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Electrical capacitance tomography (ECT) is considered to be a competitive measurement method. The imaging objects in ECT 

measurements are often in a time-varying process, and exploiting the prior information related to the dynamic nature is important 

for reconstructing high-quality images. Different from existing reconstruction models, in this paper a new model that incorporates 

the spatial correlation of the pixels by introducing the radial basis function (RBF) method, the dynamic behaviors of a time-

varying imaging object, and the ECT measurement information is proposed to formulate the dynamic imaging problem. An 

objective functional that exploits the spatial correlation of the pixels, the combinational regularizer of the first-order total 

variation (FOTV) and the second-order total variation (SOTV), the multi-scale regularization, the spatial constraint, and the 

temporal correlation is proposed to convert the ECT imaging task into an optimization problem. A split Bregman iteration (SBI) 

method based iteration scheme is developed for solving the proposed objective functional. Numerical simulation results validate 

the superiority of the proposed reconstruction method on the improvement of the imaging quality. 

 
Keywords: Electrical capacitance tomography, dynamic imaging method, combinational total variation regularization, radial 

basis function method, spatial correlation property. 

 

 

1.  INTRODUCTION 

CT IS CONSIDERED to be a competitive industrial 

process tomography method, and has found numerous 

potential applications in various fields, including the 

parametric measurements in a multiphase flow system, the 

visualization measurement of the combustion flame 

distributions, etc. Over the past decades, the ECT method 

has been intensively studied, and a large number of 

advances on theoretical studies and experimental 

investigations have been achieved. 

The reconstruction of high-quality images is useful for the 

understanding of the underlying physical or chemical 

mechanisms of the dynamic behaviors of the measurement 

objects. Various algorithms, including static and dynamic 

imaging algorithms, were developed for the ECT imaging 

task. Typical static reconstruction algorithms include the 

linear back projection method [1], the standard Tikhonov 

regularization method [2], the Landweber iteration 

algorithm [3-5], the offline iteration and online 

reconstruction method [6], the algebraic reconstruction 

technique [7], the simultaneous iterative reconstruction 

technique [8], and other static imaging methods found in [9-

20]. Representative dynamic reconstruction algorithms 

include the particle filter method [21], the Kalman filter 

algorithm [22], the Ensemble Kalman filter method [23], 

and the four-dimensional imaging algorithm [24]. It should 

be emphasized that the low imaging quality is a critical 

bottleneck of restricting practical applications of the ECT 

measurement method, and the improvement of the imaging 

quality remains an everlasting concern.  

In this paper, we propose a new sequential dynamic 

reconstruction model that exploits dynamic behaviors and 

time consistency of a time-varying imaging object and 

spatial correlation of the pixels. Different from existing 

static and dynamic imaging models, the RBF method is 

introduced to investigate the spatial correlation of the pixels. 

A combinational regularizer of the FOTV and the SOTV is 

proposed to reconstruct the detailed information of the 

imaging objects, which is in contrast to available static and 

dynamic imaging methods. It is noticeable that the 

introduction of the high-order derivative allows exploiting 

the spatial correlation of the pixels at different 

dimensionalities. Additionally, unlike existing ECT imaging 

methods, a DWT based multi-scale regularizer is introduced 

to serve as a spatial regularizer. With the utilizations of the 

spatial correlation of the pixels, the combinational 

regularizer of the FOTV and the SOTV, the multi-scale 

regularization, the spatial constraint and the temporal 

correlation, an objective functional is proposed to convert 

the ECT imaging task into an optimization problem within 

the framework of the Tikhonov regularization method. A 

SBI method based iteration scheme is developed to search 

for the optimal solution of the proposed objective functional. 

The effectiveness and advantage of the proposed imaging 

algorithm are numerically validated.  

Along with the main motivations of the work, we organize 

the rest of this paper as follows. In Section 2, the RBF 

method is introduced, and a new sequential dynamic model 

with the consideration of the spatial correlation of the pixels 

is proposed. In Section 3, the DWT method and the 

combinational regularizer of the FOTV and the SOTV are 

introduced, and a new objective functional is proposed to 

convert the ECT image reconstruction task into an 

optimization problem. In Section 4, a SBI method based 

iteration scheme is developed to search for the optimal 

solution of the proposed objective functional. Section 5 

presents numerical results. Finally, we outline the main 

conclusions in Section 6. 
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2.  SEQUENTIAL DYNAMIC IMAGING MODEL 

Seeking an appropriate model to formulate the dynamic 

imaging problem is useful for practical ECT applications. In 

this section, common sequential dynamic imaging models 

and the RBF method are introduced, and a new dynamic 

imaging model with the exploitations of the spatial 

correlation of the pixels and the dynamic nature of a time-

varying imaging object is proposed. 

 

A.  Common sequential dynamic imaging model 

There are two categories of mathematical models for the 

representations of the ECT imaging problem, i.e., static 

imaging models and dynamic imaging models. Static 

imaging models had been intensively studied and found 

numerous applications. However, dynamic imaging models 

are advantageous on exploiting the dynamic behaviors of a 

time-varying object. In order to satisfy the practical 

requirements of dynamic measurements, in this paper we 

focus on the dynamic imaging model. With a motivation of 

integrating the dynamic behaviors and the ECT 

measurement information, the sequential dynamic imaging 

model can be formulated as: 
 

( , ) 0f τ τ

τ τ τ τ τ+ = +

=



G

S U r

v

G C
                       (1) 

 

where ( , ) 0f τ τ =G v  describes the dynamic behaviors, 

and it can be formulated as different equations according to 

different reconstruction objects; τ τ τ τ τ+ = +S G U C r  

represents a measurement equation; τS  is called the 

sensitivity matrix in ECT image reconstruction, and it is an 

m n×  matrix; τG  indicates the permittivity distributions, 

and it is described as an 1n×  vector; τC  represents the 

capacitance values, and it is an 1m×  vector; τr  is an 

1m×  vector indicating measurement noises; τU  represents 

an 1m×  vector indicating the model deviation; τv  depicts 

the inaccuracy of the dynamic behaviors and subscript τ  

denotes a discrete time index. For computational simplicity, 

we approximate ( , ) 0f τ τ =G v  into 1τ τ τ τ−= +G F G v . 

Consequentially, we can obtain the following sequential 

dynamic imaging model: 
 

1τ τ τ τ

τ τ τ τ τ

−= +
=


+ +S G U C r

G F G v
                        (2) 

 

B.  Image representation using the RBF method 

Exploiting the spatial correlation of the pixels may be 

useful for the improvement of the imaging quality. Equation 

(2) utilizes the time-varying behaviors of the imaging 

objects and the ECT measurement information. However, 

the exploitation of the correlation of the pixels is omitted. In 

this section, we employ the RBF method to describe the 

correlations of the pixels.  

According to the RBF method, a pixel value in a two-

dimensional image can be approximated as [25], [26]: 

 

1 1

( ) (|| ||) ( )
M M

j j j j

j j

z ϕ ϕ
= =

= − =∑ ∑x x x rα αα αα αα α           (3) 

 

where || ||j j−r = x x  and 
2 2( ) exp( / 2 )j jϕ σ−r = r ; M  

is the number of the neighborhood of x  and ( )jϕ r  can be 

predetermined according to a specific reconstruction object.  

Obviously, we can compute ( )z x  provided that variable 

jαααα  in (3) is solved. According to the RBF method, we can 

estimate variables jαααα  via the neighborhood pixel values, 

which can be formulated as: 

 

1,1 1, 1 1

,1 ,

M

M M M M M

     
     =     
         

L

M M M M M

L

ϕ ϕ αϕ ϕ αϕ ϕ αϕ ϕ α

ϕ ϕ αϕ ϕ αϕ ϕ αϕ ϕ α

z

z

             (4) 

 

For easy notation, we rewrite (4) as the following system 

of linear equations: 

 

=AB Z                                      (5) 

 

where 

1,1 1,

,1 ,

M

M M M

 
 

  

= 

L

M M M

L

A

ϕ ϕϕ ϕϕ ϕϕ ϕ

ϕ ϕϕ ϕϕ ϕϕ ϕ
, 1[ , , ]T

M= LB α αα αα αα α   

 

and 1, ,[ ]M

T= L zZ z . 

The solution of (5) can be formulated as: 

 
1−=B A Z                                   (6) 

 

According to (3), finally, the estimation of ( )z x  can be 

formulated as: 

 

1

1( ) [ (|| ||), , (|| ||)]Mz ϕ ϕ −= − −Lx x x Ax x Z            (7) 

 
For concise expression, (7) can be rewritten as a concise 

formula: 

 

( ) xz =x L Z                                   (8) 

 

where 
1

1
(|| ||), , (|| ||)][

Mx ϕ ϕ −
− −= LL x x x x A . 

 

Following the above discussions, we can conclude that one 

pixel can be locally represented by its neighborhood pixels. 

The introduction of the spatial correlations is a promising 

method for ensuring a high-quality imaging result. 
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C. New sequential dynamic imaging model 

Common static and dynamic imaging models fail to 

exploit the spatial correlation of the pixels. In this section, a 

new sequential dynamic imaging model is proposed to 

model the ECT imaging problem, and it can be specified as: 

 

1τ τ τ τ

τ τ τ τ τ

−= +

 + = +

S LG U C r

G F G v
                   (9) 

 

Equation (9) has two main distinctions. On one hand, the 

equation incorporates the dynamic behaviors of a time-

varying imaging object and the ECT measurement 

information. On the other hand, the equation exploits the 

spatial correlation of the pixels. 

 

3.  DESIGN OF OBJECTIVE FUNCTIONAL 

In this section, we introduce the DWT method and the 

combinational regularizer of the FOTV and the SOTV, and 

a new objective functional is proposed to convert (9) into an 

optimization problem within the framework of the Tikhonov 

regularization method. 

 

A.  Discrete wavelet transform 

The wavelet analysis is a particular representation method 

of signals [27]. Accordingly, a signal ( )f t  is considered to 

belong to the scaling space 0V  (i.e., 0( )f t V∈ ), and 

implementing the multiscale decomposition yields [28], [29]: 

 

0 1 1 1 2V V Vϖ ϖψ ψ ψ ψ= ⊕ = ⊕ ⊕ ⊕ ⊕L         (10) 

 

where jψ  represents the orthogonal complete place in the 

thj  scale and ϖ  stands for a given decomposition scale. 

We refer the readers to [27-29] for more details. 

Essentially, ECT images have two dimensions. In order to 

remove redundancy between pixels to improve the sparsity 

of the transform coefficients, a 2D DWT should be 

employed. Specifically, suppose an ECT image n n×Z  with a 

dimension of n n×  will be transformed, which can be 

rearranged as a vector 1N×M , and N n n= × . Finally, the 

DWT for an image can be formulated as [30-32]: 

 

=φ ψφ ψφ ψφ ψM                                  (11) 

 

where ψψψψ  is an equivalent 2D DWT transform matrix. 

 

B.  Combinational regularizer of the FOTV and the SOTV 

The TV is a popular regularizer [33], and for a 2D image 

u  it can be formulated into the following scheme: 

 

1 1 1TV( ) || || || || || ||x y= ∇ = +u u D u D u            (12) 

 

where xD  and yD  are the first-order difference operators. 

Equation (12) is a basic formula, which can be extended 

with different requirements, including the multiple 

neighborhoods discretization method [34], e.g., the eight 

weighted neighborhoods discretization, the sixteen weighted 

neighborhoods discretization, etc., and the combination of 

the derivatives with different orders [35]. 

Unlike the multiple neighborhoods discretization methods, 

the authors in [35] proposed the combinational regularizer 

of the FOTV and the SOTV, which can be formulated as: 

 

                      
2( )= TV( ) TV ( )φ α β+u u u                    (13) 

 

where α  and β  are the weighted values. Obviously, (13) 

is a common TV method when 1α =  and 0β = . For a 

2D image, (13) can be specified as: 

 

1 1

1 1 1 1

( )= (|| || || || )

(|| || || || || || || || )

x y

xx yy xy yx

φ α

β

+

+ + + +

u D u D u

D u D u D u D u
(14) 

 

where 
2

1 1 1 1
TV ( ) || || || || || || || ||

xx yy xy yx
= + + +u D u D u D u D u ; 

iD  and ijD  ( , { , }i j x y∈ ) stands for difference operators. 

 

C.  Objective functional 

Finally, we propose a new objective functional to model 

the ECT imaging problem, which can be formulated as: 

 

  

1 1

2

, 3

1

1

1 1

1 1

1 1

2

2

, ,

24
1 5

( )
2

(|| || || || )

(|| || || ||

(|| || || || )

1
|| || || ||

2

|| || | |

min || || || ||
2

)

n

c

j

x y

xx yy

xy yx

j jτ

τ τ τ τ

τ τ τ

τ τ τ

α

α
α

α

α

β

β

α
=

−

+ − +

+ − +

+ − +

+ +

+ +

+ +

 
 
 
 
 
  
 
 
 
 
 
 
  

∑

SLG U C U

G G W G

G G G

D u D u

D u D u

D u D u

ψψψψ    (15) 

 

where 0iα >  ( 1, 2, ,5i = L ), 0α >  and 0β >  are 

called the regularization parameters; ,c τG  represents the 

dynamic behaviors and can be solved in advance, and 

,

2|| ||
c ττ −G G integrates the dynamic evolution information 

into the ECT image reconstruction procedure; 

, ,1
( | |)

n

j jj τ τ=∑ W G  is served as a spatial constraint and 

, jτW  stands for a weighted value; 1|| ||τGψψψψ  represents a 

multi-scale regularizer; 
2|| ||τ τ τ+ −SLG U C measures the 

data fidelity and considers the spatial correlations of the 

pixels, and L  can be obtained via solving (8). 
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Equation (15) is consistent with the framework of the 

Tikhonov regularization method, and we can outline the 

appealing properties as follows. 

1)  The dynamic behaviors of a time-varying imaging 

object and the ECT measurement information are 

incorporated into the proposed objective functional. 

Moreover, the inaccurate properties of the reconstruction 

model and the measurement data are simultaneously 

highlighted, which is consistent with real-world applications 

since the inaccuracies of the input data are ubiquitous. 

2)  Unlike existing ECT imaging methods, including static 

and dynamic imaging algorithms, the spatial dependence of 

the pixels is exploited by the RBF method. 

3)  The combinational regularizer of the FOTV and the 

SOTV is introduced to the objective functional to serve as 

the spatial regularizer. The introduction of the high-order 

derivative will be beneficial for the exploitation of the 

spatial correlation of the pixels. 

4)  In contrast to available ECT imaging methods, a 2D 

DWT based multi-scale regularizer is incorporated into the 

objective functional. 

5)  The Tikhonov regularization method is employed to 

impose the prior constraints associated with the dynamic 

properties of a time-varying object and weaken the 

numerical instability derived from the ill-posedness of the 

ECT imaging problem. 

 

4.  SOLVING THE OBJECTIVE FUNCTIONAL 

In previous sections, we converted the ECT image 

reconstruction procedure into an optimization problem 

within the framework of the Tikhonov regularization 

method with the additive constraints related to the 

underlying imaging objects. In this section, a SBI method 

based iteration scheme is developed to solve (15). 

According to the computational strategy presented in [36-

42], (15) can be decoupled as: 

 

{ }1 1

1 21
min || || || ||

2

k k

τ τ τ τ τα+ + − += SLG U C UU   (16) 

 

2

,

3

1

1 1 1

1 1 1 1

1 2 2

24
1

, , 1

5

2

( )

(|| || || || )

(|| || || || || || || || )

1
|| || || ||

2

| | || ||min 2

|| ||

c

n

j

x y

xx yy xy yx

k

k
j j

ττ τ τ τ

τ τ τ ττ

τ τ τ

τ τ τ τ

α

α

α α

β

α

=

+

+
−

+ − + −

+ + −

+ + +

+ + + +

 
 
 
 

=  
 
 
 
 

∑

SLG U C G G

W G G G

G D G D G

D G D G D G D G

G

ψψψψ

 

(17) 

 
Theoretically, the direct computation of (17) is an 

intractable task. In order to make the problem tractable, we 

rewrite (17) into a constrained optimization problem by 

introducing corresponding equality constraints: 
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 
 
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 
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4, 5, 6, 7,
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τ

τ τ τ τ τ τ τ τ
= = = =














D G

d D G d D G d D G d Gψψψψ

  (18) 

 

Within the framework of the SBI method [43], we rewrite 

(18) as: 
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3 1
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 (19) 

 
1 1 1

1, 1, 1,( )
x

k k k k

τ τ τ τ
+ + += − −b b d D G                (20) 

 
1 1 1

2, 2, 2,( )
y

k k k k

τ τ τ τ
+ + += − −b b d D G               (21) 

 
1 1 1

3, 3, 3,( )
xx
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τ τ τ τ
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1 1 1
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1 1 1

5, 5, 5,( )
xy

k k k k

τ τ τ τ
+ + += − −b b d D G             (24) 

 
1 1 1

6, 6, 6,( )
yx

k k k k

τ τ τ τ
+ + += − −b b d D G            (25) 

 
1 1 1

7, 7, 7,( )
k k k k

τ τ τ τ
+ + += − −b b d Gψψψψ              (26) 

 

Similarly, (19) can be decoupled as: 

 

{ }1, 1 1,

1 21
1, 1,|| ||min || ||

2
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{ }2, 1
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(34) 

 
According to the above discussions, finally, we developed 

an iteration scheme to solve (15), and the numerical 

procedure can be summarized as follows: 

Step 1. Specify the algorithmic parameters and the initial 

value, and set 1τ = . 

Step 2.  Update variable 
1k

τ
+

U  by solving (16). 

Step 3.  Update variables 
1

,

k

j τ
+

d  via solving (27-33). 

Step 4.  Update variable 
1k

τ
+

G  by solving (34). 

Step 5.  Update variables 
1

,

k

j τ
+

b  according to (20-26). 

Step 6.  Loop to Step 2 until a predetermined iteration 

stopping criterion is satisfied. 

Step 7.  Set 1τ τ← + , loop to Step 2 until the maximum 

time index is met. 

Commonly, we know in advance that the inversion 

solution belongs to the range 1 2[ , ]q q , therefore, a projected 

operator is introduced to the iteration scheme: 

{ }1 1Projectk k

τ τ
+ +=G G                        (35) 

where 
 

1 1
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2 2
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,
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j
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 <

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Q

Q Q Q
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               (36) 

 

5.  NUMERICAL SIMULATIONS AND DISCUSSIONS 

In the proposed imaging method, we use the iteration 

scheme presented in Section 4 to solve (15), and it can be 

called the radial basis function based dynamic 

reconstruction (RBFDR) algorithm. In this section, we 

numerically evaluate the feasibility and the robustness of the 

RBFDR algorithm, and the imaging results are compared 

with the OIOR method and the projected Landweber 

iteration (PLI) algorithm.  

We employ a 12-electrode square ECT sensor for 

simulations, and the images are visualized using 32×32 

pixels. The size of the reconstruction domain is 80×80 mm
2
, 

and the diameter of the bubbles is 20 mm. The capacitance 

data are computed using the finite element method based on 

the Ansoft software platform.  
Owing to the limitation of the numerical simulation, we 

use the purely random-walk evolution model, i.e., τF = I  

and I  is an identity matrix. The model is often used in 

practices when a better temporal dynamic model is not 

known [22]. 

All reconstruction methods are implemented on the 

MATLAB 7.0 software platform. The stopping criterion of 

iterations for the RBFDR algorithm is defined as 
1 1 3|| || / || || 1 10k k k+ + −− < ×G G G . The image error is 

used to evaluate the quality of an inversion solution, and it is 

specified as: 

 

         
Original Reconstructed

Original

|| ||
100%

|| ||
γ

−
= ×
G G

G
             (37) 

 

where γ  is the imager error; OriginalG  and ReconstructedG  

stand for the original and reconstructed values, respectively. 

 

A.  Case 1 

A dynamic reconstruction case is implemented to evaluate 

the RBFDR algorithm. We illustrate the original dynamic 

imaging objects at different discrete time instants in Fig.1. 

Table 1. lists the algorithmic parameters for the PLI method, 

and the number of iterations corresponds to the minimum 

image errors for fair comparison. As for the RBFDR 

algorithm, the algorithmic parameters are empirically set as 

1α = , 1β = , 1 0.1α = , 
5

2 10α −= , 3 0.005α = , 

5

4 10α −= , 5 1α = ,  , 1,1/ (| | )p

j jτ τ ε−= +W G , 2p =  

and 
1010ε −= . The Daubechies 4 wavelet is used to 

implement the multi-scale analysis. We compute the initial 
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values via the STR method. The imaging results of the 

OIOR algorithm, the PLI method and the RBFDR algorithm 

are presented in Fig.2. - Fig.4., respectively. We list the 

image errors and the computational time in Table 2. and 

Table 3., respectively.  

 

         

               1.a)               1.b)                1.c)              1.d) 

 
Fig.1.  Dynamic reconstruction objects. 

 

         

 2.a)               2.b)               2.c)              (2.d) 

 
Fig.2.  Reconstructed images by the OIOR algorithm. 

 

         

 3.a)               3.b)               3.c)               3.d) 

 
Fig.3.  Reconstructed images by the PLI algorithm. 

 

         

 4.a)               4.b)               4.c)               4.d) 

 

Fig.4.  Reconstructed images by the RBFDR algorithm. 

 
Table 1.  Algorithmic parameters for the PLI algorithm. 

 

Algorithmic 

parameters 
Fig.1(a) Fig.1(b) Fig.1(c) Fig.1(d) 

Relaxation 

factor 
1 1 1 1 

Number of 

iteration 
324 432 448 401 

 
Table 2.  Image errors (%). 

 

Algorithms Fig.1(a) Fig.1(b) Fig.1(c) Fig.1(d) 

OIOR 15.76 25.32 23.63 23.47 

PLI 11.59 18.82 17.50 15.09 

RBFDR 1.95 3.60 3.88 1.87 

 
Table 3.  Computational time (s). 

 

Algorithms Fig.1(a) Fig.1(b) Fig.1(c) Fig.1(d) 

PLI 0.46 0.61 0.63 0.57 

RBFDR 8.90 11.14 11.79 12.75 

The OIOR method benefits from the online reconstruction 

property. However, applying the OIOR method to deal with 

the time-varying objects will suffer from the following 

practical problems: 1) the smoothness effect of the OIOR 

method blurs the detailed information of the reconstructed 

images, 2) the OIOR method omits the prior information 

related to dynamic properties of the time-varying imaging 

objects, and 3) the images are independently reconstructed 

one by one, and the considerations of the inter-frame 

correlation of the images are absent. The above 

disadvantages restrict the improvement of the imaging 

quality. In fact, we can observe from Fig.2. that the OIOR 

method leads to noticeable reconstruction artifacts. 

Meanwhile, according to the results listed in Table 2., we 

can find that the image errors of the OIOR method for 

original imaging objects shown in Fig.1.a) – Fig.1.d) are 

15.76 %, 25.32 %, 23.63 % and 23.47 %, which are far 

higher than the PLI method and the RBFDR algorithm. 

Studies indicate that the PLI method benefits from the 

following two aspects: (1) the numerical procedure of the 

PLI method is easy and the computational complexity and 

cost are low, and (2) the final inversion solution is 

insensitive to the selection of the initial solutions. These 

superiorities lead to the wide applications of the PLI method. 

Unfortunately, the PLI algorithm does not utilize the prior 

knowledge related to the dynamic behaviors of the time-

varying imaging objects. Furthermore, the absence of the 

utilization of the spatial correlations of the pixels also results 

in the limitation of the improvement of the imaging quality. 

In fact, the results presented in Fig.3. and Table 2. indicate 

that the PLI method leads to significant artifacts, and the 

image errors for the original imaging objects are 11.59 %, 

18.82 %, 17.50 % and 15.09 %. 

Numerical simulation results indicate that the numerical 

stability of the RBFDR algorithm is associated with the fact 

that the Tikhonov regularization technique is introduced to 

the proposed objective functional. Different from existing 

imaging methods, especially the RBFDR method takes into 

consideration the spatial correlation of the pixels, the 

combinational regularizer of the FOTV and the SOTV, the 

multi-scale regularization, the spatial constraint, and the 

temporal correlation of a time-varying imaging object, 

which leads to the increase of the imaging quality. The 

results shown in Fig.4. confirm the fact.  

The acquisition of high-quality images is desired for the 

understanding of the underlying physical or chemical 

mechanisms of the dynamic behaviors of the imaging 

objects. In Table 2., the image errors of the RBFDR 

algorithm for imaging objects presented in Fig.1.a) -

 Fig.1.d), are 1.95 %, 3.60 %, 3.88 % and 1.87 %, which is 

far smaller than the OIOR method and the PLI algorithm.  

The OIOR algorithm benefits from the online 

reconstruction property, which is a useful feature for 

practical applications. We list the computational time for the 

PLI method and the RBFDR algorithm in Table 3. It can be 

observed that for the original imaging objects presented in 

Fig.1.a) - Fig.1.d) the computational time of the RBFDR 

method is more than the PLI method. In the future, more 

investigations on the improvement of the reconstruction 

speed should be further conducted. 
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B.  Case 2 

The ill-posedness of the ECT imaging problem makes the 

final inversion solution sensitive to the inaccurate properties 

of the input data. In this section, we use the noise-

contaminated capacitance data to evaluate the robustness of 

the RBFDR algorithm, and the noise level is defined as: 

 

Original Contaminated

Original

|| ||
100%

|| ||
η

−
= ×
C C

C
           (38) 

 

where η  is the noise level; OriginalC  and ContaminatedC  are 

the original and contaminated capacitance data, respectively; 

Contaminated Original σδ= +C C , σ  represents the standard 

deviation and δ  stands for a normal distribution random 

number with mean 0 and standard deviation 1. 

The algorithmic parameters for the RBFDR algorithm are 

the same as in Section 5.A. We show the imaging results of 

the RBFDR algorithm under the noise levels of 6 % and 

15 % in Fig.5. and Fig.6., respectively. The image errors 

under different noise levels are illustrated in Table 4. 

 

         

 5.a)               5.b)               5.c)               5.d) 

 
Fig.5.  Reconstructed images by the RBFDR algorithm under the 

noise level of 6 %. 

 

         

 6.a)               6.b)               6.c)               6.d) 

 
Fig.6.  Reconstructed images by the RBFDR algorithm under the 

noise level of 15 %. 

 
Table 4.  Image errors under different noise levels (%).  

 

Noise 

levels 
Fig.1(a) Fig.1(b) Fig.1(c) Fig.1(d) 

6% 2.30 9.90 5.61 3.67 

15% 8.07 15.16 13.04 11.42 

 

Fig.5. and Fig.6. are the imaging results of the RBFDR 

algorithm when the noise levels of the capacitance data are 

6 % and 15 %, respectively. According to the results 

presented in Fig.5. and Fig.6., we find that the RBFDR 

algorithm shows a good robustness, and the imaging quality 

of the RBFDR algorithm under different noise levels is 

satisfactory. In Table 4., when the noise level is 15 %, the 

image errors are 8.07 %, 15.16 %, 13.04 % and 11.42 %, 

which validates that the RBFDR algorithm is able to deal 

with the inaccuracy of the measurement data. It should be 

pointed out that such advantages benefit from the fact that 

within the framework of the Tikhonov regularization 

method, the inaccurate properties of the reconstruction 

model and the measurement data are simultaneously 

emphasized in the RBFDR algorithm. 

 

C.  Case 3 

In real-world applications, the imaging model may be 

inaccurately derived from physically implementing an 

imperfect ECT sensor and the linearization approximation of 

the reconstruction model. In this section, the influence of the 

inaccuracies of the reconstruction model and the 

measurement data on the imaging quality is numerically 

evaluated. In this paper, the sensitivity matrix is perturbed to 

simulate the inaccuracy of the reconstruction model. The 

inaccuracy of the sensitivity matrix is defined as: 

 

contaminated original= +S S E                       (39) 

 

where randnσ= ⋅E , and σ  is the standard deviation; 

originalS  and contaminatedS  stand for original and noise-

contaminated sensitivity matrices, respectively. 

Fig.7. and Fig.8. illustrate the imaging results of the 

RBFDR algorithm when the inaccurate properties of the 

sensitivity matrix and the measurement data are 

simultaneously considered, and the image errors are 

presented in Table 5. 

 

         

               7.a)               7.b)               7.c)              7.d) 

 
Fig.7.  Reconstructed images when the standard deviation of the 

sensitivity matrix and the noise level of the capacitance data are 

0.001 and 5 %. 

 

         

               8.a)               8.b)               8.c)               8.d) 
 
Fig.8.  Reconstructed images when the standard deviation of the 

sensitivity matrix and the noise level of the capacitance data are 

0.003 and 9 %. 

 
Table 5.  Image errors (%). 

 

Noise 

levels 

Standard 

deviations 
Fig.1(a) Fig.1(b) Fig.1(c) Fig.1(d) 

5% 0.001σ =  3.02 13.79 10.72 4.83 

9% 0.003σ =  8.89 22.30 17.16 17.88 

 

In Fig.7. and Fig.8., we report the imaging results of the 

RBFDR algorithm when the inaccurate properties of the 

sensitivity matrix and the measurement data are 

simultaneously considered. We can observe from Fig.7. and 
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Fig.8. that the introduction of the inaccurate properties on 

the measurement data and the imaging model into the 

proposed objective functional is able to improve the 

robustness of the RBFDR algorithm. In Table 5., when the 

standard deviation of the sensitivity matrix is 0.003 and the 

noise level of the capacitance data is 9 %, the image errors 

for the original dynamic imaging objects in Fig.1.a) - Fig.1.d) 

are 8.89 %, 22.30 %, 17.16 % and 17.88 %, which confirms 

that the RBFDR algorithm is robust to the inaccuracies of 

the imaging model and the measurement data. This property 

is highly beneficial for real-world applications. 

 
D.  Case 4 

In this section we use the imaging objects with the high 

contrast permittivity distributions to further evaluate the 

feasibility of the RBFDR method. Fig.9. shows the imaging 

objects, in which the black part represents the high 

permittivity, i.e., 81, and the white part stands for the low 

permittivity, i.e., 1.0. The algorithmic parameters for the 

RBFDR algorithm are empirically set as 1α = , 1β = , 

1 0.5α = , 
4

2 10α −= , 3 0.0035α = , 
4

4 10α −= , 

5 1α = ,  , 1,1/ (| | )p

j jτ τ ε−= +W G  and 3.5p = . The 

algorithmic parameters of the PLI method are listed in 

Table 6. Fig.10. - Fig.12. demonstrate the image 

reconstruction by the OIOR method, the PLI algorithm and 

the RBFDR method, respectively. The image errors for the 

compared reconstruction methods are shown in Table 7. 

 
 

             

                            9.a)                 9.b)                 9.c) 

 
 

Fig.9.  Dynamic reconstruction objects. 

 

         

 10.a)               10.b)              10.c) 

 
 

Fig.10.  Reconstructed images by the OIOR algorithm. 

 

         

 11.a)               11.b)              11.c)  

 
 

Fig.11.  Reconstructed images by the PLI algorithm. 

             

 12.a)               12.b)              12.c) 

 
 

Fig.12.  Reconstructed images by the RBFDR algorithm. 

 
Table 6.  Algorithmic parameters for the PLI algorithm. 

 

Algorithmic 

parameters 
Fig.9(a) Fig.9(b) Fig.9(c) 

Relaxation factor 1 1 1 

Number of iteration 235 81 146 

 
Table 7.  Image errors (%). 

 

Algorithms Fig.9(a) Fig.9(b) Fig.9(c) 

OIOR 64.53 52.19 63.73 

PLI 60.80 39.39 39.80 

RBFDR 4.40
 

9.68 7.28 

 

Fig.10. - Fig.12. show the imaging results reconstructed by 

the OIOR method, the PLI algorithm and the RBFDR 

method when the difference of the permittivity in the 

reconstruction domain is large. We can observe that the 

reconstruction quality of the RBFDR method is higher than 

the OIOR method and the PLI algorithm. In fact, we can 

find from Table 7. that the image errors of the RBFDR 

method for the original dynamic imaging objects shown in 

Fig.9.a) - Fig.9.c) are 4.40 %, 9.68 % and 7.28 %, which are 

lower than the OIOR method and the PLI algorithm. These 

imaging results confirm that the RBFDR method may be a 

promising candidate for the ECT image reconstruction 

problem. 

Following the simulation results from the noise-free and 

noise-contaminated capacitance data, presented in previous 

sections, we can conclude that the RBFDR algorithm is 

successful in dealing with the dynamic imaging tasks. More 

importantly, we present a new framework for solving the 

ECT inverse problem, which may be extended to image 

reconstruction problems in other related fields, such as the 

electrical resistance tomography, the electrical impedance 

tomography, etc. 

 

6.  CONCLUSIONS 

The reconstruction of the high-quality images plays a 

crucial role in real-world applications of the ECT method. 

Different from existing imaging models, in this paper a 

dynamic imaging model that incorporates the spatial 

correlation of the pixels, the dynamic behaviors of a time-

varying imaging object and the ECT measurement 

information is proposed to formulate the dynamic imaging 

problem. An objective functional that exploits the spatial 

correlation of the pixels, the combinational regularizer of the 

FOTV and the SOTV, the multi-scale regularization, the 

spatial constraint and the temporal correlation is proposed to 

convert the ECT imaging task into an optimization problem 
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within the framework of the Tikhonov regularization 

method. An iteration scheme that integrates the advantages 

of the SBI method is developed to search for the optimal 

solution of the proposed objective functional. Numerical 

results validate the advantage of the proposed reconstruction 

method on the improvement of the imaging quality. 

Furthermore, this paper presents a new perspective to deal 

with the ECT imaging problem, and it can be extended to 

solve the inverse problems in other tomography 

technologies. 

Practical applications and theoretical studies indicate that 

one reconstruction method may illustrate different numerical 

performances to different imaging objects, and the selection 

of a specific reconstruction method depends mainly on the 

measurement requirements, the understandings of the prior 

knowledge related to the imaging objects and the properties 

of the numerical method. Our work provides an alternative 

approach for solving the ECT inverse problem, which needs 

to be further validated by more cases in the future and to be 

further studied on the respects, including the reconstruction 

model, the computational strategy, etc. 
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