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Software is used in order to accomplish various tasks at each stage of the functioning of modern measuring systems. Before 

metrological confirmation of measuring equipment, the system has to be validated. This paper discusses the method for 

conducting validation studies of a fragment of software to calculate the values of measurands. Due to the number and nature of the 

variables affecting the coordinate measurement results and the complex character and multi-dimensionality of measurands, the 

study used the Monte Carlo method of numerical simulation. The article presents an attempt of possible improvement of results 

obtained by classic Monte Carlo tools. The algorithm LHS (Latin Hypercube Sampling) was implemented as alternative to the 

simple sampling schema of classic algorithm. 
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1.  INTRODUCTION 

ODERN COORDINATE equipment for industrial 

applications are complex measurement systems. They 

include traditional and hybrid measuring machines, 

mobile coordinate instruments, optical and laser tracking 

systems [1].  

One common feature of coordinate measuring systems, 

regardless of different constructions, configurations and 

designation, is the digital form of measurement information 

and the algorithmisation of the operations being performed.  

The measurands reflect the geometric features of a 

product, which is modelled using lines and surfaces. The 

first stage of coordinate measuring is direct measurement, 

meaning the determination of locations of points belonging 

to the physical object being measured within a fixed 

coordinate system. Digital data are then further analysed, 

while the results of their digital processing are interpreted, 

visualised and reported by the system. The first stage 

involves the equipment layer and the system software layer, 

while the next stage is predominantly software-based. The 

quality of the resulting measurement information thus 

strongly depends on software quality.  

One form of the metrological confirmation [2], which aims 

to determine that the equipment used in the measurement 

meets the requirements for its intended use, is the validation 

of the measurement system. Validation is a special case of 

confirmation, in which the conformance of the 

characteristics of the object under validation is determined 

not in the relation to the declared specification, but to the 

predetermined criterion for a given application in real-life 

conditions of operation of this object [3].  

Software validation is an essential stage of measurement 

system validation, with special attention paid to the studies 

and analyses of the precision of algorithms used to calculate 

measurand values. Evaluation of the quality of information 

obtained from multi-level processing involves the evaluation 

of measurement uncertainty of measurands. The standard 

involving the issues of testing the software for calculating 

geometry is PN-EN ISO 10360-6 [4]. However, it appears 

not to be sufficient, e.g. in a context of changing 

dynamically the deviations of the measured object.  

This paper presents a fragment of research into this issue, 

concerning a module of applications used to determine the 

numeric values of parameters of measured geometric 

shapes. A software fitting the data to spherical surface has 

been subject to validation tests. The analysis was based on a 

simulation model, in which all variables were treated as 

random. It allowed for inferring the behaviour of the tested 

software in various circumstances of its operation. 

In order to estimate an expected value and a coverage 

interval characterizing the accuracy of output parameters, 

two sampling methods have been applied: classic Monte 

Carlo sampling method and LHS stratified method. These 

methods were examined taking into consideration their 

effectiveness and ability to improve LHS estimators over 

these from classic simulation schema. Evaluation of the 

results has shown a slight improvement in the size of 

coverage intervals estimated from LHS samples, but the 

advantage of LHS algorithm became apparent in reduction 

of the expected value variance.   

 

2.  MEASUREMENT MODEL 

The product development process is based on the 

geometric model, built in the design and construction 

process. Being consistent with the design concept, the 

geometrical software of the system allows for the 

verification of real shapes by using embedded algorithms of 

parametric identification of the geometrical elements, so-

called associated features. The algorithms based on 

Gaussian criterion allow calculating the values of 

characteristic parameters of measured geometric shapes.  

The measurement model for each element, showing the 

relationship between input and output quantities, can be a 

mathematical model, which can be described by a general 

formula (1): 

 

0=],[h PX ,                             (1) 
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where: T][  ZY, X,=X  represents a vector of k–input 

quantities (k=3) or the coordinates of points measured in a 

coordinate system, output values P have the form of m–

dimensional vector of model parameters, i.e. the quantities 

characterising the size, locations, etc. of measured shapes.  

The essence of the model is to create an image of an 

idealised form of real objects [5] - physical objects or 

software units, or others. 

Owing to this image, we gain a medium to foresee the 

behaviour of real software through the use of the computer 

simulation tools, reality simulation.  
 

3.  THE CONCEPT OF VALIDATION  

The results of measurements, and thus the values of the 

measurands P, (1), depend in coordinate measurements not 

only on input quantities X, but also on many other factors, 

such as measurement strategy, tolerance class, product’s 

surface, datum, location within the measurement space, etc. 

In coordinate measurements, these factors are classified 

according to five main categories assigned to locations of 

their occurrence. This division is aimed at facilitating the 

identification of factors and the choice of the appropriate 

method of determining their influence on the model’s output 

quantities.  

The model should reflect the significant aspects of the 

object being modelled, but the factors influencing it are not 

explicitly included in formula (1), even though they can be 

qualified as input quantities, as measurement results depend 

on them. The occurrence of certain factors during the 

measurement, as well as their level, form the conditions of 

model (1) realization. The arrangement of these factors 

determines the intended use of the software of the measuring 

system.  

The system’s software can thus be considered as fit for 

purpose if the results obtained in this particular, deliberate 

application of it appear to be consistent with reference 

results, that serve as a computational standard, i.e. describe 

the behaviour of a perfect calculating software through a 

model (1).  

Validation, as the process of software quality assessment, 

carried out basing on the model, has three very important 

stages (Fig.1.). 

The first stage is the determination of the measure of the 

discrepancy between the calculations of the real software 

and the reference results, while the third one involves the 

determination, when this discrepancy is acceptable for the 

software’s intended use. The first stage requires the adoption 

of the metric, which enables a comparison of experimental 

and standard results as a quantitative measure of 

comparison.  

The third stage is to decide on the adequacy. But before 

this decision is made, the criterion of adequacy of the 

software for a particular application must be specified 

during the second stage of validation. 

The determination of discrepancy requires a separate 

analysis of the measurement model, used in given 

circumstances in the coordinate system. Flexibility of the 

coordinate measuring processes arbitrarily carried out by the 

system’s user makes it harder to use a single universal 

course of action. The diversity of features characteristics 

that are measured, as well as methods to obtain these goals, 

impose the need to define the formulation of a specific – 

task measurement, the so-called feature based measurement. 

It is a measurement goal separate from other tasks and 

defined by the measurement model, where the quantities 

related to this model may change in a given way and within 

given boundaries.  

 

 
 

Fig.1.  The validation diagram.  

 

3.1.  Geometric software validation metric  

Metric is the quantitative measure of inaccuracy, 

specifying the degree of discrepancy between the measured 

values and the corresponding reference values. Metric does 

not have a precise definition within validation, but this term 

is used in computer science to mean the quality index of a 

given attribute, characteristic of a measurement system or its 

specification. The calculated value of the metric is 

interpretable as the degree of fulfilment of a certain 

qualitative property of the software unit. A geometric 

software metric should be related to a specific attribute of 

the geometry of the measured object in a way that will 

assess the quality of its mapping through measurement.  

Metric development relies on the formulation of an 

appropriate measuring function [6]. In the geometry 

inspection of an object, the measurands are the linear and 

angular quantities. For these values, the metric can be 

expressed as the following relationship (2). 

 

refm pp −=∆ ,                                 (2) 

 

where: m∆ – absolute difference between the values 

attributed to the measured quantity and the corresponding 

reference value; p – test result; refp – reference value. 

Deviation  
r
lδ of variable lp  (1) of a single say r–test is 

the difference between the value calculated by the software, 

e.g. the value of the specific feature parameters such as 

diameter, the position of the point, etc., from the 

corresponding reference value, included in the general 

equation (3). 
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ref,l
r
l

r
l pp −=δ ,                          (3) 

 

where: r
lδ – calculated deviation, r

lp  – the measured value, 

ref,lp  – reference value, l=(1,…,m).  

An easily implemented measuring function (3) is in fact a 

mathematical operator that requires the entering of two 

values, and it embodies the traditional approach to 

validation, which involves the comparison of two 

deterministic variables (Fig.1.).  

The first component of the formula (3) is representing the 

individual results of the validation tests.  

The nature of variables involved in the implementation of 

the model (1) and affecting the measurement puts into 

question the results of software evaluation based on a single 

test result. In real-world work conditions, the tested software 

may yield different results in each session, as the working 

conditions of a real application clearly eliminate the 

possibility of obtaining an identical set of data. Confronting 

a single test result with the level of user requirements, there 

is no certainty that the result will be repeated when the 

application is relaunched or that it is going to be close to the 

consecutive results in a series, or that it is going to be an 

outlier, and this distinction is important in the statistical 

evaluation of the analysed variables.  

Simulation experiments require the person constructing the 

tests to imitate the real working conditions for the software 

by generating data that would allow for obtaining realistic 

results.  

The second element in operation (3) is a reference 

quantity, so the value in question is well-known, presumed 

or agreed upon [7].  

However, in most cases the determination of the correct 

reference value is not an easy task, as this value is a function 

of an imperfect and partial knowledge of the measurement 

process. This fact also means that the evaluation of a single 

test result is not easy.  

In simulation validation tests common practice is to adopt 

the parameters of the modelled shape as reference values. 

The assumed values describe an ideal form by the nominal 

parameters and geometric relationships between individual 

objects of the part modelled during geometry design phase.  

 

3.2.  Testing conformity with requirements 

Metric values calculated based on tests (2) do not directly 

tell us whether the values are acceptable until they are 

verified by comparing them with the assumed numeric 

criteria, the acceptance criteria [8].  

The evaluation of acceptability of the calculated 

characteristics requires us to define the boundary acceptable 

error value. The absolute difference (3) will not be 

significant if it is smaller than or at least equal to the value 

adopted as the acceptance criterion, equal to, e.g. 

)( lm δ∆ , (4). 

 

lδ ≤ )( lm δ∆ .                           (4)  

The boundaries of this acceptable discrepancy define an 

interval, which should include the errors in obtained 

experimental values of the variables, so that the software 

results can be considered to be in conformity with the 

requirements. From the metrological point of view, the 

range characterising variability of the results of measured 

quantities at a given level of probability may be represented 

by the uncertainty of measurement, ∆U  [9].  

In the case of software for parametric identification of 

associated features, the acceptance criterion, i.e. the 

subjective expression describing the end and success of a 

test, is expressed as intervals that should not be exceeded by 

the uncertainty of parameters.  

The endpoints of this interval should be adjusted to and be 

valid for a set of levels of factors of a test experiment [8]. 

They reconstruct the intended use of software included in a 

test case. Only in such case can we expect a reliable 

evaluation of the software. 

 

4.  ESTIMATION OF UNCERTAINTY 

The assessment of the accuracy of measurement results 

involves the use of different methods of estimation of 

uncertainty. They are generally based on two approaches: 

one related to the theory and propagation of uncertainty, the 

other based on the probabilistic method of distribution 

propagation. They share a common philosophy that treats 

the measurement as the process of implementing random 

variables, with part of them participating in the 

measurement process, while another part comes from 

sources outside of the measurement and indirectly 

influences its result. The use of information concerning 

these variables, as well as their processing is done according 

to the probability theory.  

Determination of the range, within which the value of the 

variable will be included according to the probability theory, 

requires the knowledge of the distribution of this variable. If 

the measurand is characterised by the probability density 

function, two parameters characterising the distribution of it, 

such as the expected value and the standard deviation, 

describe the best estimate of the measurand and the standard 

uncertainty related to this estimate, respectively.  

The determination of the probability distribution of the 

measurand based on the input quantity distributions is called 

the propagation of distributions, regardless of the method of 

calculation (analytical, numerical). The Monte Carlo Method 

(MCM) is the propagation of distributions which utilises 

repeated random generation of data by the so-called 

sampling of probability distributions [9 - 11]. 

 

5.  RESEARCH OUTLINE 

Tests are preceded by the structural decomposition of the 

software of the coordinate system. So-called partial 

validations are performed on isolated software components 

used to verify the geometry of the inspected part. The 

division into elementary measurement tasks naturally 

corresponds to a structural division of the system’s software 

module into smallest parts: programs which perform these 

tasks by calculations. Validation may be based on models 
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presented in (1), but the “extended” measurement model 

will also be defined by the selection of factors that form the 

circumstances for a given use of the program, [12].  

The goal of the validation tests was to study the fitness of 

the programs for their intended use. It is done by 

determining the uncertainty of the measurement task result 

in the circumstances defined by the strategy, in order to 

check if it meets the assumed acceptance criterion.  

 

5.1.  Simulation model  

The model of quantities T][  ZY, X,=X  describing the 

point’s coordinates X, Y, Z, is in fact a probabilistic model of 

the variables of their error. The implementation of each 

random variable X, Y, Z is the sum of its “real” value and its 

changing deviation. The real value is considered to be 

known based on the model assumptions and it reflects to the 

coordinates of the point lying on an ideal surface or a profile 

of the associated feature. Deviation is a superposition of a 

number of implementations of random error variables. In 

building the model of input quantities, an idea analogous to 

the vector concept of coordinate device errors can be 

employed [13], where the cumulative error is the 

superposition of partial errors generated by certain factors or 

stemming from certain sources.  

Software validation only takes into consideration the 

factors that may influence its evaluation and, according to 

the goal of validation, allow for the formulation of a 

statement, that the software is fit for its intended purpose. It 

is assumed that the remaining ones, accompanying the real 

measurement, such as the method of fixing the object, 

surface soiling or its temperature, all belong to this group, 

which is subject to the obvious laws of measurement 

technique, so obeying these laws can significantly limit their 

influence on the results. 

In the measurement model adopted for the study of 

geometric software using the MCM, we assume the presence 

of two factors that cannot be eliminated by conducting real 

measurements, regardless of whether a correct measurement 

practice was used.  

The first factor is related to the influence of the real 

geometric form of the measured object on the result. Product 

inspection is usually conducted by analysing the individual 

components of the structure, but the coordinate 

measurements of geometric quantities consider the more 

generalised effect as a composition of the surface structure, 

shape deviations and other deviations from the ideal 

geometric form. 

Taking into account the periodic nature of the irregularities 

on machined surfaces, the total error can be modelled by the 

sum of component variables expressed in a general form of 

elementary harmonic functions. As a result of the influence 

of independent groups of technological factors on the 

process, the amplitudes and phases are considered as 

random variables in the model.  

The second factor determines the influencing quantity, 

which is a composite of all unidentified sources of 

uncertainty. The variable models a cumulative direct 

measurement error, which can be expressed by both random 

and systematic factors. 

 
 

Fig.2.  Error simulation model.  

 
By analysing the end result, we can notice that the final 

value of the error, as a superposition of realizations of 

various random variables, stems from the location and range 

of the characteristic of distributions of these variables 

(Fig.2. – “left” outline).  

The study used an universal concept of error modelling by 

superimposing these two components [14]. The nature of 

these components may vary depending on which of the 

groups of factors are considered active and significant.  

 
5.2.  The impact of measurement strategy 

The strategy significantly affects the uncertainty of the 

evaluated measuring task.  

It is a powerful and underrated means of controlling 

coordinate measurement uncertainty, superficially ascribed 

to the area of measurement technique.  

According to [15]: “The accuracy of the results from 

coordinate measurements depends on the accuracy of the 

measuring device, workpiece properties, environmental 

conditions, and especially operator procedures. For the last, 

and usually most important factor, neither are proven facts 

known about the combined effects of the various influences 

nor do any general quantitative statements exist.” 

Coordinate measurement strategy is determined by the 

quantity and locations of points on the surface being 

sampled, the size of measurement sections, the direction of 

measurement, the type of probe, even the sequence of 

measured points. Changing any of these parameters will 

change the conditions of the experiment and become a 

deviation from the repeatability conditions. The evaluation 

of the measuring task relates to a given level of all factors, 

within which this task is executed.  

The impact of strategy on the form of the variable of the 

input quantity error is the most visible when generating data 

encumbered by deviations stemming from the simulation of 

the real surface condition. The superimposition of the 

harmonics on ideal form of the modelled surface gives an 

image of a “deterministic” surface until we obtain a point’s 

location  random  in  relation to this surface while imitating 

a real measurement (Fig.2. – “right” outline). The 

superimposition of the harmonics due to the random impact 

of the factors in the technological process further 

strengthens the final random character of the deviation of 

surface structure from the ideal surface and should be 

reproduced in a simulation experiment.  

The determination of the composition of distributions of 

error variables using analytical methods is quite 

cumbersome in practice and may lead to overestimating the 

variability ranges in measurands.  
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The key issue becomes how to best reconstruct the 

distribution of input random variables by a properly 

designed simulation experiment, as the distribution of 

analysed output variables is probably different from 

Gaussian or from any other model distribution. The results 

presented in [16] as well as own studies show that in many 

practical cases, the resulting distribution of cumulative 

deviations including few harmonics differs, at given point, 

essentially from the Gaussian distribution. Estimating 

coverage intervals for variables not fulfilling the standard 

model assumptions without the knowledge of the analytical 

function of distribution is possible if the experimenter 

acquires the numerical form of the probability density 

function (pdf) or the cumulative distribution function (cdf) 

of these variables. 

 
6.  NUMERICAL MONTE CARLO METHOD 

6.1.  The essence of MCM in testing geometric software 

The essence of the MCM algorithms used in testing 

geometric Gaussian programs is the random generation of 

values of partial errors for a given set of points, and then the 

calculation of the measurand values using the software 

entity being tested. The cycles are repeated multiple times, 

so as to generate a discrete representation of the distribution 

of these variables.  

The simulation model is based on the variables model 

described in chapter 5.  

In order to obtain the coordinates, e.g. for n–

points: { })(),(),( 1111 nnnNiiii z,y,xP...,z,y,xP...,z,y,xP , in each 

cycle of calculations, the generated errors are added to the 

coordinates of points lying on the modelled theoretically 

ideal surface. The location of these points is derived from a 

mathematical description of the feature.  

Based on multiple, e.g. M times generated random sample 

{ }n
iiii z,y,x 1=  the unit being tested calculates the values of 

an m-dimensional quantity P, leading to the creation of an 

enormous set of these values. This allows the determination 

of the empirical density function pdf or, after sorting the 

values from the smallest to the largest, the empirical 

distribution function cdf for each component of P. They 

provide a numerical approximation of the distributions of 

output variables.  

The discrete representation of the distribution allows for 

determining the estimate of the output quantity (measurand) 

value, standard deviation as standard uncertainty associated 

with the estimate, and the endpoints of the coverage interval 

lowy , highy , the length of which characterises the variability 

in the measurement process [10]. It is an interval, which 

includes, with certain probability, the true value of the 

measurand. 

Traditionally, it is assumed that the point ends of the 

coverage interval are determined by the quantiles of 0.025 

and 0.975, which correspond to the coverage probability 

p=0.95. The assumed value of probability is symbolic, in 

relation to the normal distribution, for which it corresponds 

to the coverage factor k = 2.0. 

6.2.  Classic algorithm (“crude sampling”) 

In a simple, crude Monte Carlo sampling, random 

variables with any distribution can be generated using the 

reverse cdf method. It is based on a simple proposition that 

when any variable X has a continuous and strictly increasing 

cdf U=GP(η), U < U(0, 1), X can be calculated as its reverse 

X= )(G 1
P η
−

. For an a priori known or empirical probability 

density function (histogram), )(gP η , the cdf is then 

analytically or numerically determined U= GP(η). 

Approximations of an inverse function are determined in 

independently drawn points according to the uniform 

distribution from the interval [0, 1], i.e.: X= 
1)U(G −
. 

The classic algorithm for multidimensional input variable 

X in one simulation cycle is as follows: 

1. Selection of M number of repetitions. 

2. Randomisation with a probability of 0 to 1 value iu  for 

each k-dimensional variable X of a single i–point, whereby 

we obtain a set { }321 ,i,i,i u,u,u  for three coordinates. 

3. Each randomly selected value iu  is assigned to the 

corresponding variable xi.  

4. The drawing is repeated for each n points, creating n·k 

elements sample of input variable X, on which calculations 

are performed in accordance with model (1).  

5. From a set of M–values of m–dimensional variable P 

calculated in the experiments, an estimate of expected value 

of output value is deduced, also known as the empirical 

median value. 

Due to the randomness of the experiment, each test 

sequence can give a different estimate, but the series of 

values will stochastically converge with probability 1 to the 

expected value of the measurand. The difference between an 

individual estimate obtained from a single cycle (estimator 

value) and its expected value can be defined as MCM error. 

It can be expressed by estimator variance, which is 

proportional to the variance of the probability distribution, 

and inversely proportional to the number M of experiment 

cycles performed [10]. Both factors affect the quality of the 

MCM results.  

Increasing the number of M recurrences is an intuitively 

chosen means to improve the accuracy of estimates using 

MCM. The number of cycles recommended in [10] needed 

to achieve coverage interval accuracy of two significant 

digits and for 95 % confidence level is 10
6
. Accuracy 

control may be done, among others, using adaptive 

procedure, recommended by the above mentioned 

document.  

The relationship between the estimation error and the 

variance of the distribution of output variables shows us, 

that the correct selection of randomly sampled points from 

the probability distribution may influence the quality of 

results, as well as decrease the number of experiment 

recurrences needed to achieve the necessary accuracy. The 

improvement of sampling uniformity in relation to the shape 

of function describing distribution may lead to reduced 

variance.  
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Methods for improving the drawing efficiency and 

reducing the variance include stratified sampling methods 

and quasi–Monte Carlo methods [18]-[19].  

It should be noted that one important benefit of the classic 

MCM algorithm is the fact that the number of simulations 

needed does not depend on the number of random variables 

modelling the input values. This property, along with easy 

implementation, is the main reason for the popularity of the 

classic Monte Carlo algorithm.  

 

6.3.  Stratified sampling method 

LHS (Latin Hypercube Sampling) is a multivariate 
extension of stratified Monte Carlo method, which is 
intended to improve uniformity of sampling and to lead to 
reduced variance [19]-[20].  

In this sampling method, the whole total range of the cdf 
of each component variable is divided into separate sub-
areas with equal probability. Each of the created ranges is 
used to calculate one value for each component X, 
corresponding to the sampled value of probability density in 
the chosen sub-area. The name LHS comes from the 
generated N-values of variables, forming a topologically  
N–dimensional cube (hypercube).  

The algorithm for the method of k-element vector of 
random input variable X in one simulation cycle for one 
“sampled” point is as follows [20]-[21]:  
1. The division of the probability density curve for say  
ii– variable (ii= 1,…, k) into R equal disjoint ranges forming 
layers with equal probability, in which the changes of 
probability function are smaller than in the whole range of 
values;  
2. Sampling R independent random numbers 

R,ii,ii,ii u...,,u,u 21 , from the interval [0, 1];  

3. Random generation of a single number in a single 
simulation cycle for each of k–components, containing  
R–repetitions in relation to the LHS algorithm. The number 
represents the number of the layer, from which uii,j (j=1,...,R) 
is taken. Randomly sampled numbers form a permutation of 
the layers, on which the components are grouped.  

4. Based on the permutation, a set of sampled (N= kR )·n 
values of the input variable X is created, (1). Each individual 
data given in the n–elements sample, defined by X, is a 
vector of k–components (k=3), where each component 
(coordinate of datapoint) may come from a different layer.  
5. The calculations are performed for the full set of n–
points, which result in a set of m-values of P.  
According to the MCM concept, after calculations are 

completed, steps 1−5 are repeated M times. 

 

7.  EXPERIMENTS AND RESULTS 

The purpose of the comparative simulation experiments 

was to examine how effective Monte Carlo methods may be 

in the estimation of uncertainty of parameters calculated by 

Gaussian software. Two different methods of sampling were 

used to generate the coordinates of points for the spherical 

surface: the classic Monte Carlo algorithm and the LHS 

algorithm. 

The tests used model data from an example constructed 

and published in [22].   

The data form a regular grid of n=30 points spaced on a 

half of a perfect spherical surface (Fig.3.). 

 
Fig.3.  The simulated sphere.  

 

A single data is a vector of three coordinates in a 

coordinate system that is offset in relation to the centre of 

the sphere by a given vector. The components of the vector 

of parameters describing the perfect sphere are: 
T

o
P =[ ox =484.9407, oy =–6.1794, oz =15.1096, or =20.000] 

mm.  

Calculated in [22], the values of measured coordinates of 

the thi –point ( iΡ ) were a sum of values ( nom,ix , nom,iy , 

nom,iz ) corresponding to the point on an ideal sphere with 

parameters of oP , arbitrarily assigned values of systematic 

error ( s,x∆ , s,y∆ , s,z∆ ), and one of the M–generated values 

( j
x,iε ,

j
y,iε ,

j
z,iε ) of random error.  

In the tests presented in this paper, error components are 

simulated consequently with the simulation model discussed 

in sub-chapter 5.1. Coordinates of the thi  point ( iΡ ) are a 

sum of reference values ( nom,ix , nom,iy , nom,iz ) as above, the 

temporary values (
j
x,iδ ,

j
y,iδ ,

j
z,iδ ) of form deviation 

j
iδ  at 

thi  point, and the generated values ( j
x,iε ,

j
y,iε ,

j
z,iε ) of 

random errors in each axis for the j–cycle of simulation and 

calculations (Fig.2. – “left” outline). 

The values of random errors are one of the (j = 1,…,M) 

random combinations generated using a pseudo–random 

number generator for the assumed normal distributions of 

these errors, with parameters N(0, x,εσ ), N(0, x,εσ ), 

N(0, x,εσ ), where: x,εσ = y,εσ = z,εσ = εσ =0.002 mm.  

Mathematical modelling of sphericity deviation is based 

on the notation of a chosen surface by a formula using the 

associated Legendre’s functions [23]. The tests included the 

following: harmonics = 3, amplitude = 0.0050 mm, order = 

2, phase = 3. The form deviation values 
j

iδ  in each variant 

of the j–cycle of simulation are determined for randomly 

adopted phases. Deviations vary randomly from cycle to 

cycle in the range equal to amplitude of the harmonics.  

The numerical value of the simulated coordinate (
j

ix ) is 

calculated on the basis of (5).  
 

j
x,i

j
x,i

j
nom,i

j
i xx εδ ++= .                       (5) 

 

The numerical values for the remaining coordinates of 

point (
j

iy ) and (
j

iz ) are calculated analogously. 
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The combined random variable imitating the direct 

measurement in each of the 3 axes is composed of two 

independent random variables: one arising from a random 

distribution of deviations in sphericity at a given point of the 

spherical surface { } nj ℜ→= δΩΛ : , and the other 

modelled by Gaussian distribution E∈N(0, εσ ), and its 

distribution is a convolution of two distributions, which 

these variables are subject to. Propagation of uncertainty of 

the results of geometric software requires knowledge of this 

distribution. In numerical methods, we can observe its 

numeric representation as a result of the convolution of the 

component distributions, which is undoubtedly a great 

advantage of this concept.  
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Fig.4.  The empirical distributions of the simulated errors for 

exemplary 15th point on sphere.  

 
In studies according to a predetermined number of 

simulations, M sets of measured coordinate values of n– 

measurement points were generated. Based on these random 

samples, empirical pdf and cdf in individual n-points on the 

surface were reconstructed (Fig.4.). 

All the necessary simulation programs are written in the 

form of scripts and performed in MATLAB environment. A 

fragment of the application performing the geometric 

calculations comes with the package developed at the 

National Physical Laboratory, NPL's LSGE MATLAB 

Software (License Ref: CMSC/X/02/431). 

The LHS sampling method employs the division of the 

variable range into 5 layers with equal probability of 

occurrence. The number of layers was arbitrarily assumed 

considering that the number of permutations generated for 5 

layers for k=3 variables is a 5
3
 dimensional cube. 

The influence of the number of replications on the 

estimation by each method was examined by performing 

M=50, 10
2
, and 10

3
 measurement cycles. Each of the 

variants of the experiment was repeated three times, 

considering the randomness introduced by permutations.  

The sizes of coverage intervals calculated using the two 

methods were compared.  

The differences – skew values - between the estimates of 

sphere parameters and their reference values assumed for 

the experiment were also studied. These deviations of mean 

values (estimator of expected value) from the reference 

values may be interpreted as a measure of unsymmetrical 

property of distribution. 

The exemplary results of constructed functions pdf and cdf 

for oz  are shown in Fig.5. and Fig.6. They describe the 

nature of this component of vector P, which is most 

impacted by the unfavourable limitation of the sampled 

surface – the sampled fragment is just 50 % of the spherical 

surface.  

The tests results have shown that values of coverage 

interval from classic sampling and stratified sampling are 

always smaller than those obtained by the GUM uncertainty 

framework in both tested sampling methods.  

It appears that there are no notable differences in the 

coverage interval values calculated by two methods, 

however, intervals from LHS plan are smaller.  

Despite this, it should be noted that the differences 

between estimates of expectation and respective value of 

model (i.e. reference value) are changing along with the 

number of replications of classic algorithm, whilst the LHS 

sample provides the stable skew value, independent on 

number M. Because the reference value is constant, the 

changes of skew value are due to the variability of the 

estimator of expected value, what results in a small value of 

variance of this estimator. 
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Fig.5.  A comparison of cdf and pdf approximation of oz  coordinate of centre of the sphere for M = 50,  

M = 100, and M = 1000 replications.  
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Fig.6.  A comparison of cdf approximation of oz  coordinate of centre of the sphere for M = 50, M = 100, and M = 1000 replications.  

 

8.  COMPARISON OF TWO METHODS 

Despite the same number of repetitions, yielding the same 

values of estimators using two methods seems unrealistic, 

yet such congruence would allow for considering these 

methods equivalent. Variation in results between the 

methods does not necessarily indicate a total divergence in 

evaluating the values of expected parameters P or the 

measures of their variations. Estimators are also random 

variables.  

A comparative analysis of the results of the goals of the 

interdependence between the variables observed in both 

methods was recommended.  

Spearman’s rank correlation was used for this purpose 

[24]. The correlation coefficient ρ  calculated in the 

correlation formula allows for measuring the strength of 

relation between the variables being compared, not only 

their compatibility.  

Unlike the traditionally used Pearson’s test, Spearman’s 

test does not require any assumptions considering the 

distribution of variables being analysed, and allows for 

assessing non-linear dependencies. The interpretation is 

similar to the classic ρ – Pearson correlation measure [25].  

If the value of the correlation coefficient ρ  is close to 1, 

the relation is strong and positive. ρ  values close to zero 

mean no relationship between the variables or a very weak 

relationship. 

Table 1. contains test results for parameter oz . Correlation 

coordinates were verified using a test of significance of the 

correlation coefficient at confidence level α=0.005.  

The following hypotheses were stated: H0 – averages differ 

significantly, so relationship does not exist: ρ =0, relative to 

the alternative hypothesis: H1 – averages do not differ, the 

relationship of characteristics is significant: ρ ≠≠≠≠0, using 

statistic asymptotic t approximation (6), [26].  

 

2

1 2
−

−

= Mt

ρ

ρ
,                           (6) 

 

where: ρ  - estimated correlation coefficient, M – sample 

size, and t is distributed approximately as Student’s 

distribution with M − 2 degrees of freedom under the H0. 

 
 

Table 1.  Test of lack of relation between the estimate of the expected value of  coordinate 
oz . 

 

M=50 M=100 M=1000 
Parameters 

run 1 run 2 run 3 run 1 run 2 run 3 run 1 run 2 run 3 

MC -15.10925 -15.10908 -15.10895 -15.10880 -15.10894 -15.10897 -15.10894 -15.10901 -15.10899 )( ozµ exp. value 

estimated, mm LHS -15.10899 -15.10899 -15.10899 -15.10899 -15.10899 -15.10899 -15.10899 -15.10899 -15.10899 

MC 0.00097 0.00094 0.00116 0.00092 0.00100 0.00092 0.00099 0.00094 0.00097 )( ozσ  std. dev. 

Estimated, mm 
LHS 0.00092 0.00076 0.00077 0.00090 0.00098 0.000898 0.00089 0.00088 0.00086 

MC 0.00388 0.00354 0.00482 0.00352 0.00384 0.00338 0.00392 0.00357 0.00385 Coverage interval 

estimated at 

p=0.95, mm LHS 0.00364 0.00334 0.00311 0.00345 0.00354 0.00324 0.00346 0.00344 0.00341 

Spearman’s p – value 0.93327 0.71415 0.88587 0.51086 0.25328 0.52877 0.63458 0.16034 0.45544 
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For a smaller number of repetitions (M=50), high value 

p = 0.93327 was yielded, which showed a significant lack 

of relation between the compared estimates (if the p-value is 

less than α level, the null hypothesis H0 should be rejected), 

[26]. As the number of repetitions increased, the results of 

both methods came closer, which allowed us to assume, that 

at M=10
3
 repetitions there is a stronger relation (run1: 

p =0.16034) between the results which come from both 

methods. 

 

9.  SUMMARY  

The paper presents the application of the LHS method in 

testing the geometric software in coordinate systems as an 

alternative for the traditional approach to Monte Carlo 

simulation. The basis for this method is the stratification of 

sampled distribution of input variables, whose 

representation is available as a result of overlapping the 

simulated partial errors for simulated surface. Inside each 

layer, numbers corresponding to the probability are sampled 

and then used to create the permutations of the coordinates 

of points.  

The tests were designed to examine whether the 

modification of the MCM results in improved estimates of 

the statistical parameters of the variables that are analysed 

by the software. The application of the LHS method was 

meant to shorten the testing time, as well as to improve the 

reliability of estimates of chosen characteristics of the model 

in question.  

Summing up the study, it can be seen that both methods 

have some advantages and disadvantages. One joint 

advantage of both methods is their simplicity and ease of 

implementation. However, sampling using the traditional 

algorithm of MCM is more efficient in calculations. 

Creating permutations with multi-dimensional variables and 

high-density stratification in the LHS algorithm leads to a 

visible increase of testing duration. 

No spectacular reduction in coverage interval of  oz  – 

output variable was achieved. In both methods, similar 

values of estimated coverage intervals were observed, while 

the samples obtained using the LHS sampling yielded 

always shorter ones. 

The application of LHS algorithm gives more stable 

estimates of expected value in statistical sense, which may 

be important especially when the number of replications is 

small. The differences between these estimates and the 

respective value of model (i.e. reference value) seem to be 

not susceptible to replications in LHS algorithm, practically 

providing the same values irrespective of the number of 

trials of experiment.   

It can thus be concluded that sampling using LHS yields 

more precise estimation of the expected value of variables 

calculated by the software being tested.   

The statistical model used today for analysing coordinate 

systems is based on quasi–deterministic metrics. 

Experiences gained from application of the LHS algorithm 

allow us to believe that the employment of more efficient 

MCM tools will enable the design and implementation of 

metrics for the evaluation of geometric software quality 

more adequate to the statistical model of variables. 
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