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The goals of this paper fall into two closely related areas. First, we deeeflopnal framework for deterministic unital quantities in which
measurement unitization is understood to be a built-in feature of quantitlesr than a mere annotation of their numerical values with
convenient units. We introduce this idea within the setting of certain ordeméysoups of physical-geometric states of classical physical
systems. States are assumed to serve as truth makers of metrolog@aksts about quantity values. A unital quantity is presented as
an isomorphism from the target system’s ordered semigroup of statiesttof positive reals. This framework allows us to include various
derived and variable quantities, encountered in engineering and thalnatiences. For illustration and ease of presentation, we use the
classical notions of length, time, electric current and mean velocity a®ptiad examples. The most important application of the resulting
unital quantity calculus is in dimensional analysis. Second, in evaluatingurezaent uncertainty due to the analog-to-digital conversion of
the measured quantity’s value into its measuring instrument’s pointer quealiity, we employ an ordered semigroup framework of pointer
states. Pointer states encode the measuring instrument’s indiscernibiliigrrefaanifested by not being able to distinguish the measured
system’s topologically proximal states. Once again, we focus mainly om#asurement of length and electric current quantities as our
motivating examples. Our approach to quantities and their measurensrittly state-based and algebraic in flavor, rather than that of a
representationalist-style structure-preserving numerical assignment.

Keywords: Deterministic measurement, measurement unit, measurantertainty, pointer quantity, pointer state, quantity calculus, quan-
tization, state space, unital quantity.

1. INTRODUCTION AND OVERVIEW kind as the quantity to be expressed, and the other is the num-
A natural Starting point for the investigation of quanﬁ,‘[md ber of times the standard is to be taken in order to make up the
their measurement in the natural sciences and engineering@rget quantity, known as the quantity value. With the sym-
the development of a conceptual framework th@éatively —Polization commonly used and recommended byititerna-
facilitates the basic numerical ways of expressing sdienti tional Standards Organizatioff], Maxwell's description of
knowledge and inferential reasoning about the structuce ar Physical quantity is expressed by the equational formula
behavior of systems of interest. Quantities and their rmeasu

ments are known to be studied within the settings of several Q=[]

competing theories from fierent perspectives and affei-

ent levels of detail. in which {Q} denotes the numerical value of quaniyand

[Q] signifies the reference quantity or measurement unit as-

sociated withQ. Maxwell’'s formula is easier to comprehend
1.1. The status of deterministic quantity calculus in ratur i, +arms of concrete examples. For instance, we have the fa-

sciences miliar metrological assertionléngth(o) = 7.5 m” about the

Historians of metrology (see, e.g2]] tend to attribute the |ength of an unspecified length-bearing obje¢e.g., a flag-
first systematic account of the notion of deterministic phys pole), expressed in the traditionaleter measurement unit.
cal quantity to James Clerk Maxwell. In his often cited 1873 jkewise, the statementnfass(o) = 10.3 kg” is about the
monographTreatise on Electricity and MagnetisfOxford rest mass of an unspecified mass-bearing obje@.g., a
University Press), Maxwell in essence states the followinginder block localized in a Newtonian reference frame) for-
about characterizing a quantity: Every expression of a quamulated in thekilogram unit of measure. Because in these
tity consists of two factors. One of these is the name of gtatements there is no question-begging multiplicatian-sy

certain known quantity (a standard of reference) of the samsg|, some metrologists prefer to formulate Maxwell’'s equa-
DOI: 10.1515msr-2016-0014
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tion without it and simply write = {Q}[@Q]. To avoid certain use measurement units that are strictly tailored to the phe-
dimension-theoretic ambiguities, suggestions have asmb nomena they study. Thus, on this approach, when we mea-

made to use a three-factor expression of the form sure, for example, the length of a rigid metal beam, it is
. not that we contemplate a particular measurement unit with
Q={@}-[Q]-dimQ which to measure the beam’s unique quantitative attribute

) ) ) . called ‘length’, we simply choose to measure a particuldr un
wheredim@ denotes the physical dimension of quan@ly (5 |ength of the beam, antecendently determined by a cal-

The advocates of this somewhat refined approach to analy;ated meter stick or some other appropriate length mea-

zing the concept of quantity do not specify the properties of,ing instrument, used in performing the measurement ope-
product operations used in the tripartite facorizationrd6  (5ion. When recording measurement results for statistical

generated by thkind of quantities (an aspect common to Mu-gna\vsis, it is clearly simpler to record the numerical ik
tually compatible quantities) are overcome by adding atfour (say) 65+ 0.05 for the beam’s possible length-in-meters than

factor kind@Q to the foregoing formula, intended for SpeCi'working with denominate numbers as in “The beam’s length
fying the kind of quantityQ. Obviously, the growing num- _ g 5 1aters + 0.05meters.”

ber factors begins to look rather tedious. Algebraic ssidie \ynat we take to be pivotal for the unital quantity con-
of these constructions might help metrologists to undedsta ¢y i its unique trait that automatically specifies the ac-
some of the pittfals that may attend theffcets in isolating  companying measurement unit, without the usual indexing or
the correct notion of a single-valued deterministic QUENti  the «jn_" suffixal qualifier. It should be remarked that this
Since in Maxwell's equation the factory] is widely  ying of unital-quantity expression is regularly used indab
thought to be just another quantity af@) refers to a real g the axes of graphs and headings of table columns. Those
number, it is puzzling why the equation above is not stated §gjth qualms about treating units of measure in terms of uni-

a simplequantity conversiomprinciple: For any given quan- zeq quantities can rest assured that this approach is€as w
tity Q and a designated reference quant@ of the same g4y show in subsequent sections) significantly supedor t
kind there exists exactly one positive real numeuch that  \1oxwell’s characterization.

_ ’ 2 : H
Q=a-Q.° Thereforex can be thought of as being uniquely  oyr central point about Maxwell's formula is this: since

specified by the numericatio & of QoQ?® according to metrologists the most striking feature of silas
~And of course to any given quanti and a strictly pos- 5 measurement is the estimation of ratios of quantithes, t
itive real number there exists a unique quanti§y of the ¢,y does not provide a ficiently convenient instrument
same kind such that the scalar product equal®na a-Q o everyday formulations of empirical claims about quanti
holds. Since Maxwell's quantit@ does not possess an in- 5 es. n parallel to Maxwell's product expression we stiou

trinsic numerical value or an inherent reference quaritity, 5,50 use theatio counterpart expression, introduced by the
important to keep in mind that the curly-bracket notati@  ,e_to-one correspondence

for Q's numerical values is empirically meaningless in the ab-
sence of the associated unit quanti®].[ To be meaningful, Q
these two expressions must always be used together. Itshoul Q =
be remarked that treating the square bracket symbolism as a
legitimate mapping of quantities to quantities is a seriis whereQ, denotes the reference quantity, specified by a cho-
conception. sen unitu we shall discuss later. A major benefit of the ratio
The most obvious way to handle this sort of metrologicaPproach is that it provides direct access to the rich siract
codependent relationship is to work with “unital quanstie of real numbers. In particular, we have the obvious muHipli
in which the unit is a built-in intrinsic feature of quangisi, cation lawg - & = &£, capturing the change of quantity val-
somewhat akin to formulations used in quantitative assesti Ues obtained by passing from unito unitv. And of course
about, say, the length of a beamterigth,,(beam) = 65", We have the trivial identity condition: 'b% =1, thenQ =Q,.
where the indexing unit symbaot refers to the incorporated The notion of ratios is designed to accommodate Maxwell's
meter unit of measure. Simple examples of unital IengtHdea as its close cousin. Specifically, we now have the equal-
quantities are length-in-meters, length-in-feet, etam@on 1ty

Q= Q@={Q} Q

examples of unital mass quantities are mass-in-kilograms, Q= Q.Q'
mass-in-pounds, and so forth. Experimenters are likely to Q
that circumvents the above-discussed ambiguity in Maxsvell

1Even if the symbol for the scalar product is omitted, it is imglie f |
2Although in the case of extensive quantities, such as letigtie, mass, ormuia. . .
and electric current, the standard requirement is thattieitrerical values be The most popular argument against the ratio-based formu-
positive real numbers forming the s&t,, there are obvious generalizations lation of Maxwell’'s equation centers around the fact that ra
_to quantities that _permlt arbitrary rgal or complex qumber@]d—lowever, tios of pairs of quantities of the same kind are real numbers.
it does not seem important to examine these technical var&tiere, except . .
perhaps the sek . of positive real nunbers including zero. Therefore, e.g., a rath of two length quantlt'_e_s may tl’_lm ou
3The numerical ratio must not be confused with the derived proguan-  t0 be equal to the ratio of two mass quantities. This see-
tity Qe Qi (e.g., mean velocity, defined by distance over time) we discusmingly troubling illegitimacy of equating length valuesttvi

below. mass values is quickly removed by imposing a type-theoretic
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condition, stating that the spaces of length and mass quan-Quantities instantiated by classical physical entities to
tities are disjoint. Concretely, from a formal standpoirg w gether with their values are widely thought to exist indepen
may come across the numerical equality dently of whether or not they are ever measured. And we
Q @ might add that the designationlofisequantities is a matter of
=== choice, similar to choosing a coordinate or reference gyste
Q@ q in space-time models designed for investigating the metion
of physical particles and rigid bodies. Simply, there ismo i

for some pair of distinct quantitie® and@’, but notice that _. " : .
. . . ] . trinsic property of a quantity that makes it fundamental and
the ratio operations on the left and right sides of the equati . . . :
neither is there any such attribute for measurement units.

are ditferent, symbolized by the increased thickness of the Although in the Maxwellian framework the intuitively ap-

fraction line on the right. So then, because the ratio cakul ealing idea of a physical quantity is not defined and is égat
is context-dependent on the space of quantities under copcand phy q y

. ) : . only concretely, on an analogy with the basic operationisén t
sideration, the other ratios are automatically screerfed . ; .
L . o algebra of real numbers there is the often-discussed introd
empirically meaningless. In general, théidulties that beset

ratio calculus arise from failing to recognize that eachrqua tion of quantity calculusbuilt over the domain of abstractly

tity of a given kind is accompanied by its own quantity SpaCEgoncelved scalar deterministic physical quantities. is do-

and structure thereon, so that even if some numerical vafuesan itis customary to stipulate two fundamental algebraic

two quantities of a dierent kind happen to be the same, their()peratlonS:

algebraic structures and associated operations, anddhere (i) Acommutative and associative operatioradt

. " itionQ+
semantics, remain fierent.

) . Q@ on any pair of quantitieQ and@’ of thesame kind®
In this paper we develop a robust and algebraically attrac- |, particular, for acoherenipair of units satisfying@] =

tive framework for quantities and quantity calculus that di [@] = [Q+Q], the addition is specified by the sum of
rectly addresses the issue of ratios. For example, based on 4 .i; numerica{l values+ @ = (1Q) +(Q)-[Ql
ratios of quantities of the same kind, theddition may be '

formulated quite simply as follows: (i) A commutative and associatiyoductoperationQeQ’
, on any pair of quantitie® and@’. In the case of co-
Q+Q =qi ( Q + Q ) Q' =1+ Q).Q/. herent units satisfyingd«Q’] = [Q] «[@'], the product
Q Q is specified by the product of numerical valy&@ Q’} =
Here and below we use the symbejs to indicateequality {Q-{Q'}.
by definition® o _ _
Along similar lines, the natural “less than” total orderael In systematic axiomatic approaches to quantity calculus

tion on positive real numbers automatically transfers argu tNere is also anultiplication by scale_lrmlhaving the form
tities by setting? < @ justin caseé% < for any reference a-Q, the multiplicativeinverseoperationz, and more gen-

quantity@”. The total order relation is called “natural” be- €rally €xponentiationQ" by any integer numben. It is a

cause it satisfies treolvability condition widespread view that with the help of these operations one
can define all derived quantities of interest (e.g., mean ve-
Q<@ = Q+Q"' =@ locity is defined by the producf « % where £ denotes the

_ ) length (distance) quantity ané refers to the multiplicative
for some quantity?”. We shall also provide a closely related;erse (quotient) of time quantity).
definition ofpartial subtractionQ — @', which is well-defined This may be a rash judgment, however, because (i) besides
only for quantity pairs satisfying’ < Q. _ integer inverses there is also a need for square re@sof

There is widespread agreement amongst metrologists thiianiities, (ii) we have to make allowance for variable (e.g

a careful distinction needs to be made betwworetically  jme_dependent) quantities, and (iii) considefefiential and
or abstractly conceived quantities as universals — relyularinieqral operators acting on quantities. From the standjpdi
used in physical laws, without reference to any particutar 0 gpsiract algebra, classical quantity calculus looks likara

jects possessing and instantiating the quantity in queStio ot of dimensional algebra. Jan de Boer provides more detail

andconcretelyunderstood quantities as particulars, involving,, [2] and he notes that a full axiomatization of quantity cal-

specific quantity-instantiating physical objects, evemisro- ¢ jys has yet to be completed. In the preceding paragraphs

cesses. we have already discussed the ratio-based notions of additi
4The reader may be appalled that we are combining two unitatheng and subtraction of quantities. Unfortunately, the defomitdf

quantities involving dierent measurement units. This should not be a pl’Obproduct is not this simp'e_ A|though we can set
lem since, for example, in carpentry it is common to combine lengtues

measured in yards with length values counted in inches antidrs thereof. Q Q

Likewise in physics, length values in centimeters are refutdded to the Qe@Q =(—- )QuQ,,

length values expressed in meters. Concretely, in view obbvéous unit- Q Q[j, !

change conversion rule we havén2hes + 3 millimeters = 53.8millimeters

= 2.152inches, because by definition ibch = 25.40millimeters and 1mil- SRecall that physical quantities are grouped into disjoiasses of mutu-
limeter = 0.04inches. ally comparable elements.
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the real conceptual fliculty is definitional circularity. This factorization into its numerical value and unit, but factar
problem is cleared up by recognizing that the exact formuion relative to the quantity’s underlying theory or model.
lation of the notion of product quantities relies on a mathe- The adequacy of the foregoing definitions of VIM3 remains
matically deeper idea of symmetric tensor products of oneinder heavy debate in metrology. For example, based on
dimensional vector spaces. these definitions we may be left with the view that there are
Success in developing a powerful theory of quantities desnly directly measured deterministic scalar base quastiti
pends on well-formed definitions of the notions of quantityBut in applications we encounter derived quantities that ar
guantity value, and unit. As most metrologists are aware, iimtroduced in terms of sophisticated functions of otherrgua
the third edition 18] of VIM, henceforth to be referred to as tities that are not expressible in an analytically closeunfo
VIM3 (an established acronym for thieternational Vocabu- and of course there are vector and higher-order tensor quan-
lary of Metrology derived from its French title), the notions tities (e.g., the stress tensor used in continuum mechanics
of quantity, quantity value and unit are defined as follows: with matrices of numerical values. Several other important
types of quantities also fall outside the scope of the forego
Quantityis a property of a phenomenon, body or  jng definitions, including (ivariable quantitieghat vary with
substance, where the property has a magnitude that  time, space, temperature, and so fér#éind (i) smooth(dif-

can be expressed as a number and a reference. ferentiable) andandom quantitiethat come with particular
Quantity valueis a number and reference together  probability density functions accompanied with measungme
expressing the magnitude of a quantity. units. Evidently, the definitions of VIM3 require further-in

Unit is a particular quantity, defined and adopted  vestigation and refinement in order for metrologists to gain
by convention, with which other quantities of the  clear and deeper understanding of the all-important cancep

same kind are compared in order to express their  of quantity, fitted to the context in which their chosen model
magnitudes relative to that quantity. applies.

Lamentably, although there has been significant progress . . . .
in defining the notion of quantity in a reasonably general anz'z' Qoncep tual issues in the representationalist founda-
robust way, as evidenced by the regularly updated precisifi- tions of measurement . o
cations of definitions published in the new editions of Vim,Perhaps the most elaborate alternative attempt at inagisiig
there remain dficulties in using these in wider domains of the nature of quantities, including length, time, massyoiéy
practical applications. Because the intuitively appeptiar- and so forth, and their measurement is found inftheda-
bal definitions of quantities and related notions tend to enflons of measuremerframed and discussed iy, [19], and
ploy ordinary language articulations of concepts in a somd14l- Among social scientists and philosophers of science this
what loose or slippery terminology, there is a large varietPProach is widely thought to be the richest storehouse-of in
of rather diferent disentangling models of quantities that aréormation on the foundations of deterministic measurement
compatible with these definitions. Each of the models is funfortunately, because the underlying theory is largeby di
nished with a dferent structure along with its interpretation €ngaged from much of what is taken to be crucial to natural
and a diferent degree of empirical adequacy. However, it i§Ci€ntists and engineers in measurement practice, naheely t
important not to be putf®by the verbal formulation of defi- articulation qf cqusal interactions between_measure@m&;t
nitions of metrological concepts. and measuring instruments, and the relations between mea-

As satisfying as our endorsement of verbal formulation§urement information and measurement uncertainty, it has
might first appear, we must recognize that at least in scieR©t received much support among most physicists and engi-
tific contexts, the notion of quantity is somewhat technical"€ers, with the possible exception of Finkelstégnd those
depending upon which theory or mathematical model the i2round him.. o _ .
vestigator is considering. For example, the geometric tiuan _Here we will give only a brief discussion of the key issues
ties of length and time, the material quantity of mass, and @ foundations referring the reader to the just cited sources
longer list of derived quantities (velocity, acceleratigimetic for more detaif. In their work, the authors provide an axi-
energy, and so forth) are introduced in classical continuu@Mmatic basis for measurement, based on so-catipresen-
mechanics in a way that is peculiar to that theory. Since f@tion theorems Curiously, the co-authors ofl§] do not
is fully adequate for the purposes of continuum mechanics #5€ the term “quantity” at all in any technical sense. Instea
treat physical bodies (e.g., rigid materials such as metis r they address the issues of fundamental measurement in terms

or beams, discussed ih]) as continuous substances instead®f Suitableattributesof certain classes of objects or events

qf entities composed of discrete _atoms or partide$’ the@H U of values of velocity that exceed the speed of light is empty isrempiri-

tized length may take any of continuum many possible valuesally meaningless. In quantum mechanics, time is just a paraamedes not

Likewise, in general relativity and guantum mechanicanua treated operator-theoretically in the same way as the othesreable quanti-

tities are appropriately fitted to their specific theordtiman- gﬁz cﬁ;gns(j’efgr no final theory of quantum measurement has bisenlated
6 ) o : . :

texts’ So a physical quantity is not just a Maxwellian product = 7gqr example, consider a quantity-theoretic account of thiabi height

of a large growing tree or the variable mass of a flying aircraft

8However, we shall list a couple of what we take to be good messdy
this approach is fraught with serious conceptual problems.

6The most fundamental filerence between the classical and relativistic
concepts of velicity is seen in their composition. In genesttivity, the set

106



MEASUREMENT SCIENCE REVIEW]S6, (2016), No. 3, 103-126

having the disposition to instantiate them and possessingparely instrumental. Once we establish that “certain aspec
real-valued representing homomorphism. This foundationaf the arithmetic of numbers have the same structure as the
approach is widely known as threpresentational theory of empirical situation investigated ... we may then use many
measurement of our familiar computational methods of arithmetic to infe
According to therepresentational theory of measurementfacts about the [qualitatively described] empirical stane.”
(henceforth acronymed RTM), what is commonly known ad his quote comes fromilp], page 4, a co-founder of modern
base quantitiege.g., mass, length, time and electric currentRTM. The role of numbers in measurement is thus reduced to
are treated as homomorphisms from axiomatically specifieskerving as convenient computational proxies for quali¢ati
qualitative empirical order structurgo aquantitative(nu-  relations among and operations on empirical entities.
merical) structure of the same similarity type, usuallyegiv In line with its abstract definition of measurement, RTM’s
by the familiar naturally ordered additive semigroup structreatment of the notion of a unit becomes equally abstract as
ture of positive real numbers. On this approach, to justifyvell. A unit is simply any entity in the domain of a quali-
the treatment of a given attribute as a basic physical quatative structure to which a given homomorphism assigns the
tity amounts to (i) developing an empirically meaningfut ax real number 1. The issue of objective, publicly accessitle i
iomatic description of the qualitative order structure reha stantiations of units becomes conceptually irrelevantteAf
acterizing the said attribute, (ii) proving the existendeao all, if the only constraint on numerical assignments couasti
homomorphism from this qualitative structure into the ordeing measurements is logical-mathematical (such assigtamen
structure of positive reals, and (iii) establishing, whers{ must preserve the logical structure of the specified quakita
sible, the uniqueness of this homomorphism with respect t@lations and operations on empirical attribute-beariys s
some class of transformations, such as (in the case of mertaéms), then the constraint on the notion of a unit is alsolpure
extensive quantities) multiplication by a positive reatmher.  logical-mathematical, namely that the entity designated a
For some psychologists, RTMfers what they see as an at-unit be assigned the real number unit 1.
tractive alternative to the traditional so-callddssical(or re- Most importantly, the principal selling point of RTM’s
alist as it has been called) definition of measurement, populalternative to the classical definition of measurement has
in the natural sciences, according to which measurement opeen its repeatedly emphasized bottom-up constructioa-of b
erationsestimatethe ratio between the magnitude of a quansic quantities. By claiming that this construction is to be
tity (meaning a quantity as instantiated by some empiricajrounded in basic procedures for assigning numbers to ob-
system of interest) and a unit or reference quantity of theesa jects or events on the basis of qualitative observationg-of a
kind 10 tributes ([L3], pp. 1-2), RTM purports to explain and justify
As alluded to earlier, for a variety of reasons, RTM’s apwithout contentious metaphysical commitments or circular
proach to quantities and their measurement is fraught wittheoretical assumptions our passage from simple quaétati
serious conceptual issues. Here we mention only three probbservations to quantitative one&4], p. 4).
lems that we regard to be most relevant to the plan of this The second problem is RTM’s strictly empiricist approach
paper. to the foundations of measurement. A close look at RTM’s
Starting with the first problem, from RTM’s point of view, axioms for qualitative structures associated with meddera
what justifies numerical assignmentstéoget systemgi.e.,  attributes reveals that these axioms invariably transséne
systems instantiating the to-be-measured quantity of-inteple qualitative observations and posit hypothetical itdini
est) is not some physically groundedusal accountf in-  precisions that exceed the capacities of human measurement
teractions between the target system and the quantity’s mg&or some additional details and discussion of relatecessu
suring instrument or the system’s extant states, but ordy thsee fi] and [5].)
fact (established by a representation theorem) thdotiieal- Although there are many philosophical discussions of in-
mathematical structuref the specified qualitative order rela- terpretive dificulties of RTM, here we mention just one,
tions and operations on attribute-bearing systems oféster namely a principal obstruction to RTM’s attempt to ground
is faithfully mirrored by the corresponding mathematical re-measurement of basic quantities in qualitative obsematio
lations and operations on numbers assigned to these systearsd manipulations of observable empirical entities. Théso
On this view, quantities are not objective properties of emp of the problem lie in the assumptions of representation the-
ical systems in the world, but rather our mathematical reprerems. It is presumed that the equivalence relation on ob-
sentations of designated qualitative attributes of systéfhe jects with respect to their manifestations of a given aiteb
epistemological significance of such representationsus this a mathematical congruence relation, whereas the relatio
9These structures consist of a stereotype domain of some udgtrib induce(_j by measurem?r,]t_based qual,itative compgrisgn judg
bearing empirical entities furnished with a qualitative camigon relaton Ments is only an empirically determined relation inélis-
and, if applicable, with a qualitative aggregation opemtilefined on that tinguishability By endowing indistinguishability with the
dolrgai”- _ _ , _ (structurally strictly richer) logical properties of cangnce,
Th_e exact numerlcal_vall.{e)}_ern_ployed|n Maxwell_s eguatlon may be RTM ends upb requirina observation-based qualitative com-
approximated by a fractiod}, satisfyingm-Q = n-[Q] with integer codi- . . preq g L i q
parison judgments to have unlimited arbitrarily perfeatuac

cientsmandn. Clasically, in deterministic situations the estima@of the . . ; .
measured quantitR may be specified by Maxwell's equation of the form racies. This requirement obviously transcends the necessa

Q = {Q+E&q}-[Q], with maximal interval uncertainty (errof)g. ily finite discrimination capacities of any physically rial
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able measurement device, let alone of human sensory orgargle impossible for them to know the exact values of con-
responsible for “simple qualitative observations.” As a retinuous quantities. In light of this fact, it is paramount o
sult, RTM’s claim about the empirical significance of its-def theory of measurement to provide a formally precise and em-
inition of quantities as structure-preserving mappingsrfr pirically meaningful account of (i) how the structurally im
qualitative structures into real numbers becomes ungaéata poverished (finite and discrete) epistemological side ofiime
In view of these highly idealizing assumptions we are lefsurement relates to the structurally rich ontology of amumi
without empirically meaningful interpretations of quative  ous quantities postulated by and operative in science,ignd (
structures. how this relation allows measuring agents to obtain mathe-
Finally, the third problem concerns RTM’s instrumental-matically tractable and scientifically useful estimatesaf-
ist conception of measurement as assignments of numbergittuous quantities characterizing the natural systemstef-
things in the world. This conception comes to grief wherest.
combined with RTM’s formal treatment of quantities in terms  With this distinction in mind, it is now easy to see how
of real-valued homomorphisms. The reason is that almost &8TM conflates the epistemology and the ontology of mea-
real numbers are (in the increasing order of complexity) irsurement by forcing both into a single model it cajlsalita-
rational, transcendental, non-computable, and randont. Ntive structure.For example, the binary relation “shorter than”
only do such numbers embody an infinite amount of inforeonsidered in the domain of rigid metal beams is given an
mation, this information (in the case of the last two kindskpistemological interpretation in terms of qualitativengar-
cannot be obtained with finitary information-processing reison judgments. Yet, in order to capture enough of the much
sources even in the limit of infinite time. Yet RTM’s repre-richer ontological structure of quantitative attributeguired
sentation theorems allow real-valued homomorphisms @ takor their real-valued representation, the stipulated dabji
as values arbitrary real numbers, which means that measureathematical properties of this relation must transcerd th
ment (qua assignment of numbers) requires omniscient megpistemological limits of finite measuring agents. Sintjlar
suring agents with unlimited capacities, allowing themle o the familiar concatenation operation introduced in the diom
tain and manipulate infinite amounts of non-computable auf rigid metal rods is given an epistemological interprietat
random information. Once again, the empirical significance terms of some gqualitative manipulations of empirical en-
of RTM’s homomaorphism-based definition of quantities bedities, but the stipulated logical properties of this opiera
comes questionable in light of the fact that real-world seie required for real-valued representations (e.g., the atgeb
tists perform measurements without having superhuman celosure property implying arbitrarily many iterations afre
pacities required by RTM. catenation) take it beyond the empirically meaningful tani
These three problems point to what we see as a fundamesf-what can be achieved by finite measuring agéht3he
tal flaw in RTM. Namely, it conflates the radicallyftirent cost of RTM’s conflation of epistemology and ontology, as
epistemologicaindontologicalsides of measurement opera-we have already noted, is an irreconcilable conflict between
tions. On the ontological side of measurement, our acceptetnpirical interpretability and numerical represent&pilbf
scientific theories tell us which quantitative attributespos- RTM'’s qualitative structures.
sessed by natural systems in the world (e.g., the class of at-The upshot of the present discussion is that qualitative mea
tributes of a rigid steel beam typically includes lengthssia surement structures which support representation thesorem
and temperature, to mention just some). And if our accepteate not empirically interpretable (which deprives RTM'p+e
theories describe temporal changes in the values of gigantit resentation theorems of their alleged empirical signifiedn
by differential equations over real-valued functions, then therhile empirically interpretable qualitative structures dot
ontological features they impute to the natural world idelu support representation theorems (which deprives RTM of its
continuous changes in the amounts of attributes possegseddrincipal theoretical achievement).
natural systems. This, in turn, means that, as a rule, the ex-The preceding discussion of these problems along with the
act values of these attributes are in principle inaccesdipl criticisms raised earlier are icient, we believe, to convince
finite measuring agents (e.g., the exact numerical valuieeof t the reader that RTM is not well connected with our under-
steel beam’s length may be a non-computable real numbestanding of physical measurement and is too flawed to be a
In short, the ontological claim that some attributes of redtu viable alternative to the classical realist approach.
systems in the world are continuous (real- or complex-wdjlue  What the current classical approach lacks at present, how-
guantities is a fundamental theoretical postulate of sgien ever, is a mathematically rigorous analysis of the fou et
which can only be confirmed but never completely verifiedaspects of measurement that upholds the pragmatically and
by finite and discrete amounts of information obtainable bgonceptually motivated objections to RTM canvassed earlie

human agents. P , . . .
The epistemological side of measurement. by contrast. i To simplify our analysis, we sidestep a longer list of otheviobs re-
P 9 » Oy ! &%irements. For example, itis tacitly assumed that each medat ineither

determined by the ways in which measuring agents can obtadiremely long, hot or heavy, nor too short, cold or of littleight, so that it

information about the values of quantitative attributes-po is physically manipulable within the bounds of normal humarlitzs. For

sessed by natural systems. The fundamental epistemalogi@aCther example, the process of determining the beam's exathlenakes
. . . . no sense without first establishing its precise left andtisglatio-temporally

fact of measurement is that information obtainable by megy ocaiized endpoints.

suring agents is always finite and discrete, making it in-prin
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and definiteness in serving as an intuitively appealingstpra so on, but even then the above explanation will remain unsat-
cally useful, robust and mathematically attractive frarmdw isfactory, due to the needless obscurity of its modal or eoun
for quantities and their measurement. In what follows wé wilterfactual background metaphysics.
present a characterization of quantities that is able te han Earlier we argued that the traditional realist approach to
dle both deterministic and probabilistic quantity calaubind  quantities is to be preferred over RTM, in view of its most
guantity measurement. hospitable environment for deterministic quantity calsul
But curiously, this framework seems to be not much betfier o
1.3. Towards a state-based ontology of unital quantities than RTM in regards to truth semantics. It is simple enough
Modern treatments of deterministic quantities skirt the is© S€€ that the standard classical approach to quantiigs (d

sue of truth-conditions for metrological assertions. Bage Ccussed in Section 1.1) is axiomatically built and is styict

what we said earlier, it is apparent that RTM replaces tha id&YNtactic in nature. From a semantic standpoint, more needs
of truth conditions with that of a ‘qualitative structure. to be said by the classical theory about exactly how a valid

To fix ideas, it is useful to have a simple example in mindMétrological assertion about a quantity of interest is ioketa
Consider the following question: what exactly is it abow th Ve shall now enter into the details of how are we to reason

flagpolef under consideration (as a material body treated j#PCUt the truth conditions of metrological statements.
continuum mechanics) in virtue of which the metrological With classical continuum mechanics as our background

statement, say;s 5.4 meters long” is true? In other words, N€0ry, @ metaphysically modest alternative to RTM's ap-
the question is about something which directly pertaingéo t Proach to truth conditions is to accept that (i) physicaboty

flagpole’s extant physical mode of being and which serves £95S€ss a well-definestateat any given moment of time, and
thetruth-makerof statements about its length. (ii) there are dgtermlnlstlc causal laws that charactettiee .
On the representational approach to quantities, the trut,*,[a_mporal evolution of these states. If we have these condi-
making feature of flagpolé is understood in an essentially ions. then what matters about the flagpplie the context
structuralist way. As mentioned above, what makes the-stat@ Predicting anfbr measuring its length is that itis in a cer-
ment f is 5.4 meters long” true is not something intrinsic tot@iNPhysical-geometric conditiofthat may change over time,
f, but only that (i)f belongs to a certain structured domain®-9-» due to thermal expansion). _
of length-bearing bodies (RTM's “qualitative structuregnd W€ €an now put our conceptual pieces together. The notion
(ii) there is a structure-preserving real-valued functorthat ~ Of State has its home in classical systems theory. Howéer, t

domain which assigns number 1 to physical bodies designatsindard state space modeling practice embraces a far more
as “prototypes” for theneter unit of measure, and real num- generous state ontology than required by quantity calculus
ber 54 to the flagpolé. On this classical well-established view, at any instantroét

We find this account of corroborating the validity of metro-2 target system's state is assumed to provide a complete de-
logical statements to be unsatisfactory even if we set asig€'iPtion of the system’s physical mode of existence. Thus,
RTM's empiricist assumption that the structured domain if"oWing the system’s state implies knowing everything that
question is definable on the basis of simple qualitative mdS Necessary to predict the future of that system. \Weedi
nipulations of observable entities. The stipulated stmagt [TOM this complete state approach in considering only gerta

features of the said domain (required for the represemtatidnCompletequantity-restrictedstates that are fully sticient

theorem) prevent us from interpreting its elements even 48" S€rving as truth-makers of metrological claims aboet th

just actual length-bearing objects (whether observahtetyy ~ Values of the quantity under consideratidnOur goal is to
if only because the actual world does not contain object&/©vide a state space description of systems that captures e

produced by arbitrarily iterated compositions of flagpplesErYthing that is necessary andiscient for a complete speci-

beams, etc., not to mention their arbitrarily iterated comp fication of values of the system's quantity of interest.

sitions with themselves. Also, the relevant relations agnon " the example of length we know that at any moment of
actual length-instantiating objects are not immune to fae efiMe the flagpoler occupies a specific spatial region in the
fects of thermal expansion, corrosion, humidity and othefommon-sense Newtonian space and time with two spatial
real-world factors fiecting the actual flagpoles, metal rods €NdPoints that determine a unique connecting line segment.

and so forth. Perhaps the elements of this structured domainssch incomplete states are quite common in the natural sciefces

can be interpreted as possible flagpoles, possible beauhs, @rample, in the Lotka-Volterra model of population growthsitcustomary
to specify biological states only in terms of population sipépredators and

12The fact that certain rigid material bodies are chosen as riemed
referents of our discourse about length does not mean thatrweutr back
on the underlying quantum mechanical structure of matternEveugh we
hold quantum mechanical principles to be fundamental, thermany &ec-
tive ways of modeling quantities and units in the home langudgm®ntin-
uum mechanics and electromagnetism. Thus, setting asideuguatysics
considerations is not just a matter of idealization, but aatdished prac-
tice of metrological science we follow. In particular, asrs@e[10], it is an
accepted standard to conform to definitions of quantitietstand related
measurement-theoretic concepts common within the traditioaaleworks
of physical sciences.

preys, even though biological populations are known to bedgld with many
other biologically essential attributes. Hidden variattieories of quantum
systems are also based on the notion of incomplete states. @heabject

that the assumption of incomplete states is tantamount to adgnitiat a

complete description exists or perhaps might yet be found, &desourse,

but notice that in all this it is implicitly assumed that we aomsidering an
entire algebra of quantities (discussed in detail, e.d4]inthat exhaustively
specifies all of the system’s properties at a given time. Howeween we are
not interested in the fullest description of the targeteystbut only in a par-
ticular aspect of it, specified by a quantity of interestntleeen incomplete
states are dficient to determine its values.
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And the Euclidean length of this line segment defines ththe unit real number 1, i.e., the identity conditi@fu) = 1
flagpole’s length in a chosen unit. Thus, in the case of lengtholds14

guantity applied to the target flagpole we may specify itiesta So now we can make the claim about the flagpole’s length
space¥ by the set of all line segments, modulo spatial conmathematically explicit and rigorous as follows:

gruence. We take it as our fundamental assumption that by

instantiating a line segment, this state space lirtksa well- ~ Length(f) = £;(AB;) = Euclidean distance-in-meters (A, B),
understood and much studied framework fifree Euclidean ) ) )

geometry. The instantiation relation between lengthingar Where AB denotes the line segment with endpoints A and
material bodies (like flagpoles and beams) and line segmerfts "€2lized by the flagpole’s physical-geometric state &wed t
allows us to consider also empirical comparison relatians b Euclidean distance imeter measurement unit between them
tween and concatenation operations on certain lengthrtgear 'S 2 positive real nqm_t)er. . .

bodies, thought of as instantiating the familiar “shortert” 1 NUS, the assertiori s 5.4 meters long” is true if and only
relation between and the composition operation on the cdff-the following three non-epistemic conditions hold:
responding line segments. For these additional reasoes, th(
flagpole’s length-constrained state space of line segnignts
furnished with a surplus structure of an ordered semigroup

i) The flagpole’s extant physical-geometric state insgtant
ates a unique line segment AB .%;

(&4,<,*¥), to be discussed in the next section. (ii) The physical-geometric state of a physical body desig-
To get clear on the connection between quantities and units, nated as @rototype metemstantiates a unique line seg-
it would be good first to have some idea of what quanti-  mentsp, such that its unitized length; satisfies the uni-

ties and units really are. For a long time it has been clear tizing condition£;(sm) = 1, and

that it is fruitful to define quantities in terms of real-vath i . o .
functions on stereotype domains of physical objects ortaven(iii) the up!tal length unitized b, satisfies the assertion’s
(see ] for a semiformal and philosophical discussion). Un-  conditionLi(ABy) = 5.4.

fortunately, such functions come in a great variety of type§ygte that these conditions hold (or fail to hold) regardless
continuous and discrete, deterministic and random, orgina whetherf is ever subjected to any kind of measurement.

and structure-preserving, and so on. We know that RTNyhen we do measure the flagpole’s particular unital length
finds the measurement-theoretic fruitfulness of such fanet (in this case length-in-meters), our aim is to estimate the

based treatments of quantities solely in terms of reale@lu nnown numerical value of this unital length. The crucial

homomorphisms between relational structures. point here is that this unknown numerical value is an objec-

In contrast to RTM, in our framework the abstractly con+je mathematical property of a certain line segment, ard th
ceived deterministic unital quantities are modeled by tpasi flagpole’s physical-geometric stétéherits this mathematical

real-valuedsomorphism&etween a physical-geometric stateproperty by instantiating that segmeniVe regard this to be

space and the space of positive real numbers. For instanggs nderlying fundamental ontological assumption abueit t

a concrete unital length quantity of flagpdles given by an  ,ih_making role of measured systems. Thus, if we estimate
isomorphism functiory; : -; — R, between the flagpole’s {he yajue off's unital length as, say, lying in the half-open
state space and positive reals. Why isomorphism? Becausigeyq| [535,5.45) of meters, the measurement output gives
as we will explain at the top of the next section, under iSOy information about an objective numerical property inher
morphism unital quantities and units encoded by statesistafje by (and therefore characteristic 8§physical-geometric

in a mathematical relationship of duality. And, importgntl ;.

this in itself turns out to be extremely important in quantit  gecayse the details of truth conditions are placed where
calculus. In a bit more detail, here the idea ofdgallty refer they belong (they are fitted to the investigated unital quan-
a one-to-one correspondence between quantities and stategy, s theoretical context), as may be expected, the seas

a system under consideration. As we shall see below, the fagf jiferent quantities, such as mass and electric current, will
that quantities and states can be formulated in terms ofla dyg, yigerent. For example, combination of multiple quanti-
relationship is crucial for a formal justification of mergin  ieq instantiated by a complex system leads to a produet stat
units and quantities into a single notion otiaital quantity  gpace  To avoid certain distracting complications, we cast
We should note that it is dimension-theoretically profieabl ¢ gefinitions of units in terms of (pure) deterministictesa

to view the collection of all unital quantities of a given Hin However, we shall later consider also statistical states, e

as their quantittype The upshot is that we can provide acqqeq by certain probability density functions on the under
formal framework in which the idea of a physmal—geometnqying space of pure states.

attribute, e.g. length, is formally accommodated by tifpe Let us be clear about how units of length enter into the

of all unital lengths. . , . state space framework. As well-known, since 1983ntle¢er
Unital quantities have two salient features: (i) there is a

one-to-one and onto correspondence between unital quanti*Note that we are making a sharp distinction between unitsifigtby

; ; ; ; ; = designated states and carefully prepared physical ppestpr etalonsn-
ties and their units, rigorously characterized by states () stantiatingthese units, characterized by states. Although in thigsetthere

.the unit of the unital quantit@ of ir?tereSt is uniq_uely sp_ec— are continuum many possible units, in practice only a redgtismall number
ified by the statas = Q 1(1) to which the quantity assigns is suficient, usually a decimal multiple or decimal fraction of a desigd
base unit.
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unit is defined (as displayed on page 18 1)) somewhat Since in parallel combinations of circuits there are midtip
theoretically in terms of an Euclidean spatial line segniient paths by which the electric current can flow, the total amount
the following way: of current passing through the parallel circuit is equaht t
sum of current values in the individual branches of the dircu
Here the upshot is the inhereotdered additive semigroup
structureof currents in parallel circuits (the voltage drop is
the same across each branch of the circuit).

So now because theter is officially defined aghe length of ~ 'Nird and final, suppose we are given a well-powered
a designated straight-line segment, we have a good reason ¢lpsed-loop parallel electric circuitand are interested in the
sticking to a line-segment representation of states fagtten total amount of current that flows through all of its branches
quantities. Let the metrological statement about the current’s value be
To ground our intuitions on how quantity-constrained“I(c) =25 amps._” Once again, we might a;k: what is the
states work and what makes a unit of measure, consider dfdth-maker of this statement? As a related issue, how would
other simple and very important example of z;m extensiv@ne test the validity of this statement? The intuitive ansaie
quantity, namely electric current. To that end, we recal ththe statement is true provided that there is a specific eattr
Sl definition of theampere (= amp) base unit of measure for €N€rgy-transporting activity going on in the powered paral

Onemeter is the length of a straight-line path trav-
eled by light in a vacuum during the time interval
of 1: 299792 458" of a second.

electric current: circuit that matches the stated valueagips. So the perplex-

ity is resolved by attributing a certain electrical stateedily
Oneampere is equal to the constant current which, to the circuit.
if maintained in two straight parallel conductors of We can go down the road of quantum physics and give
infinite length, of negligible circular cross-section, a rigorous characterization of truth-makers of metrolabic
and placed Ineter apart in a vacuum, would pro- statements about electric currents in terms of flows of glect
duce between these conductors a force equal to cally charged particles that can be counted. Concretelgesi
2x 1077 Newton per meter of length1p], p. 113). one ampere is known to be equivalent to onmulomb of

charge passing past a point oin one second, meaning the

Before continuing with the introduction of current- 4o of approximatelyi = 6.24x 1018 electrons per second in

constrained states of powered closed-loop electric ¢8cui 4 howered circuit, we now have a direct empirical support for

three comments are called for. the validity of the claim 7(c) = 2.5 amps.” Namely, the sen-

_First, note that the advocates of RTM would find it impoSyence js true just in case approximatel2i electrons pass
sible to express the foregoing counterfactual definitiothef through a cross section 68 conducting wire per second.

ampere unitin the frameyvprk of qualitatively assertible fact§, Surprisingly, this recipe for testing the truth value ofcele
encoded by RTM's empirical structures. Clearly, to deahwit yic5| statements seems to have a major flaw in that it applies

“parallel conductors of infinite length” would exceed the ca gy to currents specifiable by the number of free electrons

pacities of human measurement. ) flowing from the positive to the negative terminalcsf power
Note also that the definition relies on Ampére’s force law ot ;e per second.

classical electrodynamics that employs teived quantity In contrast to quantum interpretation, one important lesso
of force per length unit and it does not take any cues from thge have leared earlier is that we cannot decouple the defi-
ontology of quantum theory, as evidenced by the conductorgjion of classical quantities and their units from the tlyeo
characterization of having “negligible circular crossten.” 15t uses them in its laws and measurement. In particular,

In contrast, metrplogists working with tH& framework for  Jpserve that the now-preferred definition afipere makes
measurement units find these theory-anchored non-pr&otyl,, reference at all to the details of moving electric charges

based definitions to be fundamental in the development gf particles. Instead, it is deeply connected with the dtass
metrological science. But of course, not everyone is pttasgneory of electrodynamics, in which a unitized electric-cur
by the use of derived quantities (e.g., force) in the deniti ot may take any positive real value whatsoever. So like it o
of base unl'gs_. ) o not, we want to fasten on the idea of classical electrodynam-
_Second, itis common knowledge that in applications, eleGzg i which electric current is deliberately idealized ddral
tric current is realized by a closed-loop electric circpoW- ¢ gpstance that moves continuously through a circuit.wire
ered with a current source, e.g., a battery or generator) thg,,n switching between quantum and classical viewpoints,
can be set up in many ways, usually schematized (under idggrent can be seen in a perfectly legitimate manner as an
alizing assumptions) by a diagram of electrical connestionsiantaneous rate of electrical charge movement, stiila
between basic electrical components. by the familiar diferential equatiod” = 49 that conveniently

_The simplest nontrivial electric circuit consists of ancele jgeajizes away the discrete and finitary character of partic
trical energy source, an energy-consuming load (e'g"'&rescharges.

tor) and a control device (e.g., a switch), all connectehbgr
by conducting wires. The electrical behaviors of circuits a 15For ease of exposition, we are restricting our attentionuméan-made

established on the basis of values of currents and Voltagesciirwits and put aside the technical nuances of electrieats in electrolytes,
the given circuit® sparks, lightnings, solar winds, and currents in the amigiesfcchanging

magnetic fields.
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So a more promising route is to specify the state spdce  Why complete ordered semigroups and not just ordered
of circuit ¢ by the set of all electrical currents, maintainedsemigroups? Because in general there is no reason to think
in any two straight parallel conductors, as explicated i ththat there are any isomorphisms between ordered semigroups
definition of ampere. Depending on the strength of geneend the semigroup of positive real numbers. However, we
ated forces, the currents may be weaker or stronger and lkasow from the seminal work of Hoélder8] that complete
we mentioned earlier, they compose additively in paralkel ¢ ordered semigroups uphold such isomorphisms. So in our
cuits. Our main point is that, once again, we can use the diramework a complete ordered semigroup is viewed as a fixed
dered semigroup of the forf?, , <, ) as a state space struc- universal conceptual backdrop against which quantitywzalc
ture of the electric circuit. This structure, in turn, allows to lus unfolds. Here is the definition:
define unital current quantities in terms of isomorphisms
the form 7, : .4, — R, between the circuit’s state space an
positive reals. And as we saw earlier, a unital current gtyant
I is unitized by the unique electric statg,, provided that
I (iamp) = 1.

In the present deterministic quantity-theoretic framéwor (i) The order structurés, <) is a totally ordered set.

the assertionCurrent-in-amps in circuit ¢ = 2.5” is true just (i) The algebraic structurés, +) is a commutative and can-
in case the following three conditions are satisfied: cellative semigroup, i.e ’for all b ande in & we have

glsefinition 1: A complete ordered semigroy, <, +) is a set
S equipped with a strict total order relation and a binary
associative operatiomn such that the following conditions are
satisfied:

(i) The net movement of charged particles in the powered
circuit ¢ instantiates a unique electrical state.#; a+b=Db+a,

(i) Motion of charged particles in a “prototype circuit’+e and
alizing the conditions of definition of dmpere instanti-
ates the designated electrical statg such that the cir-
cuit's unitized electric currenf . satisfies the unitizing (iii) The monotonicity
condition :(iamp) = 1, and

(iii) the unital current unitized bigmp satisfies the assertion’s
conditionZ (i) = 2.5.

a+¢c=b+¢c = a=>b.

a<b = a+c<b+e¢

together with stricpositivity
Although for the large part of this introduction we have
investigated by way of examples only the respective state a<a+b
space structures of unital length and unital electric aurtbe
proposed approach applies equally well to the other garden-
variety of extensive quantities. To summarize, as we have ar
gued, neither RTM nor the often cited Maxwellian approach
solves the problem of units and truth conditions for mewoelo conditions hold for alh, b and¢ in ©.

cal statements. We have identified two main obstacles that ay, .
in the way of handling these issues: (i) missing state spacév) Every upper-bounded nonempty subfs EFI €l}c&has
: " asupremumdenoted/; a;, such that for alb the fol-

and (ii) the missing isomorphism condition. It is now time to . oo vie
. . . ., o lowing general distributive law
explain the algebraic requirements for unitized quargtitie
b+\/ai = \/(b+ai)

2. UNITAL QUANTITY CALCULUS AND QUANTITY TYPES iel el

We have just seen that it makes a lot of empirical sense to de-
scribe the quantity-restricted states of systems, instiamy

a quantity of interest, by the elements of an ordered semEomplete ordered semigroups come with a natural order
group. However, to be able to use this algebraic tool kit efiopology. A subbase of this topology consists of all subsets
fectively, we need to model unital quantities as isomonpisis of the form{b|b < a} or {b|a < b} for somea. Based on topol-
between the ordered semigroups of states and that of poghy, these semigroups can also be viewed as Borel measur-
tive real numbers. The great power of the dual connectiogple spaces, required for a precise definition of randonalinit
between states and unital quantities shows up in solving ”@ﬁjantities and their probability density functions.

earlier mentioned problems pertaining to the truth coodgi The next thing we must do is specify what counts as an
of measurement statements and relations between quantitigrective mapping between pairs of complete ordered semi-

and thesolvability

a<b & a+c¢=Dbfor somes

holds.

and units. groups. As we know, in representational measurement theory
of particular importance are certain embedding maps frem or
2.1. States and unital quantity calculus dered semigroups to the real line. In more detail, the follow

Among all the algebraic ingredients that go into building dng notion is deliberately fit for measurement applications

unital quantity calculus, two stand out as especially funda If (&,<,+) and(€&’, <, +) are complete ordered semigroups,
mental: (i) complete ordered semigroups of states, and (i§ mappingF : @ — &' is called acomplete ordered semi-

semilinear spaces of compatible unital quantities. group embeddingvhen
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) a<bh < F(a) <F(b), constituent unital quantities. These quantities are foamse
[ F i ital ities. Th iti f d
(i) F(a+b)=F(a)+F(b), and into their addition using the addition operation on realsnC
(i) F(Vie @) = Vie F (@) cretely, as shown in the commutative diagram

iel 1) = Viel i)

hold for all a,b andg; in &. If in addition to the embedding LixLy

property,¥ maps® onto &', then we say that the two com- SRS R+ xRy
plete ordered semigroups asmmorphicand write® = &’.

Reasoning along these lines will convince the reader thiat un + +
tal quantities are best thought of as isomorphisms between a

complete ordered semigroup of states of a given kind and the S R,
complete ordered semigroup of positive reals. Ly

Of special interest is the relationship between two unital _ o . _
quantities of the same kind. In complete analogy with gedhe total ’unltal length is given by the addItI\LEEfmpOSIte
metric coordinate changesonversiorof a given unital quan- @i+(8 +8") =at Li(s) + L (s') for all statess ands” instan-

tity Q into another unital quantity is achieved by composingiated by the respective flagpoleandf’. This algebraic ap-
Q with a suitable similarity automorphism 1as shown in the paratus immediately generalizes to other finitely manyguxt
commutative diagram posed flagpoles, and in fact to any finite collection of length

bearing physical objects.

Q It is noteworthy that the foregoing product construction

(2,<,%) Ry, <, +) works equally well also foparallel combinations of elec-
tric circuits in which currents are known to behave addi-
1o tively: I = I.+ I. Actually, the above product state space

v method is very general; it works for all kinds of unital quiant

ties. For example, thenital areaof a rectangle instantiated,
say, by a hallway of interest, is determined by the product of
the unital lengths of its sidesAy(s,s’) = L1(s) - Lo(s’). We

in which we have the equality -Q = 1, 0Q. We hasten to can express this derived geometric quantity by the commuta-
add that for any conversion cieienta > 0 the map 1 is tive diagram

a complete ordered semigroup isomorphism (in this case an

<R+7 < +>

automorphism), defined by JX(1) =41 @ and [1,](B) =4t B LixLo
for all 8> 0. Thus, all unital quantities are of the forn Q, AXS Ry xR,
whereQ : 2 — R, is a desighateceferenceunital quantity
anda > O is aconversiorcodficient inR,. Itis an elementary sides
exercise to show that the automorphism group(&tit, <, +))
of conversion cofficients (automorphisms) is isomorphic to R R
. . . " b +

the ordered multiplicative group of strictly positive real Hy

In a dual manner, we can also considgnamicalautomor-
phisms of the form in which the spaceZ, encodes the possible physical-

geometric states of the hallwagy
(2,<, %) _F (2,<, %) Finally, here is a very important example otemporally

varyingunital length quantity’,(t) : 4 — R., instantiated

that transform given states to new states (i.e., given meBy the variable height of, for example, a large growing tree
surement units to new units). For example, the physicatonsidered at time instant As might have already become
geometric state of the flagpole under consideration smpothélear, the state spac#, plays two essential roles: (i)syn-
changes with smooth (heating or cooling) variations of thehronic role in the quantity-constrained specification of the
ambient temperature. This brings out an important one-t&ystem’s mode of being at a particular timeffisient for the
one quantity-state duality relationship for any p&/Q :  determination of the target system’s quantity values afrint
2 — R, of unital quantities: the conversion automorphismest, and (ii) aliachronicrole in modeling the temporal evolu-
Q@ oQ':R, — R, is in a one-to-one correspondence Withtjon of the tree’s stages of growth.
the state change automorphigin'c@ : 2 — 2 thatcan  To model the tree’s temporal dynamics of states, we will
be thought of as a typical example ff need a totally ordered spacE, 0, <) of positive time instants,

At this stage we slip in a remark about the length of twastarting with the initial moment of time 0, and a dynamical
juxtaposed, i.e.concatenatedlagpoles, symbolized+{". map®D,:.%4 — .% with t e T that completely character-
Since each flapole comes with its own complete ordered senires the deterministic change of the tree’s height. Suppose
group of physical-geometric states encoded by line segnenthe tree’s state (i.e., its instantiating height, encoded par-
in the simplest situation of two juxtaposed flagpoles theiticular line segment; at timet is specified by the dynamical

states are represented by the product spéce =qr - X% laws; = Dy(So), wheresg captures the state considered at time
of identical T%CIOI’ state spaces and the prodgck Ly of ' K(S0) ocap
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zero, for instance, at the time when the tree was planted. Un- Ry

der temporal precedente: t’ we can see that the following
condition holds:

Q=2Q

Li(sv = st) = Li(sv) = Lu(st)

where the subtraction operations meet all the conditions of
meaningfulness. Upon defining,(t) =q¢ Lt © Dy, so that

the equality[ Li.(1)](s) = L« (st) holds, we make the idea of

a time-dependent unital height fully precise by the commuta
tive diagram

e

Dy Ltr (t) : c@

e Fig. 1. Geometric depiction of the bundle of unital quantities of a

given kind, relative to a reference quantidy
In the simplest case of linear deterministic growth we cdn se Now, because according to the unit-conversion formula
Lu(se Zs)=a-( = 1), Q = a-Q any unital quantityQ’ is .uniquely determined. by a
designated or preferrdzhsequantity@, we can treat units in
where the measurement unit of the fiméent of growthe a dual mannerby keeping the unitizing state implicit, fixed
must be fitted to the equation’s context, i.e., it must be a@nd Sécondary For instance, in the case of length let the
appropriate length unit over a time unit. fp(e_d state be, for “1_meter” (e.g., realized by the plgtlnum-
This approach to variable unital quantities is completeljfidium etalon). And instead of state-based reasoningareg
general. For example, a similar formula applies also to a unf? S thebaseunital quantity that uniquely specifies all the
tal resistance quantity that varies with temperature. And Pther quantities of the same kind by the unit-change conver-
should also be noted that in view of the underlying complet&!on Q
ordered semigroup framework it is possible to define the tem- Q = Q Q.
poral (and spatial) derivative% of unital quantities, needed
in formulating diferential equations. For the present, we deHere we have chosen a special “torsor-theoretic” nota@én
fer consideration of derived unital quantities, even thougfor the dimensionlessonversion factow (from @ to Q) in

these are by far the most important in applicatiSns R, that makes all base-change calculations remarkaffily e
cient!’

2.2. Semilinear spaces of unital base quantities The following sequential base-change condition

The puzzling question of the continuum variety of unital Q’ Q Q'

quantities of a given kind, having the form of a complete or- [ =—--Q@ & Q@' =—-Q] = Q"=—-Q
: . . Q Q Q
dered semigroup isomorphisth: 2 — R, between the tar-
get system’s quantity-constrained state space and the spac quantityQ” and@’ to @, then we can certainly conva®” to
positive reals, may now be answered geometrically by repr€? via the mediating quantitg’.

senting quantities in terms of positive half-lines (raygsawn Obviously, we also have the equality
from the Cartesian origin of the right quadrant, as dispiaye Q
in Figure 1. Q el

The Cartesian positive half-line bundle in Figure 1 illus- Q - %

trates all unital quantities relative to an arbitrarily ska ref-

erence quantit@ (represented by the positive half-diagonal)that allows to treat ratios of quantities without any refere

with its unit encoded by the unique stafesatisfyingQ(du) =  to a chosen “unit” quantity.
1. Similarly, there is the unitizing statg for @ obeying the — _ , _ o
unitizing conditionQ'(q’) =1 and the unitizing statq” for As we have seen, in Maxwell's framework the notion of unit igdn

L . duced in a dual (implicit) fashion in terms of the ra@ of any guantity
24 /7 "y — u
Q" fulfilling the requiremen®”(q”) = 1. Q of interest to a frozemeferencequantity @, of the same kind, so that

Q= % -Qy holds. By way of concrete illustration, if is afixed unital

length quantity, then we may think of the rat-% as the “magnitude” iR,

of the length quantity”’ under consideration with respect to the “unit quan-
tity” L. In the Euclidean tradition of classical measurement, the gt
ontology of real numbers is founded on the bedrock of ratiaguahtities.

16The notion of time quantity requires more attention; it willdiscussed
in detail in the last part of this section.
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Referring again to Figure 1, note that if we switch from Because unital quantities of a given kind formoae-

unital quantityQ to quantityQ = 2-Q that is twice as large,
then the measurement results get divided by 2, si2(cg =
% -@'(q) for all stategy € 2. So in this way the yard-unitized,
inch-unitized and all the other length-unitized quantiti@n

be uniquely converted into the primary meter-unitized quan
tity £, and of course conversely, because theoretically an

unital quantity can serve as a base.

dimensional semilinear spactey also satisfy the following
transitivity property: For allQ and@’ there exists am > 0
such that

Q=a-Q,

9gether with thdreenesproperty

Q=Q = a=1.

Conversion factors give us an idea of how to proceed with

setting up the algebraic structure of unital quantity chisu

Sincea in the transitivity condition is unique, it is convenient

for quantities of a given kind. We already know that unitako symbolize it as a ratio (divisiong—' =4t @.

guantities possess a natural total order structure, deffiyed

A<@Q = 1< —,

Q

satisfying the monotonicity conditioR < @ = Q+Q" <
Q +@Q". Although it is simple to regard the set of all unital

In the case of length, the transitivity property says that th
orbit of any unital length under the action of the semifikld
of positive reals is the whole semilinear spaand of course
this one-dimensional space has no naturally distinguisthed
ements. Any element automatically generates the entire
spaceL. In other words, the experimenter is free to move

quantities of the same kind as an ordered semigroup with tfigom any unital quantity whatsoever to any other unital guan

customaryadditionoperation@’ + @ defined pointwise by
[@ +Q"](q) =dr Q' (a) +Q"(a)

for all statesq in 2 or better yet, by recalling the definition
from Section 1.1, from our point of view it is only natural
to work in a significantly more powerful framework of strict

tity by simply considering the action of the semiriig of
positive reals oh. Freeness means that precisely one action
of R, will move a given unital length to another designated
unital length'®

Remember that the spa&@ of unital quantities is lin-
early ordered. Some definitions of semilinear spaces ieclud
the defaultzero length quantity. Unfortunately, algebraic

(meaning without zeropne-dimensional semilinear spacesgefinitions often make too many concessions to the well-

of unital quantities over the semifiel®,, +,-,1) of strictly

established linear algebra framework. In particular, figs-

positive reals. Semilinear spaces are perfect analogsoef Ve;ipe 1o embed into a one-dimensional vector space over the

tor spaces over the field of real numbers, except that thg,) fieldr.

real scalar ca@icients are restricted foositivereal numbers.
Therefore, from a formal standpoint, a semilinear spaassis |
a variant of a positive cone in a vector space over reals.
We now turn our attention to theemilinear spacdi.e.,
a strictly positive cone) of unital quantities of a given &in
Here the leading idea is that in order to study unital quigstit
of a certain kind, it is profitable to look at trepaceof all
such quantities and tap into the wealthy technical ressurc
of linear algebra — tensor product and quotient constrostio
in particular. Formally, we then have the following defiaiti

Definition 2 A semilinear spacés a setQ (whose elements
are called quantities) with two operations:

1. addition which assigns to each pair of quantitiQsQ’

their sumQ +Q’, and
. scalar multiplicationwhich assigns to quantit® and
each positive real numberthe quantitye - Q.

These operations satisfy the following conditions:

() Q+Q =@ +Q.

(i) (R+Q)+Q"=Q+(Q +Q").
(i) - (Q+Q)=0a-Q+a-Q.
(iv) (¢+8)-Q=a-Q+B-Q.

V) a-(B-Q) =(a-p)-Q).

Vi) @+Q=Q"+Q = @ =Q".
(vi) 1-Q=Q.

Here two things are worth noticing: (i) the clas-
sical vector space approach provides more structure than ne
essary in the sense that it includes too many empirically un-
interpreted notions, such as negative length or negatiesma
and (ii) any semilinear spadé€is naturally embeddable into
its smallesK-oriented linear spadé over the field of reals.
Recall again that unital quantities are complete ordered
semigroup isomorphisms of the for@: 2 — R., illus-
ated by positive half-lines in Figure 1, and equipped with
the earlier-defineddditionandexternal scalar multiplication
- Ry xQ — Q, specified pointwise byd[- Q](q) = - Q(q)
for all statesy and positive reals in R,.1% The scalar action
- 1Ry xQ — Q of the semiringR,, +,-,1) of reals orQ rep-
resents all possible unit changes. To say that a unital gyant
Q of a given kind is equipped with a particulanit of mea-
suresimply means that it is a member@f For this reason it
is helpful to think ofQ as a dimension-theoretic encoding of
the kind or quantity typeof Q. In dimensional algebra, one-
dimensional semilinear spac®f unital quantities (e.g., for

18An alternative formulation of the freeness propertyisf = o’ - £ =
a=a’. Aclosely related treatment of the structurdatlies on the language
of torsors or semténe spaces over the semiriitg of positive reals, but in
this paper we do not need to consider these.

19The semilinear spad@ is also a metric space under the distance function
d(@.Q") =4t 1% - 4| Itis trivial to check that the distance function does
not depend on the choice & Thus, if needed, we can also think@fas
a topological and hence a Borel measurable semilinear spéienatively,
the order topology of is given by the subbasis family of subsets of the form
Q@ <@} and(Q|Q” < @} for all @ andQ”.
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length, time, mass and electric charge) are introduced fromt(i) %2 = a.

the start as basic higher-level (type-theoretic) undefimed ... o.0" @ @

tions. i) =g==a+7a
Physical theories are known to be based on a wide rang) % = (g)‘l.

of basic and derived quantity types, and operations thereo V) €.q=q

even though they are usually formulated in measurement uni Q '

independent ways. Keep in mind that intuitively the semilin (v) o4 = <&

ear space of unital length quantities can be viewed as the Se{vi) g @ _ g

of families of denominated (unitized) positive real nunsefr
various forms, includinga meters|a > 0}, {8inches|g > 0},  (Vii) g— Q= QQ Q.

{y kilometers|y > 0}, and so forth. Therefore, if the interyjiy o.Q=0-@ = Q=4
est is in length values involving a specific measurement ungx) @Q=fQ = a=p

of length, e.g., given by the unital length quantify then - -

one can employ a less convenient alternative semilineaespa (X) Q' (d) =1 < Q(q)-Q =Q.
notationR, £ for L that explicitly displays the chosen unital
quantity L.

For example, thelistancebetween any pair of points of a
metric space# acquires a measurement-theoretic meanin
only if it is encoded by a unital length-valued metric of the
formd: # x.# — R, L. In this case the valug(m,n) of
the unitized distancd between two distinct spatial points  Proof: From left to right, assume first th& (q) = 1 together
andnt is calculated directly in the measurement unit carrietvith Q = a-Q for somea > 0, so thatr-Q(q) = 1. Next, sup-
by £, i.e., we haved(m ) = « - £ for somea > 0, stating pose by way of contradition that the conclusion of the state-
that the distance between the chosen points is given in meaent is false, meanin@(q) - Q' (q’) # Q(q’) for some state
surement units specified k4. g’ # . Then we have at once the inequali}y) -« - Q(q’) #

No conceptual problem exists here becatlsmosing a unit  Q(q’) and therefore the inequali®’ (q) = a- Q(q) # 1, which
for length is equivalent to choosing a unital lengthin L with  is a contradiction.

L= % - L for any other unital lengtll”’. To avoid distract- For the converse, the evaluation of unital quantities in the
ing measurement-theoretic details, mathematical ptstsici assumed conditioQ(q) - @ = Q at stateq immediately gives
tend to cast their definitions of distance directly in termhis oQ’(q) = 1.

(unitless) real numbers rather than in terms of unitizedtles Suppose that, for simplicity, we writQ; for quantity Q’

in L. More generally, the same custom applies to time, massnpitized by statey, i.e., Q;(q) = Q(q) = 1 holds. Then the
electric current, and so forth. As we shall see, the senaifine just proven result can be restated quite simply as the gguali
spaceT of unital time quantities has far-reaching applicationgy — ciz .Q and hencel = 9

Since the proofs rest on completely elementary considera-
tions, involving the definition of% and appropriate substi-
tutions, it seems safe to leave them as an exercise for the
fbader. However, to illustrate the proof format, we prowe th
last equivalence statement (x) of the theorem.

and so does the semilinear sptef unital mass quantities.  \what Theorem 1shows is that we may treat the additive
. The fol'lowmg is a V\{ell-gstabl'lshed strategy In mathemat(minimal) part of quantity calculus by conceptualizingrit i
ics: Any time a new object is defined, there should be a way Qbyms of ratios of quantities of the same kind. Below we will
specifying how one of these objects transforms into anoth@troduce a significantly more encompassing framework for
one in a structure-preserving manner. Accordingly, & Magerivedunital quantities that incorporates the crucial product
H : K — K’ from a semilinear spad€to a semilinear space 5pq quotient operations.
K’ is _cglled asemilinear homomorphismrovided that the To formalize this much stronger framework in a mathemat-
equalitiestH (k + k') = H(k) + H(k') andH(a-k) = a-H(K)  ically robust and attractive manner, we will appeal to a sim-
hold for allk,k’ € K anda € R,. Cascade compositions of plified language of tensor products and quotients.
semilinear maps are semilinear.

It is well known and easy to show that the set of all :semi—2 3. Semilinear spaces of unital derived quantities
linear homomorphisms frod to K’, denoted by sLiK,K"), o , o .
is also a semilinear space. A one-to-one and onto semilid1€ Purpose of this subsection is to develop a rigorous sheor

ear homomorphism between two semilinear spaces is calle@hProducts and quotients of unital quantities, neededrfer t
semilinear isomorphisnFrom now on we shall writé = K’ introduction of a great variety of derived quantities. kisat-
if spacesK andK’ are semilinear-isomorphic. ural extension of quantity calculus discussed above. We wil

We now turn to a list of useful elementary theorems char©llow a path that will not lose the reader in the underbrukh o

acterizing the ratio%, defined by the unique positive real complicated technicalities.

numbera satisfying the equatio® = o - Q, i.e., we have First we wish to draw a contrast k_)etween RTM's and our

Q-92.q approach to derived quantities. With the exception of so-
q called conjoint measurement, in RTM there has not been a

Theorem 1For allQ@,Q” ande, B > 0 the following char-  concerted and seriousfert to develop a systematic qualita-

acterizations hold for all unital quantities: tive structure-based setting for derived quantities — pebd
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and quotient quantities in particular. In RTM, this is not re (i) (Q®Q')®Q” =Qx(Q’'®Q").

garded as a serious problem, because once the representa(j@ Qe1=Q=180Q.

theorems ensure the existence of certain homomorphisms en-

coding the needed base quantities, it is a straightforwatd m Since the semilinear spakg of positive reals acts as a unit of
ter to define all derived guantities in terms of suitable nizme the tensor product operation, accordingly the foregoirmt"u

ical functions of base quantities. RTM does not consider iotation 1 forR, seems appropriate. Awkward as these tensor
necessary to analyze the structure of derived units anait doproducts are, they are all one-dimensional semilinearespac
not find it important to ask when is a metrological statemengenerated by a single elementary tensor quantity of the form
true about a derived quantity’s assumed value. (QeQ)®Q” or by its associative counterp@ (Q' ® Q).

Our algebraic approach to derived unital quantities pro- Given a generating collection of one-dimensional semi-
ceeds by defining the notion of their tensor product and that ¢éinear spaces of unital quantities, viewed at a conceptuall
a tensor quotient. These notions are then used to clarify afdgher level asbasic physical-geometriqquantity typesof
deepen the investigation of widely used notions of classicéengh, time, mass, and so forth, we can construct from these
mechanics, such as mean velocity, unital density, andikinetsemilinear spaces with the help of tensor products a large va
energy. riety of semilinear spaces of derived unital quantities.

We now define the concept of tensor product of two semi- Now we will apply the preceding abstract tensor product
linear spaces, which we have already hinted at above. It reenstruction to a single semilinear space of unital quiastit
guires a bit of conceptual preparation that may be omitteQ. First, note that in this case the tensor proddet@ with
without any significant loss of continuity. Q and@’ in Q is commutative. That is to say, for some

Given any pair of unital quantitieQ : 2 — R, and@ : we haveQeQ =Q®(e¢-Q) =(¢-Q®Q =Q Q. By way
2’ — R4, not necesssarily of the same kind (e.g., one havingf illustration, what this commutativity property says st
the type of length and the other that of mass), we define theirthe experimenter measures the base (width) of a rectan-

tensor producQ®Q’ by the composite of maps gle ininches and its height ircentimeters or the other way
around, then he or she will get the same unitized area value.
2x2 LY R, xR, — SR, Of course, the area uniich ® centimeter is geometrically

meaningful but admittedly not very common. The magnitude

i.e., we setReQ’1(q,q) =q¢; Q(q) - Q'(q’) for all stategyand  of the area remains the same independently of whéathkees
q. are converted intoentimeters or conversely.
Let Q®Q’ denote the smallest semilinear space over pos- Because symmetric (commutative) tensor products are ge-
itive reals, called aensor product semilinear spaceontain- nuinely useful in their own right, in the commutative case we
ing all of the above defined tensor product quantites@  shall use the notation@o Q' for Q@ Q" andQ ©Q instead
with Q € Q andQ’ € Q’. As the notion of a finitely generated of Q®Q. Since in Section 1 we have already reserved the
semilinear space reveals, the associative addition dperiat notationQ«@Q’ for the commutative and associative product
the tensor product space gives additively combined qiestit of quantities, we shall continue to use it also in place of the
of the form@, ® @ + Q2 ® @, with arbitrary finite iterations commutative tensor produ@’ ¢ Q of two quantities of the
and the scalar multiplication satisfies the following pndpe same kind. The only crucial fierence between the classical
2 [QeQ]=(0- Q2@ =Q®(a-Q) forall « > 0. Maxwellian approach and our approach to product quantities

By definition, the tensor product semilinear space of twds that the classical approach aims at axiomatizing the-prod
semilinear spaces consists of finitary sums of elementseof thict and we simply define it explictly, using the standard re-
form ¥ Q ®Q with @ € Q and@ € Q". sources of multilinear algebra. As a result, products ate no

However, because the tensor product of two onesommutative in general, although they stand in an isomerphi
dimensional semilinear spaces is again a one-dimensiortalationship.
semilinear space, any of thelementarytensor quantities  Next, note also that the point of the formal definition of
Q®Q generates the entire tensor product semilinear space. thre tensor product of the semilinear space of unital guestit
more detail, as seen in the chain of equalia® Q) +Q.®  with itself is to make the notions of such as area and vol-
Q,=Q10Q) +(a-Q1)®(B-Q) =(1+a-p)-Q10Q; =QeQ;, ume quantities formally precise. In more detail, unasta
addition of any pair of elementary tensor quantities autemaquantities are elements of the symmetric product semilinea
ically reduces to an elementary tensor quantity. spacel oL and unitalvolumequantities belong to the space

A common and useful way of obtaining more complicated ©(LoL) = (LoL)oL. Itis common to define theensorial
tensor product quantities is via finitary iterations of sina powerof a given semilinear spa€@ of quantities by iterating
products. However, this presents a slight technical prolaste  the tensor product of its copieQ®" =4t Q©Q®---©Q n
that instead of identities we only have the basic well-knowitimes. The direct sum of all of these tensorial powers defines
and easy-to-check natural semilinear isomorphisms, generthe so-calledensor algebr@* =1 Q @ Q2 # Qo -
izing the notions of commutativity and associativity: overQ, in which the semilinear space=} R, acts as the unit
of the tensor product. The conceptual role of a tensor atgebr
over the space of quantities of a given kind is to character-
() QeQ =Q’'®Q. ize all symmetric product quantities within a single algabr

Theorem 2
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framework. In the case of several spaces of base quantitiegjotients of the form%/, Where[%](a') =df % - W for all
the generated tensor algebra takes care of the algebraie fo@’ 20
dations for product-based quantity calculus. The product construction also provides the one-

At this point we have gone far enough to show how to condimensional semilinear spac® ® Q! defined by the
struct a large variety of product unital quantities. We nowensor product of one-dimensional linear spd@éandQ*l_
come to one of the most important one-dimensional semilinn particular, the following important equalities hold ihet
ear space constructions in the entire algebraic theoryitdlun tensor product spac@’ Q1
guantities.

Itis common knowledge that physicists useter persec-
ond (in symbolsm/s) as a typicaderived measurement unit Ol el iorel
for the unitized mean velocity quantity. So now the question(l) (@+QNeg=Qeg+Qeq.
we have to ask is: Is there a well-defined semilinear space qfi) a.Q'@ﬁ% - %.(Q’ @%).
unitized velocityquantities? The answer is in thiemative,

but first we have to make the idea concrete by introducing theyoof: These properties follow immediately from the defini-
fundamentally important notion of a quotient unital quenati  ions of product and quotient operations.

vital for the definition of a large variety of derived quaret Inverse semilinear space constructions readily extend to
A quotient unital quantityf quantityQ of type (kind)Q,  symmetric tensor powers. For example, in the case of the
written é is a semilinear map of the for% :Q — Ry, length quantity type we have? =q; L'l oL = (LoL)™?,
defined by the ratio formula and similarly for higher powers.
1 Q By now, the algebraic method of combining quantities us-
[5](62') =Q ing their products and quotients should be obvious.

As a rationality check, we now work through the details
for all @ € Q. Since the addition and scalar operations owf the notion ofunital mean velocitydefined earlier by the
quotient quantities are defined pointwise, we may as well sgtoductV =4t L® % where £ is a unital length quantity
Q' =1 {5 | @€ Q} for the semilinear space of all quotient and refers to the quotient of the unital time quantity!
unital quantities of typ@. Before moving on to the investigation of unital velocities,

There is an intimate connection between a semilinear spag pause to include a bit of a detour into the structure of uni-
of quantities and its corresponding semilinear space of quey| time quantities, underlying a broadly understood idéa o
tient quantities, given by the semilinear isomorphisms temporal change in physical systems.

0eQl=1=0'%Q Conceptually diverging answers to questions such as
’ “What is the time?” and “Will it take long?” immediately
stating that quotient quantities are two-sidedltiplicativein-  suggest that there are two basic approaches to the notion of
verses of quantities. physical time:

Based on the one-to-one correspondence between the set of i i i
conversion factors relative to quant@and the space of uni- 1) Thepoint-basecr synchroniapproach (we used earlier

tal quantitie®Q, it should be clear that each quotieéltestab- in discqssing variable Iength). that focuse; on the study
lishes a semilinear isomorphis@ = R, where(R.., +,-,1) of physical time based on the idea of tempanatances
is viewed as a semilinear space over itself. The function- intended to characterize the instantaneous occurrence

theoretic inverse of the quotierg is the map é)—l ‘R, of classical idealizegoint eventsn terms o.f tempo-
. 111 ral momentswhenthey occur at any place in a three-
Q specified by(5) (@) =a-Q.

h . . . dimensional Euclidean simultaneity space. Typical ex-
Before we can discuss the subtleties of quotient quanti- Y 5P yp

i 4 to show the followi iole ch terizati amples of such events include flipping a light switch,
c;?f],u\é)vt(iaezfs? 0 show the Tollowing simple characterization — .,jjision of two particles, triic light change, firing a

gun, abutment of the respective leftmost (rightmost) tips

Lemma 2

Lemma 1 1 11 of a target rod and a meter stick, and so forth.
2-Q = a : 5 20As may be expected by now, the inverse semilinear space cotistru
Q! automatically extends to the inverse of the associatedrlinethspace
. . . ~\-1
Proof: Suppose the characterization is false. Q"

51 . .
Q@ 1. .Q ’ ' _ . It cannot be emphasized strongly enough that in order to leetalger-
Then aQ # a Q for someq’ that has the forn@’ = B Q form any kind of classical measurement of many derived physjicahtities

for someg. Upon applying the clauses of Theorem 1 ande g, velocity, acceleration and energy), first we must ispecdesignated
a substitution we obtain the inequalig}g + B.a_8 and Newtonian space-timeoordinate systerthat fixes the simultaneous spatial

. . B e v location of the target system, measuring instrument, and erpeter, with-
therefore the inequalitg-Q # % -@-Q = 8- Q, which is a out significantly &ecting the measurement operations. Of course, there is no
contradiction and the proof is finished. privileged coordinate frame and the experimenter can séledrie that best

In anticipation of more general results, we note thasuits his or her measurement needs. Also, remember that expenssit-

; ; : ; . uated in dfferent coordinate frames will generally observe the targetesy
the quotient construction can be combined with any flrmein different shapes, sizes and states of motion. For example, siocéyef

dimensional real linear spaWé of vector quantities. FOr ex- 4 moving particle has fierent values in dierent frames, so will its kinetic
ample, we have the real linear spate Q1 consisting of energy and all the other velocity-dependent quantities.
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(i) The interval-basedor diachronic approach that treats temporal translation that uniquely translates the firsérint
time in terms ofdurations(i.e., finitary non-zero lapses val into the second interval. Since temporal congruence is
of time) of variousinterval eventshappenings or spatial compatible with the ordinary composition of future-orieat
processesconfined to a finite bounded region of clas-temporal intervals (the addition of equivalence classewof
sical space. Often-discussed examples are earthquakisie intervals is given by the equivalence class of addition
solar or lunar eclipses, falling bodies, the cyclic behavef their representatives), it is straightforward to justihat
iors of pendulums, quartz crystals, cesium atomic clocksnder the strict totashorter thantemporal order relatiork
and stopwatches. and the compositior of two time intervals modulo tempo-

_ _ ral congruence, temporal intervals form a complete ordered
These temporal ontologies are usually crafted in a mutsemigroup.

ally reductionist manner, so that durations can be viewed as sg now a unital time quantity can be conceived as a com-
finitary closed convex continuum-type subsets of the spce glete ordered semigroup isomorphism of the fofm.7, —
instants (withbona fideinitial and terminal boundaries) and R., whereZ, serves as the space of temporal durations that
conversely, instants are thought of as constitutive elésnenphysical events instantiate.

of durations. Since clocks usually indicate time instamis & So as to suit the intended interpretation of unital time guan
measure temporal durations, we shall integrate these two aflies, we now recall the basic measurement unit of time. As
proaches within a single classical one-dimensional cetnt well known (see, e.g., page 19 i), in Sl the standard unit

affine Euclidean framework. of time is 1second and it is defined as follows:
Specifically, we will introduce a neo-Newtonian one-

dimensional orientedfine spac& comprising time instants The time quantity7” is unitizedby 1 second pro-

together with a structuring one-dimensional real linearcgp vided that the time intervatsec =4t 7+(1), mod-

Z of (closed) time intervals, future-oriented by its semilin ulo temporal congruence, is equal to ttheration

ear subspace (positive half-lingj, of positive(i.e., future- of a cesium (Cs 133) atom (at rest and at tempera-

oriented) time interval$? ture 0 Kelvin in the ground state) to perform exactly

Just as the classical length quantity is instantiated by rig 9,192,631,770 complete microwave oscillations.
rods and other linear length-bearing physical bodies,ithe t
quantity is realized by time-instantiating events. Thatois  Here as elsewhere, we use the upper case boldface letter
say, by physical events thandureand thus arégemporally T to denote the semilinear space of all unitized time quanti-
localizablein terms of passage of elapsed time. Accordinglyties. Of course, this semilinear space is isomorphic, tout

events also fall into a basic twofold taxonomy: not naturally isomorphic, and therefore is without empn'fic
significance.

(i) Instantaneous point eventsThese events are tempo- We are now ready to say formally what is meant by the
rally localized at single time points. This is what weunitized time of a physical event. The lapsed time (dura-
encounter when someone asks: exaathendid point tion) of the interval evene of interest, e.g., last year’s lu-
evente (e.g., an explosition) occur? nar eclipse, measured in seconds, is given by the equation

. . Time (€) = 7 (1), where7 is thesecond-unitized time quan-

(ii) Interval events:These events are characterizeddw iy and+ encodes the lapse of physical time during which the
rations i.e., they are temporally localized by posmvetarget evene actually endures.
temporal intervals (time periods). In ordinary discourse, \with the definition of time quantity in hand, we now return
aninterval event(e.g., a lunar eclipse or the cyclic be-(q the notion of unital mean velocity. As has become clear,

havior of a pendulum) is an objective physical hapy e need states to get numerical magnitudes. Armed with the
pening in space-time (presumed to be independent gfiation for states, we can now write
the experimenter’'s designated Galilean inertial coordi-

nate frame), having a finite non-zero continuum dura-
tion, during which some participating physical objects
or fields change their quantitative attributes.

Lo 2(s7) = L(s)—(T) = £(s) = = £
Vis.n) = [Le Zs.n) = LSy = L) 7 = 73

. . T
By analogy between line segments and temporal intervalghe last clause in Theorem 1, in whigh is assumed to be

two time intervals are temporallgongruentwhen there is a unitized byr, i.e., we haver;(7) = 1.

21t is well to emphasize that we are not identifying the selécteathe- We cannot conclude this subsection without mem,lomng the
matical structure of time with the objective physical time itparts to model Nature of truth makers of .Stat.ements about yelocny Valyes-
and we are not assuming here that these two are “isomorphiciyinseful ~ When we say that the straightline mean velocity of a projec-
sense. To keep things simple, we regard physical space-tirsenasthing  tjle in a given Galilean coordinate frame is ffeters in 3

that exists in its own right and with its own manner, and is evetbwith cer- . . . .
tain physical-geometric structures that classical neotbieian models are seconds, what we mean is that (i) the projectile traverses a

able to capture to an acceptable degree of adequacy. We miegically ~ SPatial interval of 15neters, and (i) the projectile’s journey
committed only to space-time structures that are minimally reqiin char-  lasts for the time interval of 8econds. Thus, metrological

acterizing quantities in the context of kinematics and dycsnf classical propositions about the mean velocity of a moving object in-
bodies, particles and fields. volve two kinds of truth-makersspatialandtemporal The

where the equality% = 7z s a substitutional instance of

119



MEASUREMENT SCIENCE REVIEW]S6, (2016), No. 3, 103-126

first kind instantiates the object’s traversed spatialrirde  ment. From the standpoint of our algebraic framework, omis-
and the second underwrites the object’s temporal mode of egion of discrete-valued pointer quantities, describirgyttea-
istence during motion and thereby instantiates the timar-int suremenuncertainty-laderand thequantizing(discretizing)
val spent during its journey. character of measuring systems, is the single greatestitech
It is easy to see that reasoning similar to our analysis afal weakness in RTM'’s analysis of measurement operations.
velocity readily generalizes also to other derived quesdtit  The classical Maxwellian account of measurement of
that rely on product and quotient operations. quantities also adopts the model equation approach. How-
Having established the basic properties of derived unitalver, just like RTM, it too is not specifically concerned with
guantities, we now turn to a brief discussion of their measur measurement uncertainty and therefore statistical aesys

ment. measurement play no role.
While it is true that a more encompassing description of
3. MEASUREMENT FROM A QUANTIZATION PERSPECTIVE measuring instruments is fundamental in explicit physieal

scriptions of the dynamics of measurement, in algebraic and
n§tatistical theories of measurement it is highfjeetive and
perfectly sificient to bring into play only the states and quan-

The principal purpose of classical deterministic measergm
operations is to determine the values of one or several gual

ties of interest, usually referred to as the target systemea- ' . :
surands tities of measured and measuring systems.

In classical physics, a measurement process is common Although currently there is no single precise account of

represented in terms ofteractionbetween the measured sys-t e structure and behavior of chains and networks of mea-

tem realizing the measurand’s values and an analog meast lr)ér 'g%i?f:s?hsé ];EO): ?e\’své?:ncé?sjn?;:?gﬁfu;sn;ﬂir;si':lejﬂéonqs
ing instrument (built for the measurand) in a controlled sur P y

rounding environment. During the interaction the states O(Flcronymed GUM) in 1] recommends to analyze measure-

these two systems evolve jointly, characterized by therdetement processes and accompanying measurement uncertain-

ministic dynamical laws of motion of the coupleglstem + ties, realized by measuring systems, in terms of serialfy co

instrument. At the end of the interaction the measuring ap_nected functional components, generally including sesjsor

paratus is found in a final state in which the systemésasur- transducerg, .am.pllflers, mgdulators, transmission umti; a
andand the instrument’s so-callginter or indicator quan- analog-to-digital interface display modules togetheliér-

tity become strongly correlated. After the interaction,ame tmEg: Egoé So?urr(;eintat'on e simplify the above-mentioned
surement of the quantity of interest is achieved only when S pres lon, we simplify v !

the position of the coupled instrument's pointer or digtis- series of functional elements into a cascade pair of two majo

play has been observed and recorded, giving the experimenkénds of physical components together with their character

a suficiently accurate numerical information about the meaZ "9 quantities: (i) a broadly understood physicaitrument

sured quantity’s extant valifé, thlat mayll_nflufdetg sensor,lcondltloner, amfllger, a_nbd |(tj»d;53|
It is important to note in the present context that RTME 'ONGET1IST OT OIhEr Signal processing UNIS describe by

makes no reference at all to the physical details of the me%goprlate continuous influence quantities, and (il in-

sured and measuring system, their interaction, and agedcia icator, d!s,zalay Qev_me or o.ther.a.malopg-tc.:-d|g|tal/ 0 con-
measurement uncertainties. It models measurement in su\é%rtor unit: T.h's kind of S|mpl|f|ed. blpart|tg co'nc;eptuahza-
a way that most of the detail of the measuring instrument i%cm of measuring systems and their operation is illustréte
ignored and only the target system’s to-be-measured cj'blantit @ block d'agram in Figure 2 below.

able attribute is considered. And the same goes for derivedAS the bloclf d""?gram above shpws, measu_rértdgethef
measurement. If for some reason a measugiginot mea- with a perturbing influence quanti®; are the instrument’s

sured directly but is known to be empirically related to mthe'npmsf wh|.IeQ Is the mstrument_s intermediary outpu.t quan-
quantities, sayQy, @z, -- ,@n, then its values may be handled tity. Since instruments are physical systems and theirtijuan

with the help of a so-callethodel equation ties live in a c_ontmuous realm, trad|t|on_al dynamical _eylsﬂ;
theory and signal theory are well-equipped to provide ade-

Q=M(Q1,Q2, - ,Qn), guate characterizations of their structure and behavior.

in which themodel functionM is a multinomial function on
the real line, representing the pres_umed_ empirical r_e_iahqn Q Q
between the measurand and the listed input quantities.

In RTM, these quantities are not accompanied with any Q ' Q@ _ Q
probability density functions, known to be crucial for en- instrument A/D indicator
coding and evaluating statistical uncertainties of measur

Z3In deterministic settings, classical physics assumes thajuaintities Fig. 2. A simplified schematization of measurement.
have definite values at all times whether measured or not, aiddéally ” — ] o o
any value under consideration can be determined by measurevitieiairbi- Decomposition of a measuring system intaiftstrumentandindicator
trarily high accuracy without significantlyfi@cting the target system’s extant components does not come out of thin air. It facilitates a atusathematical
state. distinction between continuous and discrete-valued Ligitantities.
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Some measurement theorists (e.§j2]] seem to work un- to some of the leading adherents of quantization theory, (see
der the standing assumption that dynamical models of instre.g., [L9]) thatquantizationoperations and (noiseless) single-
ments and statistics are fullyf§igient for a complete account case deterministianeasurement procedurgserformed by
of measurement processes. Our approach to measurementdigital measuring instruments and by simple analog devices
erations deviates from the approach alluded to above in tware structurally indistinguishable. Unfortunately, theplica-
ways: (i) we treat measurement operations from a strictliions of the engineers’ quantization program for the founda
deterministic perspective, and (i) in evaluating undettas tions of measurement have not been properly explored. This
(errors) we confine our attention to th¢DAconversion and subsection will be devoted to showing how quantization may
guantization aspects of measurement. In this setting,runcde used to clarify and deepen our theoretical understamding
tainty is encoded by a round¥eerror, and this is how far de- simple deterministic measurement procedures.
terministic quantity calculus can go without including pro For purposes of illustration here and subsequently we shall
ability density functions and defining quantities in ternis oconsider two simple examples. Suppose we have a well-
unitized random variables on measurable state spaces.  calibrated digital ammeter that reads the measurement out-

Recall that reading measurement outcomes relies on beingmes to two decimal places. It is intuitively plausible to
able to sharply discriminate among the elements of a finite @ssume that the ammeter comes wittederministic uncer-
countable collection of pointer values on the indicatorals.  tainty (quantization level) o = 0.01 amps. Thus, if the
In Figure 2, this idea is modeled by th¢lAconvertor that re- ammeter shows a single digital reading of, sag72amps,
ceives the intermediary continuous unital quan@yjointly  then the proper way of reporting the electric current’s aktu
with a convertor error quantit@, and outputs a quantized value in the target circuit is to state that it is in the inter-

pointer quantityQ . The measuring system’s characterizingval [2.6652.675). As hinted above, this kind of determinis-
model equations a@ = M(Q, Q1) andQ = M(Q,Q) tic measurement uncertainty result fits perfectly well vtita
These equations are éxtremely general and theutput of a so-called uniform mid-tred quantizer appliecto

measurement-theoretic content is not always clear. 1%0\?\5'”;10“3 Input gsaﬁtlﬁﬁ istical heth di
cover a wide range of measurement applications, GUM rec- e hasten to add that statistical approachete reading-

ommends to view quantities as real-valued random variablégaleI error dlagnos% "; copsu:]erabtl)y more ;efmed. an-
accompanied with suitable probability density functicensd cretely, it Is assumed that in the absence of any extra in-

urges to use Bayesian inference methods in assessing m g16at|§r;7tge c_uhrrentslvalus ;)s_l_dlstnbutzddmb the mf[férva
surement uncertainties. Because deterministic measateme&™ 52.675) with equal probability, encoded by a uniform

operations occupy a place of special importance in cldssic ectangular) probability density functiopdf). Therefore,

physics and have an impressively wide scope, here we focHEd,gr aTé/pe Iﬁevalgatllon the so—.cailé?tanfdard uncertamty_
only on deterministic measurement operations, obtained tributed to the noiseless quantizeteet of measurement, is

setting GUM's Bayesian probabilities to O or 1. nown to be giv_e_n by the half of the width (i.e.DOSamps)_
Although many real-world measuring systems operate in the interval divided byv3, so that the standard uncertainty

complex ways, interestingly, often even very simple modéeP equal to 0003amps. .
equations, such as the linear equati@n= Q + Q1, provide It is customary to express this result formally &%) =
particularly good results. It is a remarkable fact that for .67+ 0.003, whereZ. denotes the unitized electric current
large collection of single-case static deterministic meas pointer quantity of measuranf], measured in circuit andi
ment procedures the conceptual issues can be overcomerbfers to the pointer state instantiated by the ammeter.
adopting a surprisingly simple measurement model that di- Clearly, the statistical analysis of measurement uncer-
rectly links the system'’s states to th¢DAindicator’s pointer tainty is significantly more reasonable than the deterrtinis
states. method. However, uncertainty is also a matter of ‘scientific

This makes good sense when tlieet of the instrument’s rationality’ that fits the intended application. In many mea
influence quantityQ; is negligible relative the A conver- surement situations the issue is not using the “best availab
tor's error quantity@,. In these measurement situations wemodel” of unertainty but employing a simple model that is
may assume&’ = Q and analyze the measurement procesgood enough for the practical case in quesfibn.
entirely in the framework of analog-to-digital conversids % — , _ ,

. . . L In general, deterministic uncertainty present in a single smeanent

we shall see, '_n this Ce_lse the model _functMﬁ IS given by performed by a single digital or analog instrument is givenh®/4-half of
a so-called uniform mid-tread quantizer formula. Next, Wehe least countof the measuring instrument. Naturally, measurement spe-

move on to make these ideas concrete, using the simplest @jalists are interested in uncertainties that are casefallored to the unital
amples of measurement we can f/%d. guantities t'ht_ay measure. 'For examplg, if unital distance weitized and .
measured ifight-years or in parsec units, then the assessment of associ-
ated measurement uncertaintyrireters would be a poor choice. At the
3.1. Quantization models of measurement operations other extreme, if unital length were unitized and measuretiédtgstrom
. . L unit, then the evaluation of measurement uncertaintynitlimeters would
Quantization and direct deterministic mea§urement procgz completely absurd.
dures are closely related. For some time it has been clearthis kind of rationality issue becomes even more telling whee -
flects on the ranges of application of Newtonian versus spacid general
relativistic mechanics.

25If the influence quantit®; is not negligible, then the uniform mid-tread
guantizer operator acts on the sdm Q.
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For the second example, suppose we measure the lengtiUniform partitions discussed above can easily be turned
of a straight rigid rod with a well-calibrated meter stick oninto a very familiar notion, namely a correspondimglis-
which the smallest uniform reading scale divisions aremjivecernibility equivalence relation, defined by the biconditional
by thin uniform marks Imillimeter apart. That is to say, the
least count of the analog meter stick isnllimeter (i.e., us- d=0" < 0.q" € [dn,qn+1) for some natural number> 1
ing the earlier introduced notation we have 0.001meters). , . ) )

Now, if the measurer reads the rod’s length to be closest, s&f 9-9° < du for all statesg andq’ in 2. We are introducing

to the 1678" millimeter mark in a single measurement un_|nd|_s<:ern|b|I|_ty relations in order tq make precise thergra

der specified temperature and other relevant influenceractotl@rity of pointer states of measuring systems. Concretely
then the actual value of the rod's lengthiimeters must e define the measuring system’s state space to be the quo-
be somewhere in the numerical intervalgZ7.5,1,6785). In tient space2,= of 2, modulo measurement indiscernibility,

the same manner as above, deterministic length measuremERSISting of equivalence classeg of system states that the

can be interpreted as a rounf-type quantization operation measuring system treats msliscerniblefrom q. These in-
(with quantization level illimeter) that transforms aontin- ~ Strument states encapsulate all information that is nacgss

uousunital length quantity into discrete-valuedinital length ~ 2nd stficient for determining the pointer quantity's values.
pointer quantity. Importantly, the induced projection mﬁp: 2 —> 9=, de-
This approach works well in classical mechanics and rdin®d byTl(a) =4 [a] for all q, directly links the measured
lated applications. The chief alternative to deterministi-  SYSEM'S states to the measuring system’s states and esptur
ror evaluation is a statistical model that uses a triangudr (€ crucial system-to-instrument causal dependenceaedat
over the numerical interval [677.5,1,6785). Here the idea SNIP- . , ,
is that the measurand’s most probable value is given by the Articulation of transition from a measuring system with
interval’s midpoint and the values away from the midpoint ifiner-grained pointer states to that with coarser-grained
both directions are proportionately less likely. pom'Fer states is h_andled by the ordt_ar|r_19 of |_nc_J|_scerm}b|I|
So, concisely put, under Bype Bevaluation the so-called relfitlc_)ns. _Interestlngly enough, the |nd|scern|b|lltyatmn_
standard uncertainty attributed to the quantizedffect of = is fmer_(l.e., e.nco<_jes less or equa_l .amount of uncertainty)
measurement by a meter stick, is well known to be spedhan relation=" justin case the condition
ified by the half of the width (i.e., .0005 meters) of the o, o
interval divided by V6, so that the standard uncertainty is =9 = 9=49
equal to 00002meters. It is customary to express this re- ,14s for all system stategandq’.

sult as L.(s) = 1.678+0.0002, whereL, denotes the length  For reasons of space, we cannot provide a detailed justifi-
pointer quantity of rod: unitized by 1meter, ands refers cation of why we use indiscernibility equivalence relation
to the pointer state instatiated by the meter stick. Jusbas ijn modeling deterministic measurement operations. Very
the preceding example, in many practical applications a dériefly, we use them with an eye on the fact that measuring
terministic framework is fully stiicient for the assessment of systems come with a built-in deterministic uncertaintyesp
uncertainty. ified in part by limited accuracy, resolution and other perfo
Now is a good time to return to the notion of state thaimance or design factors).
we introduced earlier as a truth maker for metrologicakstat  This means that measuring systems are not able to distin-
ments. To get clear on the truth or falsehood of statemengiiish between two target system states that are topoltgical
about pointer quantity values, we need a legitimate notfon @lose to each other, and this is formally accommodated by
apointer statginstantiated by measuring systems. We introthe notion uniform equivalence relation on stat®keep in
duce this concept formally and examine its properties inesommind, however, that the qualitative notion of indiscerfiipi
detail. of states would not be very useful if it were posited without
For purposes of direct deterministic measurement, we finghe existence of an empirically meaningful numerical repre
it natural and adequate to define the measuring systenggntation. Fortunately, one of the hallmarks of any uniform
pointer states as suitabtmarse-grainedstates of the mea- indiscernibility relation (characterizing thegproximatechar-
sured system. We have seen in Section 2 that the measuegfler of deterministic measurement) is its one-to-oneeeorr

system’s state space for measurdhthay be specified by a spondence with a numerical uncertainty 0, as shown in
complete ordered semigro, <, ).

To formalize the notion of state space ofa measuring Sys-zalt should be notgd that we use partitions of state_s made upliebpan

. . intervals because without them we do not have a satisfactorgeptual tool
tem designed to measure the unital quardity2 — R, of for handling ordered partitions. The distinguishing feataf partitions we
interest, we use an interval-based ordered uniform pamtiti  require is the uniformity of their cells. An interval-baseattion isuniform

provided that the partial subtractions,1 — qn, specified by the boundary
(0,01) < [01,02) < [02,03) < - states of all half-open intervalsif, qn.1), are the same and equal {o q;.
. The sameness of subtraction states ensures the partitlsrucgiormity.

of the target system'’s state spac2, <, *) that characterizes  29gee ] for a detailed discussion of discretization and additiaede-
the measuringsystem’sindiscernibility of the measuredsys-  rences.
tem’s topologically proximal states.
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the diagram of partitions below: Using the length measurement example again, recall that
the states of length bearing objects are encoded by line seg-

0’ b b - .
0q) < fava) < la209) < ments modulo spatial congruence, and the pointer states of

Q- the meter stick are captured by the equivalence classes of
lengthwise-proximal line segments that, relative to thareh
(0, %8) < [%8’ %8) < [%8’ %8) < e acterizing least count (grain size) or quantization leyehe

meter stick instatiates or “reads” as if they were the same. |
Suppose the measuring instrument’s indiscernibilitytiete.  this way, if the least count of the meter stick werenillime-
on the measured system’s state spat€in the context of ter and if two rigid rods were instatiating two line segments
measuring) is given by the ordered uniform partition, pre- that difer lengthwise less than (say)nicrometer, then the
sented by the chain of half-open intervals, as depicteden thmeasuring meter stick would not be able to tell them apart.

first row of the diagram above. We can represent this uniform Now the crucial step for our purposes is the introduction of
indiscernibility relation numerically by setting=2Q(q1) and  thepointer quantity

Q(gn+1) —Q(gn) = £ < L for alln> 1, whereg is thought of as
the measuring system’s deterministic uncertainty (quanti Q.
tion level), inextricably tied to the measurementdfit is im- 2z ———¢N
portant to note that in the background of measuring quanti
Q, the size of quantitative uncertaingyis determined by the
granularity of the instrument’s indiscernibility relatics.3°

By focusing on quantitative indiscernibility levetsve can
accommodate any uniform partition of the measured system’s ke, if (k=2)e<Q(q) < (k+2)e with k> 1;
state space that encodes the coarse-grained reading $cale &2([d]) = o ifa 2 2
the measuring system. Of course, partitions that fail totmee > T Q@) <ze

the uniformity requirement are not part of this model. Ingra Recall that the pointer quantity’s value spae&l =qi

tice, it is natural and obvious to use measuring instrumen{g €,2¢,3¢,--) consists of natural number multiples of the
with indiscernibi!ity levels that are quite small relatite@the quantization level (least significant bit)0s < 1, interpreted
measurand’s unit. o L as the instrument’s deterministic uncertainty. We know tha

So how does thguantitativeindiscernibility levele ac-  \when a skillful measurer wishes to measure a rod’s length
count for the instrument's reading scale? It does so by spegjih a meter stick to the nearest millimeter, he or she typi-
ifying an equivalence relatior.. on the set of positive reals, ¢y rounds @ the displayed value on the meter's scale to
symbolized by the chain of half-open numerical intervals ine ¢losest millimeter mark. Thus, the rod’s actual lengith w
the second row of the preceding diagram. Tritgscernibility o f by a small amount, not exceediég millimeters.

equivalence relatiors, on the numerical ordered semigroup s yseful to bear in mind that the numerical counterpart of

ﬁ;:&;@?};ﬁ'ﬁ?ﬂ%&ﬂyes can also be defined by the keme{%ointer quantity@, is the earlier introducecbund-gf func-

tion R, : R, — &N. Now that we have a good understanding
a=, = Rq(a)=R.(8) of the notion of a measurand’s pointer quantity, we can-llus
_ trate its relationship to the measurand geometrically ley th
forall .8 € R,. Here the so-callecound-gf functionR. :  geterministic error diagram shown in Figure 3 below.
Ry — eN with &N =41 {0,8,2¢,3¢,---} is given by In Figure 3, measuran@ is represented by the diagonal in
the positive quadrant of the Cartesian plane and the déscret

valued pointer quantit@, is its nonlinear measurement ap-

1 proximation, having the geometric form of a staircase. The

for all natural number& > 1 andR.(a) = 0 for all @ < 3¢,  ghaded area aroundirepresents thel - & deterministic quan-

i.e., R;1(0) =[0,%). Itis easy to see that the rount:0 tization error range of measurement,

function always rounds up at thetep edgesi.e., we have  Here we have run quickly past a number of uncertainties

Re((k+3)e) = (k+1)e. that would have to be addressed in a longer account. For
As illustrated in the preceding diagram of aligned pal’ti-examp|e, we have not considered (|) Myﬁet error which

tions, there is an obvious isomorphig@y : 2= — R, /=, s constant accross the input range@f(ii) the measuring

between the instrument's state space and the quotient spag@tem’s nois€, generated within the instrument, and (iii)

of reals, modulo equivalence relation.. Simply, we set thenonlinearity errorcaused by the imperfections of th¢DA

Q/=([a]) =4t [Q(0)],. for all statesy, where ], denotes the convertor.

s-equivalence class of positive realsin -, . All of these and other uncertaintiesfect the total mea-
30perhaps the most important relationship to notice here is tieeway Suremen_t unc_ertamty in the form of percentages and make

implicationq = ¢ = 1Q(q) - Q(@)| < &. We should keep in mind the the relationship between the measurand’s values and that of

transitivity property of= that the absolute value-based indistinguishabilityits pointer quantity considerably more involved.
relation fails to possess.

tQs(ssociated with measurar@. This notion is firmly en-
trenched in the everyday practice of measurement and we de-
fine it as follows:

Ro(@) =gt ke = ae|(k- %)-a, (k+ %).5)
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We can shed more light on what is going on here by not-
eN ing that the pointer quantity value spa@eN,<,+) and the
spaceR,/=,,< +) of equivalence classes induced by are
both countable ordered semigroups. Moreover, the measur-
Qs ing instrument’s state spage?;=,<,+) is also a countable
ordered semigroup. Regarding its structure, the totalrorde
< is obvious and the addition operation is defined2
with the help of the midpoint operation. Specifically, the
addition of two intervals is given by the interval deterndne
by the sum of their midpoints. For example, the left end-
point of the sum ¢, gn+1) + [dm,dm+1) iS given by the state
QY[Q(an | Gn+1 + Gm | dme1) — 3€]. The right endpopint is
specified in a similar way. Because all three ordered semi-
groups are isomorphic to the ordered semigréip<,+) of
R, =2 natural numbers, they are also pairwise isomophic. As a
% % Le result, we obtain a simple discrete algebraic framework in
which the AD convertor measurement error-laden outputs
Fig. 3. The shaded uncertainty (error) zone of measu@niblased ~can be &ectively studied®!
on reading the values of pointer quaniy. The question now arises whether the system-to-instrument
projection mapIl : 2 — 2=, modeling a deterministic
The following commutative diagram highlights the basiomeasurement a®, is a homomorphism in any useful sense.
relationships between quantities and rourfiireaps we have Here our aim is to characterize a passage from the universe

g
N

£
2

discussed so far. of continuous states and quantities to that of discretetgoin
Q states and quantities. In giving a rigorous account of this
2 R, conceptual shift from more structure to less structure we ca
properly understand the loss of information about quantity
. 1, Re values due to measurement.

Clearly, upon passing to pointer states, we have to surren-
der our earlier commitment to strict ordering relations and
R switch to weak orderings. As a tradBounder this some-
+/=¢ ; eN . . L
Q- R what impoverished order structure the projection map re-
) ) _ o _mains monotone. That is to say, the monotonicity condition

Note that in the diagram the pointer quantity is given in
terms of composition of two mappingQ, = R, oQ), where a<q =[q] <[q]

?{g([a]g) = R.() for all positive realsy. The square in the
diagram encodes the equali®=([q]) = I1.(Q(q)) for all q.

9=

holds for all stateg andq’ in 2, where, as before, we set

. 11(q) = [q].
And the triangle captures the equaliiy.(e) = Re([a]) for In like manner, one might wonder about the projection
all a. _ _ - map’s conservation of addition. Length measurement in car-
The third commutative condition pentry provides a useful illustration. We are well aware tha

Q-([ 1) = Ro(@i(Q)) when carpenterg build.wooden struct_ures from various piece
iia (&1 of boards byaddingtheir measured widths, they tend to treat
in the diagram plays a crucial semantic role in specifyirgy thwidth-measurement errors as negligible. But of course we
truth conditions of measurement statements about thegroin®lso know that carpenters typically measure the width of a
guantity’s value, obtained by measuring the value of measupoard with some nonzero uncertainty. Apparently, the car-
andQ, instatiated by the target objeictThe idea is to transfer Penters’ error-laden measurement practices in addinglboar
the measurand’s truth conditions to that of its pointer ¢jian  d0 not significantly &ect the quality of their work so long as
with the help of the instrument’s rounfidunction. there are only few boards to add accompanied with small er-

In light of the above discussion of ordered partitions andors, so that the total sum of uncertainties does not exdeed t
indiscernibility relations, it is important to stress thaview limit allowed by the construction. So the problem posed by
of the uniformity of interval-based partitions, each haffen the conservation of addition in measurement can be resolved
interval [gn, gn+1) Uniquely determines and is uniquely deter-Py considering gpartial semigroup addition of instantiated
mined by the interval’s midpoint state definequ One1 =df sta_tes that_ i_s defined only on the subset of the state space in
%(qn+qn+1). commonly representing the “expected” state. mNhlch addition does not exceed the allowed threshold of un-
particular, it is easy to see that the midpoint of the comesp ~ Certainty.

: o 1 1y, i 1
ing numerical interval(n - 3)e,(n+ 3)e) is (- 3)e | (n+ 31see B] and references therein for more detail on uncertainty irmet
:_ZL)S = ne. ministic systems.
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In formal terms, the additivity lawd+q’] = [q] +[q'] gov- (a) Weak monotonicity:
erning the instrument states generally fails and therefore

does the additive property of the composite n@po IT : qg<q = Q([q])SQ([q'])
2 — ¢N. To appreciate the problem, note that in the case

of addingb + b’ two boardsb andb’, the width discrepancy (b) Partial additivity:

between them is relatively small, given by the error bound

Qo+ 19+ 0]~ Qu([a]) - Qv ([])| < & Qa+aD=Q(a)+Q(d])

Unfortunately, the fiect of adding more boards leads to po—In the light of these propgrnes we see that the rela_t!o Sl
. . . tween the world of continuous states and quantities and that
tentially larger errors. Concretely, if we consider threens ) . . e
. . [ +q" of the associated discrete pointer states and quantitrebeca
mands as in the pointer state{q’ + "], then the error bound described by mappings that preserve the pertinent stestur
jumps to 2, and so forth. To simplify our notation, we write Yy mapping b P

_ ) _ : o only weakly and partially. As we saw above, based on indis-
Q for the pointer quantity o, in which the subscript is  cemipility and uncertainties added by measurement, gharti
temporarily dropped.

) . structures supply the correct formal tools for investiggtihe

But why should we care about the conservation of additiogyer_present loss or incompleteness of information abiwit t
by the compositiorQ o 11 of the pointer quantity followed measurand’s extant values.
by the projection map? Because we know from Section 1 With these comments, we bring our present investigation
that the crucial prerequisite for handling the values otalni of guantities and their measurement to a close.
guantities instantiated by composite systems is the suireof t
respective states of their constituents. So from the st@ntip 4. CoNCLUDING REMARKS

of modeling measurement operations, we are betieina ) . . .
framework that includes addition. In this paper we developed a simple arfteetive algebraic

Despite the foregoing lack of semigroup addition, we Caltramework for quantity cglculus and superve'ning determin—.
significantly increase the flexibility of our approach toafet SUC Mmeasurement operations. The calculus is based on uni-
ministic measurement by consideringartial semigroup ad- tized quantities and accompanying state spaces that ynderl
dition operation of the formi: 2x .2 — 2 that is defined the truth conditions for metrological statements. In our in
only on a suitable subset of so-callesmmablepairs of states VEStigation of the structure of quantities we used lengte t
_ proximal to the partition intervals' midpoint states. hi electric current, and mean velocity as primordial examples

is the operation carpenters and engineers rely on when thEQr S|mpl|c_|tys sake and for reasons _of_space, we resticte
combine their measurement data additively. our analysis to the case of deterministic measurement pro-

Another good reason for employing a partial semigroup aoc_essesﬁ | dd d the alaebrai ,
dition in our measurement models is that with respect tsit th Ve a\(/je also addresse the algebraic nature of pointer
indiscernibility relation= is a partial congruence relation. states and pointer quantities characterizing measurstgin

Itturns out that the problem of summability of states can bE'€NtS: together with tightly connected measurement uncer-

handled by a stipulative definition of a commutative summat@inties. [nbridging the gap between what experimenters re

bility relation q | q’ on 2, stating that the statesandq’ are gard as theoretical and what they take to be as measurement-

summable To save space, we introduce the auxiliary notiorP@S€d: we discussed the formal relationships between mea-
of summability by the biconditional sured unital quantities and their associated pointer iest

There are vast areas of the subject of quantity calculus and
q]q = [q+d]1=[a]+[d] measurement uncertainty which remain unexplored, includ-
ing probabilistic and stochastic extensions, built oveame
for all statesy andq’. As we see, the scope of summability of syraple state spaces, random quantities and their pragabil

the measured system’s states is determined by the measuriighsity functions. We intend to take up these topics in the
system’s quantization level. We can now define the concept gkar future.

partial addition of states quite simply as followsf + g’ =4+
q+q’,if q[ o', and undefined otherwise.

Upon weakening the usual notion of additienon 2 to i )
a partial addition +, we can accommodate in a unified way [1] Batitsky, V., Domotor, Z. (2007). When good theories
the incompleteness or partialness of information provioked make bad predictionSynthesel57, 79-103.
measurement about measurands. In more detail, given a pal2] de Boer, J. (19945). On the history of quantity calculus
tial addition on the states of the measured system, the com- and the international systerMetrologia 31 (6), 405-
positeQ oIl :(2,<,4) — (eN, <, +) of the measurand’s 429.
pointer quantity and projection, mapping the measured sysk3] Domotor, Z. (2008). Structure and indeterminacy in dy-
tem’s states directly to the instrument’s quantized nucaéri namical systems. lindeterminacy: The Mapped, the
outputs, can now be viewed asv@ak partial semigroup ho- Navigable, and the UncharteMIT Press, 171-193.
momorphisnsatisfying the following conditions:
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