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Multilateration measurement using laser trackers suffers from a cumbersome solution method for high-precision measurements. Errors are 
induced by the self-calibration routines of the laser tracker software. This paper describes an optimization solution model for laser tracker 
multilateration measurement, which effectively inhibits the negative effect of this self-calibration, and further, analyzes the accuracy of the 
singular value decomposition for the described solution model. Experimental verification for the solution model based on laser tracker and 
coordinate measuring machine (CMM) was performed. The experiment results show that the described optimization model for laser 
tracker multilateration measurement has good accuracy control, and has potentially broad application in the field of laser tracker spatial 
localization. 
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1.  INTRODUCTION 
The emergence of laser tracker had a huge impact on 

three-dimensional space measurement [1]. Since then laser 
trackers have been widely used in industries for large-scale 
metrology in a range of applications including the assembly 
of large structures, reverse engineering and the volumetric 
accuracy checking of large CMMs and machine tools, and 
they have played a critical role in aerospace and defense 
industries [2]. 

A laser tracker is a portable coordinate measuring system, 
used for measuring the azimuth and distance through a lens 
to obtain 3D coordinates of the target mirror, in cooperation 
with the objective lens of the target. The measurement 
information, which LaserTRACER gets, does not contain 
angular information. So in the multilateration measurement 
of LaserTRACER it can be compiled to reduce the 
uncertainty.  

At present, multilateration measurement has been widely 
developed [3]-[5]. Zhang et al. from the engineering college 
of Durham University made further study of optimization of 
multilateration set-ups and measurement plans [6]. Wang 
Jindong applied the multi-station and time-sharing 
measurement to machine tool correction [7]-[9]. 

The process of calculating multilateration measurement 
model is very tedious in practice. Self-calibration errors in 
laser tracker stations are introduced by the usual solution 
model. This article describes a new solution model of laser 
tracker multilateration measurement, researches the 

accuracy of singular value decomposition for the described 
solution model. Experiments are then performed to prove 
the validity and correctness of the algorithm. 

 
2.  SUBJECT & METHODS 
2.1.  The establishment of multilateration measurement 
model 

A multilateration measurement method, based on a multi-
station laser tracker, effectively uses high-precision length 
measurement to precisely position the measuring point in 
space. In the actual measurement, test points are the ball 
center of the laser tracker’s target mirror, so the laser tracker 
in the reference coordinate system can be viewed as a 
particle providing continuous stable laser output. As shown 
in Fig.1., distance between measuring point Ti(x,y,z) and the 
particle Pk(X,Y,Z) is interpreted as a spherical radius. So the 
laser displacement lik varies always along the radial direction 
between the measuring point and the particle, regardless of 
the movement path of measurement point. When the 
measurement point from the initial measurement point 
T0(x,y,z) moves to any test point Ti(x,y,z), the laser 
displacement is l, then according to two-point linear 
equation the spatial relationship can be established by the 
following equation [8] 

 
2 2 2

k( ) ( ) ( )i i k i k k ikx X y Y z Z d l− + − + − = +       (1) 
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Fig.1.  Laser tracker multilateration measurement model schematic 
(l is the laser displacement, T0(x,y,z) and Ti(x,y,z) are the 
measurement points, d is the dead path length, P(X,Y,Z) is position 
coordinate of the laser trackers). 
 
2.2.  Optimization model and solution  

The value of laser displacement lik in (1) is usually 
regarded as the true value in laser tracker multilateration 
measurement methods; thus, from (1) the error equation can 
be written as 

 
2 2 2

k( ( ) ( ) ( )  )ik i i k i k k ikv x X y Y z Z d l= − + − + − − −     (2) 
 

vik is the residual between measured and fitted distance to 
measurement point. 

Together with the position coordinates of the laser trackers 
(Xk, Yk, Zk), they are the so-called system parameters, and 
collectively expressed as P. (xi,yi,zi) are the coordinates of 
the measured targets, and collectively expressed as T. As an 
interferometer is a relative measurement device, measuring 
only changes in laser displacement lik.. lik are the relative 
distance measurement of the i-th target point, as measured 
by the k-th laser tracker, and collectively expressed as L. A 
dead path length d is introduced, collectively expressed as 
D, common to all distance measurements from the same 
laser tracker. In the usual solution model, the redundant 
equations are constituted, and then the least squares method 
is needed to solve the equations as follows. 
 

2

1 1
( , , ) ( , , , ) ( 1, 2,3 ,

1, 2,3 )

ik
i k

E T P D v L P T D i n

k m
= =

= =

=

∑∑ 


       (3) 

 
There are many numerical algorithms for solving least 

squares problems, such as trust region method, Gauss-
Newton method, Levenberg-Marquardt method, general 
inverse methods, and so on. However, an initial value is 
needed regardless of any numerical algorithm. In addition, 
the accuracy of the initial value selected may directly affect 
the calculation accuracy and efficiency. When the initial 
value is far from the true value, the iteration calculation may 
not converge, then the results cannot be obtained, so the 
selection of initial value is crucial. And the following 
method is used. 

n is the number of the target points, m is the number of 
laser tracker stations. Therefore, the total of unknowns is 

3n+4m, and each station can provide n laser displacement 
values, a total of equations is m×n. To ensure (2) can be 
solved, m×n≥3n+4m is a necessary limit. A linear 
expansion of (2) is as follows. 
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The simplified equation of (4) is as follows. 
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0 0 0 2 0 0 2 0 0 2 1/2(( ) ( ) ( ) )ik i k i k i kL x X y Y z Z= − + − + −          (6) 

 
Equation (5) is the optimization solution model. Δxi, Δyi, 

Δzi, ΔXk, ΔYk, ΔZk are coordinate correction values for target 
points and laser tracker station particle. Δdk is correction 
value of dead path length. Both of them are the unknowns. 
Those variables with superscripts of zero are initial values. 
So these variables may be the approximation, which can 
effectively reduce the precision influence of the self-
calibration. We can get the initial xi

0, yi
0, zi

0 by reading the 
3D coordinates of the measurement point in CMM. The 
initial value of the laser trackers’ coordinates Xk

0, Yk
0, Zk

0 
and the dead path length dk

0 can be derived through the self-
calibration in the next section. 

 
2.3.  Calibration of laser tracker station coordinate 

A measurement point coordinate might be temporarily 
regarded as the true value if only the approximate 
coordinates of a laser tracker station are needed as the 
expansion point to iterate. Thus, target point coordinate 
Ti(x,y,z) and laser displacement lik are the known values, and 
they are used to calibrate the coordinates Pk(X,Y,Z) of the 
laser tracker at each station and the corresponding dead path 
length dk.. Taking the case of 1st station as an example, (2) 
becomes 

 
2 2 2

1 1 1 1 1( ) ( ) ( )i i i ix X y Y z Z d l− + − + − = +         (7) 
 

In the same way, (7) written as the error is as follows. 
 

2 2 2
1 1 1 1 1 1( ( ) ( ) ( ) + i i i i iv x X y Y z Z d l= − + − + − −（ ）  (8) 
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Suppose 2 2 2 2
1 1 1 1a X Y Z d= + + − , and use the least squares 

method to (8) 
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We can get the approximate coordinates of the laser 

tracker particle and the dead path length by simultaneous 
equations (9) to (13), and similarly for the other stations. All 
the values can be used as the initial expansion point in (5) to 
iterate. Substitute the approximate coordinates of the laser 
tracker particle at each station, measured coordinates of the 
target point, dead path length into (5), to get the coordinate 
correction values of each target point. Then add the 
coordinates of the target point and the correction values of 
each target point to acquire high-precision target point 
coordinate after correction. 

 
2.4.  Singular value decomposition for solution model 

Simplify (5) into matrix equality as follows, after 
determining the initial value of each expansion point. 
 

Ax b=                                (14) 
 
where x and b are 
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The matrix in (14) is a large sparse matrix, in which each 

row has seven non-zero parameters, and the remaining 
parameters are zero. Because the actual number of 
conditions is great during the solution, the usual Gaussian 
Elimination does not apply. So the matrix is needed for 
singular value decomposition. That is A= USVT, where S is 
singular value diagonal matrix, U∈SO(m×n), V∈SO 
(3n+4m). 

The singular value decomposition is used in (14), which 
seeks a vector to minimize TAx b USV x b− = − . 

T T TUSV x b SV x U b− = −  is obtained by sign preserving 

properties of the orthogonal matrix, and Ty V x= , ' Tb U b= , 
so 
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From (17), we get ' / ( 1, 2, ,3 4 )i i iy b s i n m= = + . 
According to y=VTx, combined with the property of 

orthogonal matrix x=Vy, corrections of measurement point 
coordinates x can be obtained.  

Actually, the singular value matrix S is a characteristics 
reflection of matrix A. The external factors in the singular 
value matrix S must be excluded in order to retain an 
important eigenvalue of coefficient matrix A when 
environmental factors prominently influence the 
measurement results. 

Introduce the parameter ε  reflecting the accuracy of the 
principal component of coefficient matrix A. And any 
element less than ε  in the singular value matrix S can be 
ignored, which can reduce the condition number of the 
matrix, which better reflects the main element characteristic. 
The value ε  is determined by the following formula. 

 
( )

        max
     

{ }i

the main element precision error thresh d
s

olε =
⋅

   (18) 

 
Si is the element of singular value matrix S, the main 

element precision error threshold, according to the actual 
measurement conditions, generally can be 10-2 to 10-4. 
 
3.  RESULTS AND DISCUSSION 
3.1.  Experimental verification 

We have conducted the following experiment in order to 
verify the effectiveness of the measurement model. 
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Fig.2.  Experimental arrangement. 
 

Fig.2. delineates the experiment prototype. A laser tracker, 
LaserTRACER by Etalon, measured 36 target points 
provided by a CMM successively at 5 stations [10]-[14]. 
Since only one laser tracker was used, the same 
measurement was repeated with the laser tracker set at five 
different positions on the table, assuming that the CMM’s 
unrepeatable positioning error was sufficiently small. The 
motion region of target points was defined by 
600 mm × 300 mm ×  300 mm, and the No.1 point in the 1st 
floor was the coordinates of (600.498 mm, 550.831 mm,-
550.738 mm). Total measurement points were three planes 
with 12 target points in each plane. Meanwhile, 12 
measuring points were uniformly distributed in each edge of 
the square. In the measurement process, the target point 
moved along the preset path, while laser tracker tracked its 
movement real-time. When the target point reached each 
measuring point, it stopped and the distance reading of laser 
tracker was written down at the corresponding position.  

Each of the coordinate corrections obtained by laser 
tracker multilateration optimization solution model was 
plotted as shown in Fig.3. As revealed in the figure, three-
axis correction fluctuation trend did not change significantly, 
which was consistent with the normal error characteristics of 
the CMM. The experiment obtained corrections for the 
target point coordinates, and demonstrated the optimization 
solution model’s capability of precision correction. However, 
the experiment did not prove correctness of the described 
solution model. Thus, the following supplementary 
experiment has been performed based on the above. 

 
 
Fig.3.  The corrections of point coordinate obtained by 
multilateration optimization solution model. 
 

 
 

Fig.4.  Square wave systematic error. 
 

We added an error to the CMM target points. The normal 
measurement error sources included random and systematic 
errors, and the former was not easily observable. The square 
wave system error, 0.005 mm and 0.05 mm, respectively, 
had been introduced to illustrate the validity of the 
optimization model, as denoted in Fig.4. 

After introducing the 0.005 mm and 0.05 mm square wave 
system error, respectively, we applied the multilateration 
measurement optimization model. These coordinate 
corrections are shown in Fig.5. and Fig.6. 
 

 
 

Fig.5.  Coordinate corrections after introduction of 0.005 mm error. 
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Fig.6.  Coordinate corrections after introduction of 0.05 mm error. 
 
As illustrated in Fig.5. and Fig.6., corrections for each axis 

were significantly greater than without introducing a square 
wave system error. The maximum fluctuation range of 
corrections was roughly −0.008 mm~+0.008 mm before 
introducing the error, and with 0.005 mm square error it 
became −0.01 mm~+0.01 mm, and with 0.05 mm square 
error the range correction was −0.06 mm~+0.06 mm. The 
trend of corrections should offset error trend in Fig.4., 
namely the corrections for X-axis and Y-axis of points in the 
1st plane have to be negative, Z-axis should be positive. 
Similarly, for points in the 2nd plane, the corrections for X-
axis and Y-axis coordinate ought to be positive, Z-axis 
should be negative. And for points in the 3rd plane, the 
corrections for X-axis and Y-axis coordinate ought to be 
negative, Z-axis should be positive. Fig.5. and Fig.6. 
illustrate distinctly that coordinate corrections meet the 
above trends. 

Notably in Fig.5., the trend of corrections for points in the 
1st plane was disordered, and the overall trend of 
corrections was not as clear as the trend in Fig.6. The reason 
for this phenomenon was that the accuracy range of CMM 
had been beyond 0.005 mm before introducing the square 
system error. And the corrections fluctuate from −0.008 mm 
to +0.008 mm. If signal intensity of the systematic error and 
the original random error was about the same, the 
superposition of them made trend curve of corrections to be 
as shown in Fig.5. After the introduction of 0.05 mm square 
wave systematic error, which was greater than the original 
random error, the square error dominated. Therefore, the 
curve of error correction in Fig.6. was superior to that in 
Fig.5., which was in line with the actual situation. 

A comparison experiment between the method proposed 
and the method proposed in reference [8] was also done to 
further validate the model. The result is shown in Fig.7. 
Experiment shows that two results coincide well. Thus, error 
corrections acquired by the multilateration measurement 
optimization solution model were of correctness and 
validity. 

 

 
 

Fig.7.  The comparison between two methods. 
 

4.  CONCLUSIONS 
The optimization solution model for a laser tracker 

multilateration measurement, that effectively inhibits the 
negative effect of accuracy induced by self-calibration, is 
described. The accuracy of singular value decomposition for 
the solution model is further analyzed. We performed 
verification experiment of the solution model based on laser 
tracker and CMM, using the coordinate error of 
measurement points in the CMM as evaluation criteria, and 
compared the results of multilateration measurement with 
and without the introduction of artificial system error. The 
experiment results show that the optimization solution 
model of laser tracker multilateration measurement 
described in this paper can effectively enhance accuracy, 
which has potentially broad applicability in the field of laser 
tracker spatial orientation. 
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