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This paper presents a novel phase-shift arctangent (PSA) interpolation method to improve the measurement accuracy of a planar capacitive 
incremental displacement sensor. Signals of planar capacitive micro-sensors acquire waveform errors, including sensitivity differences and 
phase-shift errors, because of static errors and dynamic disturbances. In the proposed PSA scheme, such errors are removed completely by 
loading a particular arctangent function. Moreover, measuring efficiency of the proposed planar capacitive sensors is improved by 
combining coarse measurement and fine estimation. Experiments show unanimous results to model-based fitting. When electrode length is 
four times the gap distance, applying the PSA interpolation method decreases waveform errors from more than 4 % to 1.72 %. 
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1.  INTRODUCTION 

In the past few decades, planar capacitive incremental 
displacement sensor (PCIDS) has been proposed for use in 
large-scale micro/nanoprecision measurement applications, 
such as fabrication of optical devices and semiconductors, 
cell manipulation, and portable probe storage systems [1]-
[6]. Similar to most encoder-like prototypes, PCIDS offers 
advantages such as large measurement scale, high 
sensitivity, fast dynamic response, effective cost, and 
reliable stability. However, the main shortcomings of 
PCIDS are some inevitable effects, such as static errors 
(mainly as alignment errors) and dynamic disturbances 
(including kinematic errors and vibration disturbances) on 
signal waveform errors [7]-[10].  

Influences of static errors and dynamic disturbances are 
usually in the form of sensitivity differences and phase- shift 
errors. Conventional solutions to reduce them can be 
classified into system calibrations and structural 
improvements. Kuijipers et al. connected two comb 
actuators along the slide path of a moving plate to guarantee 
its mobility. Accurate measurement of PCIDS depends 
closely on the correct installation of the two comb actuators 
[4]. Kim et al. reduced gap distance instability by 
assembling two sensor substrates that face each other after 
coating them with 0.4 μm diamond-like carbon film and 
using two look-up tables to linearize the measured 
capacitances to displacements [5]. Huang et al. used rigid 
mechanical spacers to control gap distance. However, this 
approach eliminates the advantages of non-contact 

measurement [6]. Heydemann analyzed primary errors of 
co-sinusoidal signals of incremental optical sensors. Least 
squares fitting was adopted to compensate for these errors 
[10]. 

Displacement information is contained in the phase and 
amplitude of periodic waveforms of PCIDS. Commonly, 
PCIDS signals are squared into electrical pulses, the number 
of which is counted to determine displacement information 
[11]-[15]. Tan et al. introduced an interpolation method 
based on constructing and squaring a set of high-order 
sinusoids. A look-up table was used offline to compensate 
for interpolation errors [11]. Hu et al. proposed a method to 
solve λ/16 bidirectional subdivision for quadrature signals 
by constructing two sets of reference signals [12]. However, 
these methods would easily neglect displacement 
information in a single period. To improve measurement 
resolution, Benammar et al. proposed a multiple phase-
shifted sinusoid method, where displacement information in 
a signal period is also calculated [13]. Nevertheless, given 
that sinusoidal waveform is not completely linear, the 
theoretical absolute error of this scheme is 0.028° within 
360°.  

This paper presents a novel interpolation method that can 
reduce the effect of static errors and dynamic disturbances 
effectively while improving PCIDS measurement resolution. 
The mathematical sensor model against harmonic 
disturbances is presented in Sec. 2. A phase-shift arctangent 
(PSA) interpolation method is proposed in Sec. 3. The 
experimental results and summary are presented in Sec. 4 
and Sec. 5, respectively. 
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2.  SENSOR MODEL AGAINST HARMONIC DISTURBANCES 
A.  Sensor mechanism 

Fig.1. shows the schematic structure of the proposed 
PCIDS. The sensor consists of a fixed plate (FP) and a 
moving plate (MP). In the figure, P is the electrode interval 
on MP, l is the electrode length of MP and FP, g is the gap 
distance of MP and FP, and LS is the vertical distance of 
sensing electrodes to X or Y axis. Common electrodes on 
MP are parallel and electrically connected, on which a 
sinusoidal voltage Vinput should be applied during 
measurement. Eight sensing electrodes on FP are positioned 
symmetrically around the rotational center O (an assumed 
origin). The sensing electrodes and common electrodes 
consist of eight sensing capacitors, namely, SX1N, SX1Q, 
SX2N, SX2Q, SY2N, SY2Q, SY1N, and SY1Q. 

Sensing capacitors SX1N, SX1Q, SX2N, and SX2Q provide X 
direction displacement information. SY1N, SY1Q, SY2N, and 
SY2Q provide Y direction displacement information. Four 
sensing capacitors (SX1Q, SX2Q, SY1Q, SY2Q) are all (1/4)P 
shifted to sensing capacitors (SX1N, SX2N, SY1N, SY2N) in 
their respective measurement directions. Signals from SX1N, 
SX2N, SY1N, and SY2N are implied to have a (1/2)π phase 
shift to signals SX1Q, SX2Q, SY1Q, and SY2Q [16]. 

 

 
Fig.1. Schematic view of a PCIDS: a) front view; b) cross view. 

 
B.  Signal model against disturbances 

Setting aside fringe effects, signals from eight sensing 
capacitors are all in perfect periodic triangular waveforms 
given that common electrodes on MP are parallel. However, 
in reality, fringe effects would introduce severe uncertain 
distortion (rounded) on signal waveforms. To clarify the 
influence of fringe effects on signal nonlinearity, a full 
capacitance model is calculated under Maxwell’s equations 
first. 

As illustrated in Fig.1., common electrodes are 
periodically positioned on MP and driven by a positive 
voltage Vinput. Meanwhile, sensing electrodes on FP are 
virtually ground to diminish electrical interferences. 
Margins on MP and FP are both ground. If the potential on 
the FP and MP is assumed as Φ1(x) and Φ2(x), respectively, 
then its Fourier expansion can be expressed as: 
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When MP has a travel position δ in its direction, its charge 
distribution on the surface of FP can be determined by 
Maxwell’s equation. 
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Given that MP is grounded in the period [-l, 0], we are 

interested only in the charge in the period [0, l]. Integrating 
the charge distribution on FP can achieve the capacitance as: 
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As in (4), electrode length is implied to be a key factor that 

determines sensor waveform nonlinearity to gap-distance 
ratio (l/g). Fig.2. illustrates a standard deviation comparison 
of waveform deformation errors of the proposed sensor 
signals to ideal triangular and sinusoidal waveforms under 
different l/g ratio. The comparison indicates that the actual 
waveform is more closely dependent on sinusoidal 
waveforms than triangular waveforms, especially when l/g 
ratio is less than two. Thus, in the actual PCIDS model, 
signals can be considered sinusoidal waveforms. Moreover, 
when a common arctangent operation is applied, standard 
deviation of waveform deformation errors can still be 
decreased. 
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Fig.2.  Standard deviation comparison of waveform deformation 

errors under different l/g ratio. 
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On the basis of this conclusion, when MP and FP are 
completely parallel and facing each other as shown in Fig.1., 
normalized nominal output signals from the eight sensing 
capacitors can be expressed as: 
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where Xnominal and Ynominal represent the theoretical 
displacement of the MP in X and Y direction. 

However, excluding fringe effects, static errors and 
dynamic disturbances are inevitable during measurement, 
thereby affecting PCIDS in the form of roll, yaw, pitch, and 
vertical movements of MP and FP.  

Those static and dynamic disturbances are usually minimal. 
Yaw movement can be seen as a combination of two 
separate linear movements in the X and Y directions. Linear 
movements of SX1N, SX1Q, SX2N, and SX2Q in the X 
direction cause each to have a phase-shift error as shown in 
(7).  Similarly, linear movements of SY1N, SY1Q, SY2N, and 
SY2Q in the Y direction cause each to have a phase-shift 
error as shown in (8).  
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where θZ is the yaw angle of MP; and XθZ and YθZ are the 
linear movements of MP to the eight sensing electrodes on 
FP caused by yaw angle. PCIDS in Fig.1. is symmetrically 
designed. Thus, XθZ is equivalent to YθZ. 

Movements caused by roll and pitch angles can also be 
considered a combination of linear movement in the Z 
direction and linear movement in the X or Y direction. 
However, linear movements in the X or Y direction in this 
study are neglected because they are too small compared 
with the linear movement in the Z direction. Thus, 
influences of roll and pitch movement are considered the 
same as vertical movements, affecting only the amplitude of 
PCIDS outputs. Then, the actual PCIDS model against static 

and dynamic disturbances is illustrated as (10), (11). 
1 1

1 1

2 2

2 2

cos[2 ( ) / ]
sin[2 ( ) / ]
cos[2 ( ) / ]
sin[2 ( ) / ]

N X N nominal z

Q X Q nominal z

N X N nominal z

Q X Q nominal z

X K X X P
X K X X P
X K X X P
X K X X P

θ

θ

θ

θ

π
π

π
π

= ⋅ ⋅ +
 = − ⋅ ⋅ −
 = ⋅ ⋅ −
 = ⋅ ⋅ +

            (10) 

 
1 1

1 1

2 2

2 2

cos[2 ( ) / ]
sin[2 ( ) / ]
cos[2 ( ) / ]
sin[2 ( ) / ]

N Y N nominal z

Q Y Q nominal z

N Y N nominal z

Q Y Q nominal z

Y K Y Y P
Y K Y Y P
Y K Y Y P
Y K Y Y P

θ

θ

θ

θ

π
π

π
π

= ⋅ ⋅ +
 = − ⋅ ⋅ −
 = ⋅ ⋅ −
 = ⋅ ⋅ +

              (11) 

 
where KX1N, KX1Q, KX2N, KX2Q, KY1N, KY1Q, KY2N, KY2Q 
represent approximate relationships of sensor sensitivity to 
roll, pitch angles and vertical movement of the MP. 
 
3.  PRINCIPLE OF PSA INTERPOLATION METHOD 

The above analysis indicates that PCIDS accuracy is 
closely dependent on that of acquired waveforms. Thus, 
reducing effects of static and dynamic disturbances is of 
paramount importance. Normalizing (10) and (11) would 
remove the effect of sensitivity differences, turning signals 
into X’1N, X’1Q, X’2N, X’2Q, Y’1N, Y’1Q, Y’2N, and Y’2Q as 
shown in (7) and (8). However, if arctangent waveforms are 
then directly derived from normalized signals as shown in 
(12) and (13), then phase-shift errors would have 
unexpected influences on displacement estimation. 
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In the PSA scheme, the X-Y displacement signals are 

obtained by a particular arctangent function as shown in (14) 
and (15). Effects of phase-shift errors on X-Y quadrature 
waveforms are also removed. The following expressions 
contain only information of the theoretical X-Y movements 
as Xnominal and Ynominal. 
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Furthermore, after acquiring signal models as shown in 

(14) and (15), the PSA method improves PCIDS 
measurement resolution by combining coarse displacement 
measurement and fine displacement estimation value as (16).  
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C FD D D= +                                      (16) 
Fig.3. illustrates the basic principle of the PSA 

interpolation method. First, N sets of shifted arctangent 
signals are derived from (17). Then, certain segments of 
each shifted arctangent are combined to form a useful 
triangular waveform for later interpolation. 
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where i=1, 2, 3,… … ,2N-1, φ=π/(2N), θ=2πXnominal/P or 
2πYnominal/P. 

 

 
 

Fig.3.  Principle of PSA interpolation method. 
 
 

PSA scheme (17) shifts the phase value of the given 
signals only and not on the specific value of signal 
magnitudes. Thus, when given signals have nonlinearity 
errors, the number of modulation N neither enhances nor 
rejects nonlinearity errors introduced by static and dynamic 
errors. 

 
 

Fig. 4. Simulation results of a PSA interpolation method when N=8. 

The generated triangular signal is first squared into pulses. 
Coarse displacement of MP DC can be measured by 
counting the number of pulses. The fine displacement DF is 
then determined by the analog output in the last single 
period.  

Analog signal measurement is retained in the PSA 
interpolation method. Thus, lost displacement information in 
the conventional interpolation method is now obtained by 
the PSA interpolation method. 

Fig.4. presents the simulation results of the PSA 
interpolation method when N=8. (14) completely removes 
influences of phase-shift errors and sensitivity differences. 
Theoretical X movement as Xnominal is acquired. The phase-
shift function (17) generates a set of triangular waveforms. 
PCIDS measurement resolution and efficiency are improved 
through calculation (16). 

Conclusively, the following points are the advantages of 
the PSA interpolation method over traditional phase-shift 
interpolation methods: 1) effects of static errors and 
dynamic disturbances are theoretically removed; 2) 
arctangent waveform is absolutely linear, and PSA signals 
do not have theoretical nonlinearity errors; 3) PSA signals 
are derived from a set of sinusoidal and cosine signals; 
waveform deformation errors are well balanced within a full 
period; 4) PSA interpolation acquires higher measurement 
resolution by combining coarse measurement and fine 
estimation; the improvement is that displacement 
information in the final single period is calculated in the fine 
estimation.  
  

4.  EXPERIMENTS AND DISCUSSION 
A PCIDS system is constructed as shown in Fig.5. and 

consists of a micro motion stage with nanometer resolution, 
a vertical motion stage, two tilting motion stages, a 
rotational motion stage, PCIDS, and a PSA interpolation 
system. MP and FP are fabricated as a printed circuit board. 
NANOMOTION® motor with a resolution of 10 nm is 
applied to provide the displacement of the micro motion 
stage. Tilting and rotating stages are mounted for adjusting 
installation errors and system calibration. The vertical 
motion stage provides Z direction motion for gap distance 
adjustment. Phase-locked detection is chosen for signal 
sampling, and noise errors would be removed effectively. 
The PSA interpolation system, including phase-shift, 
counting, and interpolation, is constructed on LABVIEW®. 

Reasonable system calibration should be carried out to 
protect PCIDS measurement from the influences of static 
errors. However, dynamic disturbances mainly in the form 
of kinematic errors and vibration disturbances would bring 
unexpected errors during measurement. Even sophisticated 
calibration cannot completely remove static errors. Thus, in 
most circumstances, static errors and dynamic disturbances 
are inevitable in PCIDS measurement. 

On the basis of the principle of PSA interpolation method 
in Sec. 3, the PCIDS developed in this study can prevent the 
effects of measurement disturbances, such as roll, yaw, pitch, 
and vertical errors. Thus, if experiments reveal unanimous 
mathematical calculation results, then the ability of PSA 
interpolation method to ensure the satisfactory performance 
of PCIDS despite measurement disturbances can be 
validated.  
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Fig.5.  Test bench of the proposed planar capacitive incremental displacement sensor system.
 
 

 
Fig.6.  PCIDS signals in a single period when l/g=4: 

a)  demodulation outputs of PCIDS as X1N, X2N, X1Q, X2Q; 
b)  normalized waveforms as X’1N, X’2N, X’1Q, X’2Q . 

 
Fig.6.a) depicts the demodulation outputs of PCIDS as X1N, 

X2N, X1Q, and X2Q in a single period when the electrode 
length is four times the gap distance (l/g=4). Even after 
system calibration,  static  errors  and  dynamic disturbances  

 
are  not  completely  removed,   thereby  introducing  severe  
sensitivity differences and phase-shift errors to output 
waveforms.  

Fig.6.b) depicts normalized waveforms of X’1N, X’2N, X’1Q, 
and X’2Q, with sensitivity differences removed. However, 
phase-shift errors remain. If acquired normalized waveforms 
are considered ideal quadrature waveforms, then phase-shift 
errors would diminish measurement accuracy. Fig.7. plots 
the arctangent waveform directly from normalized 
waveforms (12). Acquired waveforms exhibit severe 
distortion. Fig.8. plots waveform errors and shows that the 
standard deviations of the X1 and X2 waveform errors are as 
high as 4.43 % and 4.37 %, respectively. 
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Fig.7.  Arctangent waveforms directly from normalized waveforms 
under measurement disturbances. 
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The decoupling method in (14) and (15) removes the 
influences of sensitivity differences and phase-shift errors, 
theoretically. Fig.9. shows the acquired arctangent 
waveform from (14), with displacement measurement in X 
direction as an example. The waveform from (14) is more 
linear than the waveforms in Fig.7. After applying PSA 
interpolation method when N=8, 16 pulses are generated in a 
full period. Calculating the displacement information in the 
last pulse ensures that fine displacement can be achieved 
from (16). 

 

 
 

Fig.8.  Waveform errors of arctangent signals directly from 
normalized waveforms under measurement disturbances. 
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Fig.10. depicts the waveform errors of the measured PSA 

waveform in a single period. Results show that the PSA 
waveform has less than 3 % nonlinearity errors to arctangent 
waveforms, and the standard deviation is as low as 1.72 %. 
PCIDS signals are not actually in perfect sinusoidal or 
cosine model. Thus, 1.72 % waveform error remains. 
Otherwise, the PSA method can still improve signal 
linearity. Specific causes of this error include parasitic 
capacitance, humidity, temperature, and thickness of 
capacitor electrodes. These results indicate that the effects of 
static errors and dynamic disturbances have been mostly 
removed. Thus, the PSA displacement interpolation method 
in Sec. 3 ensures the satisfactory performance of PCIDS 
even under measurement disturbances. 
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5.  CONCLUSION 

This paper proposes a novel PSA interpolation method to 
reduce the influences of static errors and dynamic 
disturbances on PCIDS accurate measurement. On the basis 
of the acquired PCIDS capacitance model against static and 
dynamic disturbances, PSA interpolation method first 
removes the phase-shift errors and sensitivity differences by 
applying a particular arctangent function. Measurement 
resolution is then improved by combining coarse 
measurement and fine estimation. Experiments show that 
waveform errors decreased significantly from more than 
4 % to 1.72 % after applying the PSA interpolation method. 
Advantages of the PSA interpolation method are validated. 
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