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n
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Adding noise to a signal aims at simulating situations in 
which the result of amplitude A estimation is affected by 
disturbances occurring in a real measurement channel. 

Let us assume that the samples y[i] of signal y(t) are 
quantized in an ideal roundoff A/D converter with the step q 
= 2A/2B, where B is the converter resolution, while Q(±z) = 
q⋅round(±z/q±0.5), where round(w) is a roundoff function 
rounding off the number w∈R to the nearest integer [12], 
[13]. In this way, quantized samples  

 
[ ] [ ]( )y [ ] Q x nq i i i= +                            (47) 

 
are obtained, constituting the basis for the estimation of 
amplitude A of signal x(t). 

Let us assume that amplitude A estimation is carried out 
based on the point methods described in this paper. The 
accuracy of the methods has been evaluated. Evaluation 
accuracy is about determining the maximum error 

 
{ }δ max δ= A                           (48) 

 
Where 

 
1δ 100%
−

=A
A A

A
                      (49) 

 
is the relative error calculated in each period based on the 
result A1 of the amplitude A estimation. 

In order to compare with each other the results of the 
estimation of amplitude A, the following evaluation criteria 
of accuracy of the results were assumed. If δ < 1 %, such 
result is considered as accurate. If 1 % < δ < 10 %, such 
result is conditionally considered as accurate. If δ > 10 %, 
this result is considered as inaccurate and to be rejected. 

In the first place a simulation study was carried out, 
consisting of the estimation of amplitude A using the three-
point estimator and the four-point Vizireanu and Halunga 
estimator. The evaluation of the accuracy of the results of 
estimation was based on the calculation of errors δ(3p)* and 
δ(4p) for varying SNR and M = 4, 8, 12, 16. During the 
simulation it is assumed that A = 1V, f = 20 Hz, A0 = ϕ = 0, 
B = 16, N = 100. Fig.1. presents the results of errors δ(3p)* 
and δ(4p) as a function of SNR. 

The results obtained show that with increase of M and 
SNR, the value of errors δ(3p)* and δ(4p) increase as well. In 
the case of three-point estimator, the cause of increase in 
error δ(3p)* is caused by increase of M, in the formula of 
estimator A1

(3p)* the value of the coefficient Z2
(2p) decreases, 

but faster than the value of the coefficient Z1
(2p) increases. In 

case of a four-point estimator, the cause of the increase in 
error δ(4p) of the result is thus, that along with the increase in 
M, present in the denominator of the formula for estimator 
A1

(4p), the difference between the two initial samples 
decreases, but faster than the expression of the nominator in 
this formula increases its value. 
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Fig.1.  Results of errors δ(mp) and δ(4p) as a function of SNR,  
a) M = 4, b) M = 8, c) M = 12, d) M = 16. 

 
However, even though the increase of M is followed by 

the reduction in the accuracy of the results, error δ(3p)* can 
further on take values below 1 %. It happens, for example, 
when M = 16 and SNR > 70 dB (Fig.1.d)). In the following 
part of this article is shown that increase in M may be 
necessarily caused by the fact that for the low number of 
samples M, the m-point estimator may not give any benefits. 

It remains to consider the question of the influence of the 
number of periods N of the signal on the value of errors 
δ(3p)* and δ(4p). It turns out that the increase in the number of 
periods leads to the increase of errors. This is due to the 

increase in the number of results A1
(3p)* and A1

(4p), which are 
taken into account when estimating amplitude A, while the 
random component of the results cannot be averaged to a 
sufficient degree. Table 1. shows the results of errors δ(3p)* 
and δ(4p) for SNR = 70 dB, M = 4, 8, 12, 16 and a selected 
number of periods N. 

 
Table 1.  Results of errors δ(3p)* and δ(4p) for a selected  

number of periods N. 
 

SNR=70 dB δ(3p)* 
N=10 N=100 N=1 000 

M=4 0.034% 0.060% 0.087% 
M=8 0.044% 0.055% 0.070% 

M=12 0.22% 0.40% 0.49% 
M=16 0.86% 1.0% 1.2% 

SNR=70 dB δ(4p) 
N=10 N=100 N=1 000 

M=4 0.042% 0.059% 0.052% 
M=8 0.54% 0.99% 1.7% 

M=12 1.2% 2.1% 2.8% 
M=16 2.8% 4.1% 3.9% 

 
Note that due to the assumed number of periods N = 100,  

a new, lower number of periods gives in the most cases  
a lower error value, while larger number of periods gives  
a higher error value. 

In the next step is checked whether in the same conditions 
of the simulation, m-point estimator will allow to estimate 
amplitude A with greater accuracy than the three-point 
estimator and four-point estimator. For this purpose, it was 
assumed SNR = 70 dB and simulations consisting of 
amplitude estimation using the m-point estimator were 
conducted. Accuracy evaluation of the results was based on 
the determination of an error δ(mp) for M = 4, 8, 12, 16 and 2 
≤ m < M. Fig.2. presents the results of errors δ(mp) and δ(4p) as 
a function of m. 

Table 2. shows selected results of errors δ(mp) and δ(4p) 
corresponding with those, presented in Fig.2. 

The results show that in the case of a particularly small 
number of samples M, increase in m does not provide 
significant benefits, although in most cases, error δ(mp) < 
1 %. Therefore, the application of the m-point estimator will 
be seen in a situation where M > 8. For a smaller number of 
samples M what is proposed by the author of three-point 
estimator can be used. Let us note that the increase in the 
accuracy of the results of estimation of amplitude A, as a 
result of the increase in the number of samples m, can be 
observed when M = 12 and M = 16, but only for M = 12, and 
any number of samples 2 ≤ m < M, error δ(mp) < 10 %. 
Furthermore, if M = 12 and m < 7, then δ(mp )< 1 %, and for 
m = 5 we get the smallest error value, equal to min{δ(5p)}= 
0.043 %. It can be also noted that if m = 2, then δ(2p) = δ(3p)* 

= 0.34 %. At the same time δ(4p) = 1.8 %. This means that 
the four-point estimator is less accurate than the three- and 
m-point estimator, respectively, by an order (m = 2) and two 
orders of magnitude (m = 5). The reason why in the m-point 
estimator an increase of error value δ(mp) is caused by the 
increase in number of samples m, is similar to that indicated 
earlier for the increase in error value δ(3p)*. 
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Fig.2.  Results of errors δ(mp) and δ(4p) as a function of m,  
a) M=4, b) M=8, c) M=12, d) M=16. 

 

 
Table 2.  Results of errors δ(mp) and δ(4p) for a selected  

number of samples m. 
 

SNR=70 dB δ(mp)<1% 
δ(4p) N=100 m=2 m=4 m=5 m=6 

M=4 0.062% - - - 0.040% 
M=8 0.058% 0.081% 0.27% 0.64% 0.97% 
M=12 0.34% 0.19% 0.043% 0.35% 1.8% 
M=16 0.95% 0.75% 0.50% 0.17% 3.8% 

In practice, it is not always possible to provide 
measurement conditions, where SNR = 70 dB. Therefore, 
the author has prepared Table 3. and Table 4. of the 
guidelines, which can help in the application of the m-point 
estimator in the conditions where 60 dB < SNR < 80 dB. In 
the tables are shown only the parameters of the method and 
the signal processing parameters, which by the mode of 
simulation allow to obtain errors δ(mp) at a level not 
exceeding 1 %. The tables show the results of error checking 
δ(4p) for a four-point estimator. In order to corroborate the 
results, the process of estimating amplitude A was repeated 
K = 104 for each assumed number of samples M. 

 
Table 3.  Parameters of m-point method (N=10). 

 
N=10 δ(mp)<1% min{δ(mp)}<1% δ(4p) 

M SNR=60 dB 
4 2≤m≤3 m=3 <1% 
5 

2≤m≤4 
<10% 

6 min{δ(mp)|m=3,4} <104% 
8 <10% 10 2≤m≤5 min{δ(mp)|m=3,4,5} 
12 4≤m≤5 m=5 <100% 14 m=6 m=6 
M SNR=70 dB 
4 2≤m≤3 m=3 <1% 5 2≤m≤4 
6 2≤m≤5 min{δ(mp)|m=3,4} <104% 
8 

<10% 

10 
2≤m≤6 min{δ(mp)|m=3,4,5} 

12 min{δ(mp)|m=4,5} 
14 4≤m≤6 min{δ(mp)|m=5,6} 
16 6≤m≤7 min{δ(mp)|m=6,7} 
18 m=7 m=7 
20 m=8 m=8 <100% 22 m=9 m=9 
M SNR=80 dB 
4 2≤m≤3 m=3 

<1% 8 2≤m≤7 min{δ(mp)| m=3,4} 
12 2≤m≤8 min{δ(mp)|m=4,5} 
16 2≤m≤9 min{δ(mp)|m=6,7} 

<10% 20 4≤m≤9 m=8 
24 8≤m≤10 m=9 
28 10≤m≤11 m=11 
32 12≤m≤13 min{δ(mp)|m=12,13} <100% 36 m=14 m=14 

 
According to the author, the use of tables is very simple. 

Assuming that as the result of the measurement is obtained 
for N = 100 periods each comprising M = 8 samples yq[i]. 
Assuming also that the reference value of amplitude A is 
known. On the basis of the samples obtained, SNR ≈ 70 dB. 
According to Table 4. amplitude A can be estimated with an 
error not exceeding 1 %, assuming in the m-point estimator 
any number of samples m between 2 ≤ m ≤ 5. After the 
calculation of A1

(mp), the value of error δ(mp) should be 
determined to check whether error δ(mp) < 1 %. If the 
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estimate of amplitude A is to be made with the least possible 
error δ(mp) not exceeding 1 %, then the m-point estimator 
should be used in consequence for m = 3, 4 and amplitude 
A1

(mp) calculated. Based on the results obtained and the 
reference value of amplitude A, calculate errors δ(mp) and 
indicate the result of A1

(mp) for which error δ(mp) takes the 
smallest value. Data from Table 3. and Table 4. should be 
considered only as a guide to help use the m-point estimator 
in practice. It should be remembered that in the real situation 
of measurement, the error of results may significantly differ 
from that obtained by the simulation mode. 

 
Table 4.  Parameters of m-point method (N=100). 

 
N=100 δ(mp)<1% min{δ(mp)}<1% δ(4p) 

M SNR=60 dB 
4 2≤m≤3 

 m=3 
<1% 

5 <10% 
6 

2≤m≤4 
<104% 

8 min{δ(mp)|m=3,4} 
<10% 10 2≤m≤4 m=4 

12 m=5 m=5 
14 m=6 m=6 <100% 
M SNR=70 dB 
4 

2≤m≤3 m=3 <1% 5 
6 

2≤m≤5 
<103% 

8 min{δ(mp)|m=3,4} 

<10% 

10 
2≤m≤6 

m=4 
12 m=5 
14 4≤m≤6 min{δ(mp)|m=5,6} 
16 5≤m≤7 min{δ(mp)|m=6,7} 
18 m=7 m=7 
20 m=8 m=8 <100% 22 m=9 m=9 
M SNR=80 dB 
4 2≤m≤3 m=3 <1% 8 2≤m≤7 min{δ(mp)|m=3,4} 

12 2≤m≤8 m=5 

<10% 
16 2≤m≤9 m=6 
20 5≤m≤9 m=8 
24 8≤m≤10 m=9 
28 10≤m≤11 m=11 
32 m=12 m=12 <100% 36 m=14 m=14 

 
Taking into account all the presented simulation results, it 

is concluded that: 
I.  The three-point estimator allows an estimation of 

amplitude A with greater accuracy than the four-point 
Vizireanu and Halunga estimator. 

II.  The m-point estimator allows to estimate amplitude A 
with greater accuracy than the three-point estimator. The 
condition for a more accurate estimation of the amplitude is 
to choose the number of samples m in such a way that error 
δ(mp) takes the smallest possible value (min{δ(mp)} from 
Table 4. and Table 5.). 

III.  The m-point estimator should be used when the 
number of samples M > 8. Application of the estimator for a 
smaller number of samples does not bring significant 
benefits and may be replaced with the three-point estimator. 

 
5.  EXPERIMENTAL VERIFICATION 

Taking into account the simulation results, a measurement 
experiment has been carried out consisting of the acquisition 
of samples of the sinusoidal signal x(t) with amplitude 
A = 1 V, frequency f = 20 Hz, and initial phase ϕ = 0. Signal 
x(t) has been generated by an Agilent 33220A function 
generator. The signal sampling has been carried out by an 
Agilent 3458A voltmeter [14]. Prior to carrying out the 
measurements, appropriate corrections of signal frequency f 
and sampling frequency fs have been made to ensure 
coherence of the samples collected without a break in 
subsequent periods. As a result, three series (s1, s2, s3) have 
been obtained, each containing N = 100 periods of the 
samples uq[i] of sinusoidal voltage. The number of samples 
in each period is M = 12. The measurement resolution is 
B = 16 and it results from the integration time ti = 2 µs 
preprogrammed in an Agilent 3458A voltmeter. On account 
of the way of voltage conversion by the voltmeter, the 
obtained samples uq[i] require correction of their values. As 
a result of this operation, the samples 
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are obtained, on whose basis amplitude A of signal x(t) is 
estimated. To estimate amplitude A, the m- and four-point 
methods presented in the paper are used.  

The evaluation of the accuracy of the results of amplitude 
estimation is conducted based on the maximum error (48) 
determined on the basis of the relative error 
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   (51) 

 
calculated in each period based on the result A1 of the 
amplitude A estimation, as well as on amplitude A'. 
Amplitude A' is calculated on the basis of an average of 
n = 10 values of the root mean square (RMS) voltage, 
measured by an Agilent 3458A voltmeter in the 
"Synchronous Sub-sample" mode. It is assumed that 
amplitude A' obtained in this way is the reference value of 
the results A1 of amplitude A estimation. To justify this 
procedure, it ought to be emphasized that the relative error 
δRMS of the averaged result of RMS measurement calculated 
on the basis of the device specification amounted to 
0.064 %, whereas error δA' of amplitude A' is equal to 
0.048 %. Taking into account the collected series of 
samples, as well as the employed estimators A1

(mp) and A1
(4p), 

error δA' proves to be significantly smaller than errors δ, and 
in a prevailing number of cases smaller than errors δA. Fig.3. 
presents the results of error δ determined for the collected 
series of samples. 
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Fig.3.  Results of errors δ(mp) and δ(4p) as a function of m. 
 
Table 5. shows the results of errors δ(mp) and δ(4p) for  

a selected number of samples m and the results of 
calculating SNR for the collected series of samples yq[i]. 

 
Table 5.  Results of errors δ(mp) and δ(4p) for a selected  

number of samples m. 
 

 Series 1 Series 2 Series 3 
SNR 70.76 dB 70.55 dB 70.59 dB 
M=12 δ s1

(mp) δs1
(4p) δ s2

(mp) δ s2
(4p) δ(mp) δ s1

(4p) 
m=2 0.38% 2.0% 0.29% 1.6% 0.35% 1.8% m=5 0.077% 0.082% 0.084% 
 
The results of experimental studies are consistent with the 

simulation results. The conditions of measurement are 
obtained, where SNR is at the level of 70 dB. The three-
point estimator has given the errors at the level not higher 
than 1 %, and the m-point estimator has allowed a 
significant increase in the accuracy of the estimation results 
of amplitude A. 

In comparison with the four-point Vizireanu and Halunga 
estimator, the m-point estimator makes it possible to 
estimate amplitude A with higher accuracy. The author has 
made the measurement results available for independent 
verification of the results of amplitude estimation [15]. 
 
6.  CONCLUSION 

In the paper, an m-point method of estimating the 
amplitude of a sinusoidal signal has been presented. In this 
method, an estimator calculated on the basis of m initial 
signal samples is used. It has been shown that such an 
estimator is suitable for amplitude estimation when m is 
very small. The special cases of an estimator have been 
examined. Such an estimator has been compared with the 
four-point Vizireanu and Halunga estimator. It has been 
shown that a m-point estimator makes it possible to estimate 
amplitude with higher accuracy. Such an estimator still has 
all the drawbacks of estimators of this type. In its case, the 
accuracy of amplitude estimation is decided by the greatest 
number of samples in a period. In practice, the number of 
samples ought to be the smallest possible. Apart from the 
pointed out drawbacks, a m-point estimator also has several 
important advantages. It is very efficient as far as its 
calculation speed is concerned, has a simple structure, does 
not require sample acquisition within a full signal period. If 
a measurement system does not require substantial accuracy 
of the measurement of sinusoidal voltage signal amplitude, 

and simultaneously the sampling is performed with a small 
number of samples per period, then a m-point estimator can 
be an effective tool for amplitude estimation. 
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