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Regression analysis with compositional response, observations carrying relative information, is an appropriate tool for statistical modelling in
many scientific areas (e.g. medicine, geochemistry, geology, economics). Even though this technique has been recently intensively studied,
there are still some practical aspects that deserve to be further analysed. Here we discuss the issue related to the coordinate representation
of compositional data. It is shown that linear relation between particular orthonormal coordinates and centred log-ratio coordinates can
be utilized to simplify the computation concerning regression parameters estimation and hypothesis testing. To enhance interpretation
of regression parameters, the orthogonal coordinates and their relation with orthonormal and centred log-ratio coordinates are presented.
Further we discuss the quality of prediction in different coordinate system. It is shown that the mean squared error (MSE) for orthonormal
coordinates is less or equal to the MSE for log-transformed data. Finally, an illustrative real-world example from geology is presented.
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1. INTRODUCTION

Compositional data, observations carrying relative informa-
tion, have been studied in the framework of the log-ratio
methodology [1]. This approach enables to relax the fixed
constant sum constraint of their proportional or percentage
representations (1 and 100, respectively), and follow natu-
ral principles of compositions. They consist of scale invari-
ance (results of a statistical analysis should be the same ir-
respective of concrete representation of the positive vector
whose parts carry relative contributions on a whole), permu-
tation invariance and subcompositional coherence [25]. Par-
ticularly, the issue of scale invariance is very important, be-
cause it enables to decide, just according to the nature of the
studied problem, whether the relative structure of variables
is the main focus of the analysis, or not. Even if not, rele-
vant preprocessing of the original data is still a crucial point
that should be taken into account [24]. Due to the algebraic-
geometrical structure of compositional data [4, 23], called
nowadays the Aitchison geometry [23] with Euclidean vec-
tor space properties, it is possible to express compositions in
such real coordinates that enable to proceed with standard sta-
tistical processing without further constraints, by considering
the specific interpretation of coordinates in sense of log-ratios
(or, more general, in log-contrasts) of the original composi-
tional parts. As usual in any reasonable statistical analysis, or-
thonormal coordinates are preferable [5], although also other

coordinate representations are useful in some special cases.
All these aspects concern also regression with composi-

tional response and real covariates, i.e., where not absolute
values of response variables, but rather ratios between them
form the source of primary information. The corresponding
linear regression model has been extensively studied, both
in terms of the original compositional response within the
Aitchison geometry, and in any of the established log-ratio
coordinate systems [8, 20, 25, 29, 30]. It turned out that
working in orthonormal coordinates is a preferable option, al-
though their particular interpretation in terms of balances be-
tween groups of compositional parts [7] needs to be taken into
account. Regression analysis with compositional response is
of great potential interest in geochemistry and also in medical
applications, e.g., in human metabolomics, where concentra-
tions of metabolites are frequently influenced by external fac-
tors (temperature, age of patients, etc.).

Despite this intensive care, there are still some practical
aspects concerning linear regression with compositional re-
sponse that deserve to be further analysed. The first one con-
cerns special orthonormal coordinate systems that enable in-
terpretation in terms of the original compositional parts (with
respect to the other parts in the actual composition) and were
applied in a number of applications including regression mod-
elling [10, 12, 14]. Although it is theoretically sound to work
exclusively in orthonormal coordinates, this particular choice
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of coordinates seems to be also a bit impractical as for a D-
part composition D coordinate systems are needed. It can be
shown that due to the relation between these particular or-
thonormal coordinates and centred log-ratio coordinates [1]
that are formed by coefficients with respect to a generating
system, it is possible to get easily the same numerical outputs
(or possibly up to a constant multiple) concerning regression
parameters estimation and hypotheses testing in multivariate
regression models by using just one coordinate system. The
second aspect concerns the relation between the mean square
error (MSE) and the coefficient of determination, obtained
from a regression model in orthonormal coordinates, or after
applying a log-transformation to the original compositional
data (in units that do not clearly indicate relative structure
of components, like proportions or percentages). This fact
may be useful for further methodological developments, sim-
ilarly as it was the case of inequality between Euclidean dis-
tance in orthonormal log-ratio coordinates (or, equivalently,
the Aitchison distance [2] between the original compositions)
and Euclidean distance between log-transformed composi-
tions [17]. For example, the mentioned relation was success-
fully used for the case of compositional data with an informa-
tive total (sum of parts), characterized by so called T-spaces
[24], where a log-transformation plays an important role of
a possible coordinate representation as an alternative to or-
thonormal log-ratio coordinates plus a variable representing
the total.

The paper is organized as follows. In the next section some
basics of the log-ratio methodology for compositional data,
necessary for this contribution, are recalled. In Section 3
the same is done for multivariate linear regression models to-
gether with statistical inference on regression parameters that
is not readily available in standard statistical literature. De-
tailed analysis of the possible use of clr coordinates for esti-
mation and statistical inference in regression with composi-
tional response follows in Section 4. Section 5 presents out-
puts on the MSE and the coefficient of determination for re-
gression models in orthonormal log-ratio coordinates and for
log-transformed compositions. An illustrative example from
geochemistry is presented in Section 6 and the final Section 7
concludes.

2. LOG-RATIO APPROACH TO COMPOSITIONAL DATA

In compositional data, the primary source of information is
contained in (log-)ratios between components (parts). From a
practical perspective it means that whenever not the absolute
values of parts, but rather their relative structure is of interest,
any particular unit representation of compositions (that can
even vary in the data set) should not alter the results of their
reasonable statistical processing; we refer to scale invariance
of compositional data. From the perspective of geochemical
data, any of their representations, either in mg/kg, ppm (since
not all components need to be measured, i.e., no constant
sum constraint is expected), proportions, or percentages, is
fully equivalent. Together with other two more methodolog-
ical principles, permutation invariance and subcompositional
coherence [25], they form general requirements for any rea-

sonable compositional data analysis. These principles are fol-
lowed by the Aitchison geometry [23] that results for a D-part
composition z = (z1, . . . ,zD) in a (D− 1)-dimensional Eu-
clidean vector space. As a consequence, it is possible to form
coordinates with respect to an orthonormal basis, or generat-
ing system that map the Aitchison geometry to the standard
Euclidean geometry in real space, for which most multivari-
ate statistical methods are designed [5].

Centered log-ratio (clr) coordinates represent coefficients
with respect to a generating system and historically the first
isometric mapping between the Aitchison geometry and the
real space endowed with the Euclidean geometry [1]. Clr co-
ordinates are defined as

clr(z) =

ln
z1

D
√

∏
D
j=1 z j

, . . . , ln
zD

D
√

∏
D
j=1 z j

 . (1)

Clr coordinates are characterized by a zero sum of the vari-
ables and, consequently, by a singular covariance matrix. On
the other hand, they are permutation invariant with respect to
the original compositional parts; also an interpretation of clr
coordinates in terms of dominance of single parts in the given
composition is possible. Though, for the purpose of statisti-
cal processing it is preferable to have orthonormal coordinates
that avoid singularity of the covariance matrix and guarantee
isometry with the original sample space of compositions, the
simplex (note that the isometry property holds also for the clr
coordinates).

Geometrically, orthonormal log-ratio coordinates can be
derived on a hyperplane, formed by clr coordinates. Any of its
orthonormal bases can be expressed as rows of a (D−1)×D
matrix V satisfying the relation VV′ = I(D−1). Here the sym-
bol ′ indicates transposition. Accordingly, orthonormal coor-
dinates are obtained as

y = clr(z)V′, (2)

and any two orthonormal coordinate systems are just rotations
of each other [6].

One popular choice of the orthonormal basis leads to the
matrix V =

(
v′1, · · · ,v′D−1

)′, where D-dimensional row vec-
tors vi, i = 1, . . . ,D−1, are given by

vi =

√
D− i

D− i+1

(
0, · · · ,0,1,− 1

D− i
, . . . ,− 1

D− i

)
(the value 1 is placed in the ith position). Using this orthonor-
mal basis leads to the following ilr coordinates

yi =

√
D− i

D− i+1
ln

zi

D−i
√

∏
D
j=i+1 z j

, i = 1, . . . ,D−1. (3)

In this setting, the first coordinate y1 explains all the relative
information about the first compositional part z1 within the
given composition [12]. It can be interpreted in terms of dom-
inance of a part in the numerator of the log-ratio with respect
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to other parts in the composition, aggregated by their geomet-
ric mean. One should be just aware that y1 can be never in-
terpret as a coordinate carrying all the information contained
in one component in an absolute sense; it is always referred
to the composition or subcomposition considered. It also re-
sembles the first clr coordinate, denoted as clr(z)1; indeed,
the first coordinates of both systems are related through

clr(z)1 =

√
D−1

D
y1. (4)

In order to obtain coordinates with similar interpretation
for each of the compositional parts zl , l = 1, . . . ,D, D differ-
ent orthonormal coordinate systems are needed, where the D-
part composition (z1, . . . ,zD) in (3) is replaced by a permuted
composition z(l), l = 1,2, . . . ,D:

z(l) = (zl ,z1, . . . ,zl−1,zl+1, . . . ,zD) =

= (z(l)1 ,z(l)2 , . . . ,z(l)l−1,z
(l)
l ,z(l)l+1, . . . ,z

(l)
D ).

Accordingly, orthonormal coordinates y(l) are obtained,
where the first coordinate aggregates all log-ratios with the
compositional part zl [12]. Note that also the matrix relation
between y and y(l) is a result of a simple permutation opera-
tion. Thus, without loss of generality we can focus just on the
case of (3) in the following.

3. ESTIMATION IN REGRESSION MODEL WITH COMPOSI-
TIONAL RESPONSE

Although it is possible to construct a regression model with
compositional response directly for the original composi-
tional data in the Aitchison geometry [8], any statistical in-
ference needs to involve the whole compositional response.
Instead, the regression model needs to be expressed in or-
thonormal coordinates, where standard testing procedures can
be applied by considering the specific interpretation of bal-
ances [7] and their special cases [10].

Regression with a D-part compositional response leads to
a multivariate linear model with a (D− 1)-dimensional re-
sponse variable. Although by using orthonormal coordinates,
it is possible to decompose the multivariate model into D−1
multiple regressions [8], in general, the multivariate approach
has several advantages in comparison with a series of uni-
variate models. Multivariate models respect the association
between outcomes, and thus, in general, procedures are more
efficient. They can evaluate the joint influence of predictors
on all outcomes and avoid the issue of multiple testing. Be-
low we list some basics of multivariate linear regression mod-
els that are used in the following sections. As usual in the
regression context, column vectors are considered here. A
multivariate linear model [13] can be expressed in the form

(Y1,Y2, . . . ,YD−1)=X(β1,β2, . . . ,βD−1)+(ε1,ε2, . . . ,εD−1),

or, equivalently, in the matrix form

Y(n×(D−1)) = X(n×k)B(k×(D−1))+ ε(n×(D−1)).

The design matrix X is of full column rank, β j, j =
1,2, . . . ,D−1, is a k-dimensional vector of unknown regres-
sion parameters and ε is a matrix of random errors. The mul-
tivariate responses Yi· = (Yi1, . . . ,YiD−1)

′, i = 1,2, . . . ,n, are
independent with the same unknown variance-covariance ma-
trix Σ, i.e.

cov(Yi·,Y j·) = 0((D−1)×(D−1)), i 6= j,

var(Yi·) = Σ((D−1)×(D−1)), i = 1, . . .n.

The best linear unbiased estimator (BLUE) of the parame-
ter matrix B

B̂ =
(
X′X

)−1 X′(Y1,Y2, . . . ,YD−1)

is invariant under a change of the variance-covariance ma-
trix Σ. However, the variance-covariance matrix of the vector
vec(B̂) = (β̂ ′1, β̂

′
2, . . . , β̂

′
D−1)

′

var
[
vec(B̂)

]
= Σ⊗

(
X′X

)−1

depends on Σ. Here the symbol ⊗ denotes the Kronecker
product. Since the variance-covariance matrix Σ is unknown,
it is necessary to estimate it. The unbiased estimator of
Σ is Σ̂ = Y′MX Y/(n− k), where MX = I− X(X′X)−1X′
is a projector on the orthogonal complement of the vector
space M (X) generated by the columns of the matrix X,
i.e. M (X) = {Xu : u ∈ Rk}. Under normality, the esti-
mators B̂ and Σ̂ are statistically independent. Moreover, if
n− k > D− 1, then (n− k)Σ̂ has the Wishart distribution
WD−1[n− k,Σ].

Let us note that the univariate approach leads to the same
estimators of regression parameters β j and of variances σ j j =

{Σ} j j, j = 1,2, . . . ,D− 1. Specifically, β̂i = (X′X)−1 X′Yi,

var(β̂i) = σii (X′X)−1 , and σ̂ii = Y′iMX Yi/(n− k).
Under the assumption of normally distributed coordinate

representation Yi· of the compositional response [19], hy-
potheses testing can be performed. Theory of multivariate
linear regression models [16] provide a range of tests, that are
easy to compute due to explicit formulas and do not require
to consider iterative algorithms under mild linearity assump-
tions.

Usually three basic cases of hypotheses testing in multi-
variate regression context are considered: significance of co-
variates for the ilr coordinate y j, j = 1,2, . . . ,D− 1, point
wise and simultaneously, and verification that the regressor
xi, i = 1,2, . . . ,k, contributes to the explanation of the overall
variability in Y.

It is easy to see that significance tests on single regression
parameters as well as hypotheses testing on the whole vec-
tor parameter β j, j = 1, . . . ,D−1, that conveys contributions
of all covariates to the j-th coordinate simultaneously can be
performed within univariate multiple regressions using stan-
dard T− and F− test statistics, respectively. Particularly, the
test statistics for the null hypothesis β j = 0 can be expressed
as

F ilr
j =

(n− k) β̂ ′jX′Xβ̂ j

kσ̂ j j
, (5)
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which has F-distribution with k and n− k degrees of freedom
under the null hypothesis.

The case of significance testing of the i-th regressor, i =
1, . . . ,k, requires already the multivariate setting. Symboli-
cally, the null hypothesis about the i-th regressor is expressed
as H0i : Bi. =

(
βi1,βi2, . . . ,βi(D−1)

)
= 0. The corresponding

test statistic is given by

F ilr
pred,i =

(n−D− k+2) B̂i. (Y′MX Y)
−1 B̂′i.

(D−1)
{
(X′X)−1

}
ii

, (6)

which is distributed as FD−1,n−D−k+2 under the null hypothe-
sis H0i.

Finally, in some cases even significance of the whole ma-
trix of regression parameters B, or a more general hypothesis
H0 : AB = C, where A is a q× k hypothesis matrix having
full-row rank q≤ k, and C is a q×D−1 matrix, are of inter-
est as well. For this purpose a battery of tests is available in
the literature [13], like Pillai-Bartlett trace, Wilks’s Lambda,
Hotelling-Lawley trace and Roy’s largest root. All of them
are based directly or indirectly on p = min(q,D−1) non-
zero eigenvalues λ j of the product matrix HE−1, where H
is the matrix for the hypothesis sums of squares and cross
products, and E is the residual matrix, i.e.

E = (Y−XB̂)′(Y−XB̂)
H = (AB̂−C)′[A(X′X)−1A′]−1(AB̂−C).

The behaviour of these matrices in different coordinate sys-
tems is thus crucial for statistical properties of the above test
statistics. Obviously, all of them are invariant under a change
of a basis thus they follow the behaviour of the sample co-
variance matrix under affine transformations [18].

4. REGRESSION WITH COMPOSITIONAL RESPONSE IN
DIFFERENT COORDINATE SYSTEMS

Due to (4) that describes the relationship between single clr
coefficients and the first ilr coordinates from (3) it seems to be
quite intuitive possibility to replace orthonormal coordinates
in the response simply by their clr counterparts and then pro-
ceed with the regression analysis.

Nevertheless, due to singularity of the covariance matrix
of clr coordinates it is not possible to decompose the multi-
variate model into univariate ones as it was the case for or-
thonormal coordinates. Though, as it is shown below, even
taking multivariate regression in clr coordinates would yield
the same results of the respective test statistics as one would
obtain by considering single ilr coordinates, coming from D
regression models.

In the following, the relation between clr and ilr coordinate
systems (2) is extensively used. Denote clr coordinates of the
composition z as yclr. Then the multivariate model can be
also written in the form

Yclr = XBclr + εclr. (7)

The variance-covariance matrix of independent D-variate re-
sponses Yclr

i· is var(Yclr
i· ) = Σclr = V′ΣilrV, i = 1, . . .n. The

variance-covariance matrix Σclr is a D×D positive semi-
definite matrix with the rank D−1 unlike Σilr, which is a full
rank (D− 1)× (D− 1) positive definite matrix. Obviously,
Σilr = VΣclrV′. The relationships between the parameter ma-
trices and multivariate responses are the following

Bclr = BilrV,
Bilr = BclrV′,
Yclr = YilrV,
Yilr = YclrV′. (8)

Theorem 1. (i) The test statistics for the hypotheses Bilr
i· = 0

and Bclr
i· = 0 are the same for an arbitrary i = 1,2, . . . ,k, i.e.

F ilr
pred,i = Fclr

pred,i.
(ii) Let us denote βclr,l the l-th column vector of the param-

eter matrix Bclr in the model with clr coordinates responses,
and β

(l)
ilr,1 the first column vector of the parameter matrix Bilr

in the l-th model with orthonormal coordinates y(l) consid-
ered as multivariate responses. Then the test statistics for
the null hypotheses β

(l)
ilr,1 = 0 and βclr,l = 0 for an arbitrary

l = 1,2, . . . ,D, are the same, i.e. F ilr,(l)
1 = Fclr

l .

PROOF. Let us consider the first statement. According to the
relations (4) and (8), as well as from the fact that the matrix
Σ̂clr is singular with the rank D− 1, the test statistic Fclr

pred,i
that arises from a general formula in [16] can be rewritten as

Fclr
pred,i =

(n− r(X)− r(Σ̂clr)+1)B̂clr
i· Σ̂

−
clr(B̂

clr
i· )
′

r(Σ̂clr){(X′X)−1}ii

=
(n−D− k+2)B̂ilr

i· V(V′Σ̂ilrV)−V′(B̂ilr
i· )
′

(D−1){(X′X)−1}ii

=
(n−D− k+2)B̂ilr

i· VV−L Σ̂
−1
ilr (V

′
R)
−V′(B̂ilr

i· )
′

(D−1){(X′X)−1}ii
,

where the matrix V′R is the right inverse of V′ and the matrix
VL is the left inverse of V, i.e.,(

V′R
)−

= Σ̂ilrV
(

V′Σ̂ilrV
)−

and V′
(
V′R
)−

= ID,

V−L =
(

V′Σ̂ilrV
)−

V′Σ̂ilr and V−L V′ = ID−1

and A− denotes a generalized inverse of a matrix A, i.e., a
matrix fulfilling the property AA−A = A.

The desired equality F ilr
pred,i = Fclr

pred,i is gained by pre-

multiplying and post-multiplying the matrix Σ̂ilr by VV′ =
ID−1.

The statement (ii) is a direct consequence of (4).

Theorem 2. The test statistics for the null hypotheses Bilr = 0
and Bclr = 0, as listed in Section 3, are the same.

PROOF. The statement follows from invariance under a
change of a basis of the matrices E and H, Eilr = VEclrV′,
Eclr = V′EilrV, Hilr = VHclrV′, Hclr = V′HilrV, and the fact
that the matrices HclrE−clr and HilrE−1

ilr have the same non-
zero eigenvalues.
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The above findings can be used to perform parameter es-
timation and significance testing in clr coordinates instead of
taking D orthonormal coordinate systems of type (3), when
the interpretation in sense of the original compositional parts
(with respect to the others) is required. Although methodi-
cally working in orthonormal coordinates is preferred in any
case, numerical outputs are the same (test statistics) or differ
just up to a constant resulting from (4).

Finally, note that the interpretation of the regression param-
eters can be enhanced by considering orthogonal coordinates,
resulting from suppressing scaling constants in orthonormal
coordinates. Concretely, they are formed from (3) by omit-
ting scaling constants and replacing the natural logarithm by
its binary counterpart (or any other interpretable base of log-
arithm), i.e.

y∗i = log2
zi

D−i
√

∏
D
j=i+1 z j

, i = 1, . . . ,D−1 (9)

[22]. By considering regression in clr coordinates, the param-
eters of the resulting regression model in orthogonal coordi-
nates, adapted to favour the l-th compositional part (denoted
as β

∗(l)
1 ), would be related through

β
∗(l)
1 = log2(e)

√
D

D−1
β
(l)
ilr,1 = log2(e)

D
D−1

βclr,l . (10)

Consequently, by taking the j-th element of β
∗(l)
1 , i.e. β

∗(l)
1; j ,

for j = 1, . . . ,k, then for a unit additive change in the j-th
explanatory variable (by constant values of the other covari-
ates), the ratio of xl to the mean relative contributions of the

other parts grows (decreases) δ = 2β
∗(l)
1; j times.

5. QUALITY OF PREDICTION IN LOG-RATIO COORDI-
NATES VERSUS LOG-TRANSFORMED DATA

In practice, the simple log-transformation, yi = log(zi), i =
1,2, . . . ,D, is often used in geochemistry, chemometrics and
related fields for modelling data with strictly positive parts.
Nevertheless, it has important consequences also in the com-
positional context. If not just the relative structure of compo-
sitional parts is of interest, but also their absolute abundances
in the original units like mg/l, cps, or monetary units [24], the
log-transformation serves for an appropriate coordinate rep-
resentation of the data at hand. Namely, compositional data
with informative absolute values of parts induce an Euclidean
vector space structure again (we refer to T-space) that should
be taken into account for the construction of any relevant real
coordinates.

An obvious consequence in the case of positive data (i.e.,
compositional data with an informative total) is lack of scale
invariance, but relative scale of compositions (not absolute
differences, but ratios form the source of dissimilarity be-
tween compositional vectors) is still taken into account for
statistical processing. Interestingly, it is easy to see that the
standard Euclidean distance of log-transformed data is always
greater or equal to the Aitchison distance between two com-

positions x and y [2], defined as

da(x,y) =

√√√√ 1
2D

D

∑
i=1

D

∑
j=1

(
ln

xi

x j
− ln

yi

y j

)2

.

To compare log-ratio and log-transformed regression models
one has to analyse, whether something similar holds also in
the regression context. Such a finding would be an impor-
tant step to understand the behaviour of regression models in
different coordinate systems. For this purpose, the matrix of
sums of residual squares is taken for both the cases of ilr co-
ordinates and log-transformed compositions,

Eilr = (Y−XB̂)′(Y−XB̂) = Y′MX Y,

Elog = [log(Z)]′MX log(Z),

respectively. Here the symbol Z denotes an n×D matrix with
D-part compositions in rows. The overall variability in data
corresponds to the matrices of total sum of squares

Tilr = Y′M1Y = VTlogV′, Tlog = [log(Z)]′M1 log(Z).

The matrix E is commonly used to measure the discrepancy
between the data and a fitted model in case of multivariate
regression [13]. Although also an alternative exists, based di-
rectly on the norm between the observed and predicted re-
sponse [8, 30], using directly E seems to be more coher-
ent with the current regression methodology. Particularly,
the trace of E is of primary importance, because it aggre-
gates residual sums of squares of single response variables
and leads to the multivariate analogy of the residual sum of
squares (RSS). The inequalities between the traces of matri-
ces E and T for compositions in ilr coordinates and by taking
log-transformation are stated in the following theorem.

Theorem 3. The traces of the matrices Eilr (sums of resid-
ual squares) and Tilr (total sum of squares) for compositions
represented in ilr coordinates are always less or equal than
the traces of the matrices Elog and Tlog for log-transformed
compositions, i.e. the following inequalities hold

0≤ tr(Eilr)≤ tr(Elog), 0≤ tr(Tilr)≤ tr(Tlog). (11)

PROOF. The relationships between the ilr, clr coordinates and
log-transformations [1, 6] can be expressed as

Y = clr(Z)V′, clr(Z) = M1 log(Z),

where V contains in its rows orthonormal basis in clr coor-
dinates, i.e. it is a (D− 1)×D matrix with the property
VV′ = ID−1, and M1 is a projection matrix on the orthogo-
nal complement of the vector space M (1) ⊂ RD generated
by the vector 1 of n ones, i.e., on the hyperplane formed by
clr coordinates. Using these equalities, the matrix Eilr can be
rewritten as

Eilr = V[clr(Z)]′MX clr(Z)V′
= VM1[log(Z)]′MX log(Z)M1V′.
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The matrix V contains basis of the vector space that is orthog-
onal to the vector space M (1), and thus M1V′ = V′. Hence

Eilr = V[log(Z)]′MX log(Z)V′ = VElogV′,

and the trace of the matrix Eilr is tr(Eilr) = tr(ElogV′V). The
matrix Elog is positive semidefinite, V′V is symmetric, and
thus, the upper and lower bounds for tr(Eilr) are [15]

λmin(V′V)tr(Elog)≤ tr(Eilr)≤ λmax(V′V)tr(Elog),

where λmin and λmax are the smallest and largest eigenvalues
of the matrix V′V. Since the matrix V′V is idempotent with
the rank D− 1, it has D− 2 eigenvalues λmax = 1 and one
eigenvalue λmin = 0 [11]. Thus we have

0≤ tr(Eilr)≤ tr(Elog).

Similarly we can prove the inequality for the trace of ma-
trices of total sum of squares.

Theorem 3 states that the trace of the matrix E obtained for
ilr coordinates is less or equal to that one for log-transformed
compositions. Thus, the mean squared error (MSE) for ilr
coordinates is less or equal to the MSE for log-transformed
data. Since the same inequality holds also for the trace of the
matrix T, the relationship between the coefficients of determi-
nation R2

ilr and R2
log does not exist in general. These measures

of goodness of fit, defined as

R2
ilr = 1− tr(Eilr)

tr(Tilr)
, R2

log = 1−
tr(Elog)

tr(Tlog)
,

thus reflect structural changes that arise by avoiding the
scale invariance property of compositions, i.e. when log-
transformation is applied instead of taking the ilr coordinates.

It is not difficult to demonstrate that there is no relation in
general between both coefficients R2

ilr and R2
log. For this pur-

pose, let us consider two matrices of response compositions,

Z1 =


1 5 1
9 2 2
1 8 3
1 2 5

 , Z2 =


1 5 1
9 2 2
1 8 3

10 2 5

 ,

observed for the values x = 1,2,3,4 of the explanatory vari-
able. Note that both matrices differ just by the entry on the po-
sition (4,1). Though, by taking linear regression with an abso-
lute term, the first case results in R2

ilr = 0.707 < 0.736 = R2
log,

while in the second one R2
ilr = 0.788 > 0.674 = R2

log is ob-
tained.

Finally, it is worth to mention that the trace of any covari-
ance matrix (residual or total) is equal to the mean of the dis-
tances between the samples and the centre on the simplex.
This fact can be used to reformulate Theorem 3 in terms of
distances in the respective spaces, if appropriate.

6. ILLUSTRATIVE EXAMPLE: RESERVOIR SEDIMENTS IN
THE CZECH REPUBLIC

The findings from the above sections are briefly illustrated
using a geological data set from lacustrine sediments of the

Nové Mlýny reservoir in the Czech Republic (underwater
core NM1, WGS-84: 48◦53′8.771′′N, 16◦31′52.966′′E) [26].

Thirty-four samples from the core were air dried, manu-
ally ground in agate mortar and subjected to element compo-
sition analysis using Energy Dispersive X-ray Fluorescence
(EDXRF) spectrometry. A PANalytical MiniPal 4.0 EDXRF
spectrometer with a Peltier-cooled silicon drift energy dis-
persive detector (Institute of Anorganic chemistry in Řež,
Prague) was used. Signals of Al and Si were acquired at 4
kV/200 µA with Kapton filter 151 under He flush; Zn, Mn
and Fe at 20 kV/100 µA with Al filter in air 152 and Rb and
Pb at 30 kV/200 µA with Ag filter in air [21]. The EDXRF
results are provided in counts per second (cps).

Fifteen elements Al, Si, P, Ti, K, Ca, Fe, Cr, Mn, Ni, Cu,
Zn, Zr, Rb and Pb were selected for further statistical process-
ing using regression analysis. The elements represent com-
mon lithophile elements, which are used for geochemical de-
scription of common parameters of sediments and sedimen-
tary rocks, such as the grain size (Al, Si and Ti), degree of
weathering (K, Al and Rb), heavy-mineral composition (Zr,
Ti, Fe), organic production (P, Ca, Cu, Zn), redox state (Mn,
Ni, Cu, Zn) and anthropogenic impact by toxic compounds
(Cr, Ni, Zn, Pb).

In this concrete case, both absolute and relative informa-
tion were of simultaneous interest; the total concentrations
of the elements in the Nové Mlýny reservoir have been re-
cently interpreted in [3]. Accordingly, in the following both
log-ratio coordinates and log-transformed compositions were
employed.

In addition to other site-specific geological tasks the aim
was to investigate whether the distribution of these 15 ele-
ments in the core is random or organized. For this purpose
linear regression models with the polynomial trend (up to the
4th-degree) in depth, and with the response composition in clr
coordinates and log-transformed variables were taken. Partic-
ularly, the models (7) and

log(Z) = XBlog + ε log,

where Blog = (βlog,1, . . . ,βlog,15), were analysed. The j-th
row of the design matrix X was considered in the following
forms

(1,depth j), . . . ,(1,depth j, . . . ,depth4
j).

In all cases the simplest possible model that was consistent
with data was chosen.

By considering the regression outputs (realizations of test
statistics Fclr

l and F-statistics to verify significance of the
whole vector parameter βclr,l and βlog,l , respectively, T-
statistics for significance testing of single regression param-
eters, p-values, coefficients of determination and visualiza-
tion of data together with the corresponding regression func-
tions), only zirconium (Zr) didn’t show any systematic pat-
tern (i.e. does not change with changing depth) either for log-
transformation or clr coordinate of the response. A system-
atic increase/decrease was observed in a majority of the ele-
ments but their clr coordinates usually indicate a more com-
plex (polynomial) underlying pattern.
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A typical example is Fe (Figures 1, 4) in which an increas-
ing trend was observed. For an easier interpretation, the re-
sponse was expressed in orthogonal coordinates. From re-
gression outputs (the slope parameter estimate was 8.796 ·
10−3 with standard error 0.710 · 10−3 and p-value � 0.001,
MSEilr = 0.049, R2

ilr = 0.845) it can be concluded that by the
increase of depth by 1 cm the ratio of Fe to the geometric
mean of the other 14 elements increases approximately once
(δ = 1.009146 times, it means 1%); similarly, by considering
log-transformed response (the slope parameter estimate was
3.766 · 10−3 with standard error 0.580 · 10−3 and p-value �
0.001, MSElog = 0.060, R2

log = 0.609), the increase of depth
by 1 cm means that the absolute amount of Fe (in cps) grows
approximately once, exp{3.766 · 10−3} = 1.003773. From
the lower value of MSEilr than MSElog as indicated by The-
orem 3 one can in general conclude that for given scales the
MSE values show always better fit in the ilr space (that would
be no longer the case for scaling-free R2 values). On the other
hand, data configuration for the clr representation suggests
that the linear trend could be enhanced by a more complex
regression function, here polynomial of degree four. An ex-
treme case of this general feature is Si (Figures 2, 5), in which
the linear trend for the response in clr coordinates is replaced
by the polynomial one of degree four.

It is important to mention that the depth range from 45 to
55 cm in the NM1 core is a transitional zone between lower
pre-dam fluvial sediments and upper, fully dam-reservoir
ones [27]. This layer, strongly enriched in organic carbon, has
critical effect on the depth distribution of various elements,
including P (sensitive to organic productivity), Si (sensitive
to grain size) and Fe (sensitive to redox conditions) (Figures
1-6). Distribution of these elements shows breaks at the base
or on top of this layer, i.e. at 55 or 45 cm depth, which can be
explained by their different geochemical behaviour. In par-
ticular, Si break is related to decrease of grain size at a break
in sedimentation style from fluvial to lacustrine, Fe peak be-
tween 45 and 55 cm depth is likely related to diagenetic sul-
phide precipitation under dysoxic/anoxic conditions (high or-
ganic carbon) and P is related to increased organic productiv-
ity in water column of the lake.

Consequently, linear (= continuous in depth) regression
trends are less likely than those represented by a polynomial
function (= discontinuous in depth). In this respect, the clr
data provide a better representation of the core stratigraphy.
Mathematically, this effect can be easily explained by the re-
maining elements in the composition, which are incorporated
in the denominator of the centred log-ratio. This facilitates
identifying geochemical patterns related to the geochemical
matrix in which the particular element is contained. On the
other hand, there are also some exceptions, like for phospho-
rus (P, Figures 3, 6), where this change seems to be better
reflected by the log-transformed response (accordingly, even
two constant lines instead of one regression line were taken).

In this case, the piecewise constant model with the j-th row of
the design matrix given as (1, I[depth j ≥ 45 cm]), where the
symbol I[depth j ≥ 45 cm] denotes a dummy variable coded 1
for the j-th measurements in the depth 45 cm and more, and
0 otherwise, fitted best the data.

Based on the purpose of the analysis, one can consider
purely relative information, or to take also absolute abun-
dances of positive data into account. Nevertheless, like here,
such decision of the analyst should always follow also pre-
vious expert knowledge on possible underlying processes in
data.

7. CONCLUSIONS

Although regression analysis with compositional response
represents one of the most tasks of compositional data analy-
sis, there are still some aspects that deserve to be analysed in
more detail. Two of them, concerning

• the particular coordinate representation for estimation
and interpretation of regression parameters,

• the quality of prediction by considering (or not) also ab-
solute abundances instead of purely relative information
conveyed by compositional data

were discussed in this paper. They both have in common
that even coordinate systems that are nowadays rather sup-
pressed in compositional data analysis, here clr coordinates
and log-transformed variables, might be useful for some spe-
cific tasks and also help to understand differences between
various methodological viewpoints. Particularly, clr coordi-
nates simplify the computation of the regression coefficients
instead of considering D ilr regression models, just the princi-
pal difference between both options arising from a singularity
of a covariance matrix for clr coordinates needs to be taken
into account. Clr coordinates cannot be considered separately
due to their zero sum constraint, while this is not the case for
orthonormal (orthogonal) coordinates. The theoretical part of
the paper was endowed with a real data example from sed-
imentology, where interesting patterns were revealed. From
this perspective, we believe that the presented methodologi-
cal outputs are useful steps for a practical analysis of compo-
sitional data.
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Fig. 1: Regression model for iron using log-transformation.
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Fig. 2: Regression model for silicon using log-transformation.

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 10 20 30 40 50 60

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

depth [cm]

lo
g(

P
) 

[lo
g(

cp
s)

]

P − log−transformation

Fig. 3: Regression model for phosphorus using log-transformation.
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Fig. 4: Regression model for iron using orthogonal coordinates.
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Fig. 5: Regression model for silicon using orthogonal coordinates.
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River, Czech Republic. Appl Geochem, 48, 1–15.

[22] Müller, I., Hron, K., Fišerová, E., Šmahaj, J., Cakir-
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