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This paper proposes an approach based on acoustic signals for detecting faults appearing in synchronous motors. Acoustic 

signals of a machine were used for fault detection. These faults contained: broken coils and shorted stator coils. Acoustic signals 

were used to assess the usefulness of early fault diagnostic of synchronous motors. The acoustic signal recognition system was 

based on methods of data processing: normalization of the amplitude, Fast Fourier Transform (FFT), method of frequency 

selection (MoFS), backpropagation neural network, classifier based on words coding, and Nearest Neighbor classifier. A plan of 

study of acoustic signals of synchronous motors was proposed. Software of acoustic signal recognition of synchronous motors was 

implemented. Four states of a synchronous motor were used in analysis. A pattern creation process was carried out for 28 training 

samples of noise. An identification process was carried out for 60 test samples. This system can be used to diagnose synchronous 

motors and other electrical machines. 
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1.  INTRODUCTION 

AULT MONITORING of rotating electrical machines 

using mechanical, acoustic, electrical, and thermal 

signals is investigated with great interest. The analysis 

of acoustic signals is an essential strategy for diagnosis. The 

spectrum analysis of the recorded signals can lead operators 

to a reliable diagnosis of the motor. Analysis of the signal 

can also localize the fault of the motor [1]. 

Technical diagnostics involve assessing the technical 

condition of a machine by studying the properties of its 

work processes. The diagnostics is important for mining, 

metallurgy, processing industry and materials science [2-

28]. All rotating electrical machines generate acoustic 

signals. Modern diagnostic systems can diagnose early 

failure conditions of motors. These systems are based on the 

study of various signals such as: magnetic signals, 

ultrasounds, acoustic signals, images from the camera, 

vibroacoustic signals, and electric signals [13-28]. 

 

 
 

Fig.1.  Investigated synchronous motor. 

 

In recent years, the methods of acoustic signal recognition 

were developed [25-28]. Scientists proposed many methods 

for preprocessing, data reduction and classification of 

acoustic signals. In this paper, author proposes the method 

based on acoustic signals of a synchronous motor (Fig.1.). 

Results from this research can be used to diagnose electrical, 

mechanical, hydraulic, and pneumatic machines. Research 

was conducted using the 50 Hz - 15000 Hz frequency range 

because higher frequencies are not important for 

recognition.  

 

2.  STUDY OF INFORMATION CONTAINED IN THE ACOUSTIC 

SIGNAL OF SYNCHRONOUS MOTOR 

The greatest difficulties appear when the operator must 

choose the methods of acoustic signal processing. Acoustic 

signals of faultless and faulty synchronous motors are 

different. In order to find these differences, the appropriate 

signal processing methods must be used. This allows the 

detection of minute differences of an acoustic signal of a 

synchronous motor. The plan of study of acoustic signals of 

synchronous motors was proposed (Fig.2.). 

 

 
 

Fig.2.  The plan of study of acoustic signals. 
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3.  ACOUSTIC SIGNAL RECOGNITION PROCESS OF 

SYNCHRONOUS MOTOR 

The acoustic signal recognition system had two processes: 

The process of acoustic signal recognition and the 

verification process (Fig.3., Fig.4.). 

 

 

 
 

Fig.3.  A use case diagram of acoustic signal recognition system. 

 

 

 

 
 

Fig.4.  The acoustic signal recognition process with application of 

MoFS and selected classifiers. 

 

 

The process of acoustic signal recognition of synchronous 

motors contained the pattern creation process and the 

identification process. At the beginning of the pattern 

creation process acoustic signals were recorded. The 

soundtrack was split into small samples with a duration of 5 

seconds. Next, the signals were normalized. Afterwards the 

data were converted using the FFT and MoFS. In the pattern 

creation process 28 feature vectors were created for each 

type of motor fault. Each vector had 6 features. Nearest 

Neighbor classifier, neural network and classifier based on 

words coding used these 28 feature vectors to obtain 

patterns (trained neural network, averaged words vectors). 

The steps of the identification process were similar to the 

steps of the pattern creation process. In the identification 

process the audio file was split into smaller segments with a 

duration of 1-5 seconds. Some changes were also made in 

the classification step. In this step the Nearest Neighbor 

classifier calculated the least distance between the test 

sample and 28 training samples. For this purpose, it used 

Euclidean distance. In the classification step, neural network 

was used to identify the acoustic signal. The Manhattan 

distance was used to obtain output values of neural network. 

Classifier based on words coding compared new words 

vector with 4 averaged words vector. 

 

A.  Recording of acoustic signal 

The condenser microphone and the audio sound card were 

used for recording all of the acoustic signals of the 

synchronous motor [29]. Acoustic signals were recorded 1 

meter away from the motor. The soundtrack was recorded 

with the following parameters: sampling frequency – 

44100 Hz, 16-bit depth. Sampling and quantization were 

made by the microphone and sound card automatically. 

Next, acoustic signals were stored on a PC as WAV files. 

 

B.  Data splitting 

Acoustic signal recognition system split the soundtrack 

into smaller samples in order to analyze them (Fig.5.). It 

used a program implemented in a Perl scripting language. 

First, it split data (Fig.6.). Next it created a new wave 

header. 

 

 
 

Fig.5.  Soundtrack before data splitting. 

 

 
Fig.6.  Soundtrack file after data splitting. 

 

Afterwards the new wave header was copied and added to 

each chunk of data. New samples (audio files) were 

obtained (Fig.7.). 
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Fig.7.  Obtained samples. 

 

 

These samples were used in the identification process. The 

smaller sample was more precise in determining a fault, for 

example: 00:00:50-00:00:51, 00:00:50-00:00:55. The first 

example (00:00:50-00:00:51) is more precise than the 

second (00:00:50-00:00:55). 

 

C.  Normalization of amplitude 

The acoustic signal recognition system was based on 

pattern recognition. Patterns were obtained from samples of 

noise. Acoustic signals were recorded 1 meter away from 

the motor. Normalization of amplitude selected the 

maximum level in raw time waveform. Next it scaled down 

the amplitude of each point [30]. In this way, all samples 

were normalized in the range [−1.0, 1.0]. 

 

D.  Windowing 

Windowing minimized edge effects. These effects resulted 

in spectral leakage in the FFT spectrum. In this proposed 

approach the Hamming window was used. This window was 

used to avoid distortion of the overlapped window functions 

[30]. It was defined as: 

 

)
1-

2
cos(46164.0-53836.0=)(

l

iπ
iH              (1) 

 

where, l was the length of the window, H(i) was the 

amplitude of the sample, i was the index of the sample. 

The window length was 32768 points. It was equaled 0.74 

second for sampling frequency 44100 Hz. For this reason, 

the acoustic signal recognition system can recognize the 

noise samples of a duration of 0.75 seconds or longer. 

 

E.  FFT 

The FFT transformed data from the time domain to the 

frequency domain. It was applied instead of discrete Fourier 

transform. The advantage of this method was shorter 

calculation times. It used a window size of 2
k
. The result of 

the FFT was an array of coefficients [31]. These coefficients 

formed amplitudes of frequencies. The number of 

amplitudes of frequencies was dependent on the window 

length. The proposed method used window size equal to 

32768. Then the number of amplitudes of frequencies was 

16384. Next, these coefficients formed feature vectors 

(Fig.8.). 

 
 

Fig.8.  Frequency spectrum of acoustic signals of synchronous 

motor for 75, 100, 125, 150, 175, 250 Hz. 

 

F.  Method of frequency selection 

The method of frequency selection (MoFS) used the 

frequency spectrum. The states of motors were dependent on 

armature current and speed of rotor rotation. They were also 

dependent on the construction of the electrical motor. For a 

synchronous motor with electromagnetic excitation the 

formula was defined as follows: 

 

rotationsc Nk =                            (2) 

 

where: kc – a characteristic frequency of early failure state, 

Nrotations – number of rotations of synchronous motor per 

minute (rpm). 

 

The method of frequency selection was showed as follows: 

1) Depending on the rotations of the electrical machine, 

find the characteristic amplitude of frequency kc, 

corresponding to early failure state (equation 2). 

2) In the acoustic signal select amplitudes of frequency 

nkc, on the basis of the found amplitude of frequency 

kc, where n is a positive integer and nkc <22050. 

3) Calculate the difference ||X1nkc|-|X2nkc|| for the 

amplitudes of the frequencies nkc, where |X1nkc| - is 

the amplitude of the frequency nkc of the acoustic 

signal of the first state of machine, |X2nkc| - is the 

amplitude of the frequency nkc of the acoustic signal 

of the second state of machine. 

4) Select the amplitudes of the frequencies defined as 

follows: 

 

tXX nkcnkc >|||-||| 21
                       (3) 

 

where t – threshold of amplitude selection (4), n is a positive 

integer, ||X1nkc|-|X2nkc|| – the difference of amplitudes of 

frequencies nkc for two different states of the motor. 

Selecting the parameter t should find a compromise between 

the number of investigated states, the number of amplitudes 
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of frequencies and the accuracy of the calculations in the 

classification step. Too many investigated amplitudes of 

frequencies may cause numerical errors and errors in the 

classification step. Moreover, the differences between the 

amplitudes of frequencies may be different values. It can 

result in a different number of amplitudes for the 

investigated states of the motor. In this case, select a 

common characteristic amplitude of frequencies for all 

investigated states of the motor. Due to the above-mentioned 

observations it was assumed that the parameter t should be 

chosen according to (4) and (5). When the number of 

differences of the amplitudes of frequencies (number s) is 

greater than 7, the method loops calculation according to 

(4). Otherwise, the method finishes the calculation of (5). 

 

s

XX

t

s

s
skcskc∑

1=
21 |||-|||

=                        (4) 

 

7≤s                                 (5) 

 

where t – threshold of amplitude selection, s – number of 

differences of the amplitudes of frequencies nkc, (initially 

s=n). When s>7, then in subsequent iterations for s 

substitute the number of differences of the amplitudes of 

frequencies that remains after the previous iteration. For 

such a value of the parameter t the size of the feature space 

will not cause significant errors in the classification step. 

Moreover, the number of calculations performed in the 

following steps of processing will be reduced. Feature 

vector obtained after the last iteration has 1-7 features (|Xkc1|, 

..., |Xkcs|), where |Xkcs| is the amplitude with the s index for 

frequency xkc, x - is a positive integer. 

The method of frequency selection for acoustic signals of 

a synchronous motor was presented (Fig.9.). 

 

 
 

Fig.9.  The method of frequency selection (MoFS) for acoustic 

signals of synchronous motor. 

 

The feature vector (|Xkc1|, ..., |Xkcs|) will be used in the next 

step of processing. 

G.  Neural network with backpropagation algorithm 

Engineers and scientists developed a great variety of 

feature extraction and classification methods [32-47]. 

Classification methods are often based on artificial 

intelligence. This intelligence can be represented by 

backpropagation neural network [40-47]. 

There are many possible structures of neural network. The 

author selected the following structure presented in Figure 

10. The pattern creation process used feature vectors (6 

amplitudes of frequencies: 75, 100, 125, 150, 175, 250 Hz - 

see chapter 4) and backpropagation neural network. Neural 

network used character encoding to convert name of 

category (class wn) into the floating-point numbers (ASCII 

code divided by 128 – vector z). 

After the training of neural network it was necessary to 

perform the identification process. Floating point values 

were obtained on the output of neural network (vector o). 

These 5 values were converted to ASCII characters. In the 

identification process the value of the output neuron in the 

output layer was not equal to the exact value of the character 

in ASCII code divided by 128.  

One of the two characters was selected with the use of 

Manhattan metric (6). This metric calculated the shortest 

distance. 

 

∑
1=

|)-(|=),(

n

i

ii zod zo                        (6) 

 

where o and z are following vectors o=[o1, o2,…, ok], z=[z1, 

z2,…, zk]. 

For example, for the category of recognition "1coil" 

(acoustic signal of synchronous motor with one broken coil 

in stator circuit) the following values should have been 

obtained: 

ASCII-CODE (1)/128=49/128=0.3828125 

ASCII-CODE (c)/128=99/128=0.7734375  

ASCII-CODE (o)/128=111/128=0.8671875 

ASCII-CODE (i)/128=105/128=0.8203125 

ASCII-CODE (l)/128=108/128=0.84375 

 

 
 

Fig.10.  Structure of backpropagation neural network in acoustic 

signal recognition system. 

 

The test feature vector hnx was assigned to the class wn 

when: 

nnxi
i

n wdd →⇒)),((min=),( hzozo               (7) 
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where i=1,2,…, K,    n=1,2,…, K, 

zi, zn were 5-elements vectors having the names of the 

patterns classes, hnx was a test feature vector, o was a 5-

elements vector, obtained in output layer in the 

identification process, K was the number of classes. 

 

H.  Classifier based on words coding 

Classifier based on words coding was similar to Nearest 

Mean classifier. It used two phases to recognize the type of 

fault in the motor. First phase was called "pattern creation 

process". The second was called "identification process". 

Samples from training set were used in the pattern creation 

process. Next samples were processed into the feature 

vectors xnx=[x1, x2,…, xk]. A feature vector xnx contained 

amplitudes of frequencies 75, 100, 125, 150, 175, 250 Hz, 

so k=6. Next, these vectors were processed into the averaged 

feature vectors p1x, p2x,…, pnx (8), 

 

∑
1=

i

1
=

nB

in

nx B
xp                          (8) 

 

where pnx =[p1, p2,…, pk] was the averaged feature vector 

with n index, Bn was the number of the feature vectors from 

class wn, feature vector xi∈  wn. 

The averaged feature vector pnx was processed into the 

averaged words vector qnx. The averaged words vector was 

defined as: qnx=[q1, q2,…, qk], where q1, q2,…, qk were 

words. The averaged words vector corresponded to the type 

of fault of motor. It is very similar to Nearest Mean 

classifier which used the averaged feature vector. 

Coordinates p1, p2,…, pk of the averaged feature vector pnx 

were processed into words. These words formed the 

averaged words vector qnx. One word covered a range of 

values, 

 

→⇒)+,[∈

...

→⇒)3,2[∈

→⇒)2,[∈

2

1

igkk

ikk

ikk

qpkkgkgp

qpkkp

qpkkp

                (9) 

 

where k was rational number, g was the number of words, 

qig was a word with index ig of the averaged words vector, 

pk was coordinate with index k of the averaged feature 

vector. 

The proposed classifier used a specified number of words 

to classify the acoustic signal. This number was equaled 

260, because such value was good for recognition. To obtain 

good results parameter k was selected properly. This 

parameter was dependent on the number of words. 

The identification process used a noise sample form test 

set. This sample was processed into feature vector hnx. Next 

sample was processed into the words vector s=[s1, s2,…, sn], 

and s1, s2,…, sn were words. Next, words vector s was 

assigned to the closest class. The closest class was selected 

on the base of lexicographical comparison between words 

vector s and averaged words vector pnx. Next ASCII codes 

of two strings were analyzed. It is shown below. 

 
?

11 = qs   
?

22 = qs  

… 
?

= kk qs  

 

There was a problem to select the proper class of 

recognition. Author proposed the following equation to 

solve this problem: 
 

100%   =
NALC

NPRW
PVPRWn

                     (10) 

 

where NPRW - the number of properly recognized words, 

NALC - the number of all lexicographical comparisons 

(260), PVPRWn - the percentage value of properly 

recognized words. 

To obtain the proper class of recognition the following 

formula was proposed: 
 

K,…1,2,=      →⇒)(max nwPVPRW nn s       (11) 

 

where s - the words vector from test set, PVPRWn - the 

percentage value of properly recognized words. 

Values of the averaged words vector and parameter k were 

very essential for obtaining good results of acoustic signal 

recognition. For this reason calculations were carried out for 

various parameters k. 

 

I.  Nearest neighbor classifier 

Nearest Neighbor classifier was based on the training set 

and the test set. Noise samples from training the set were 

used in the pattern creation process. Next samples were 

processed into the feature vectors xnx=[x1, x2,…, xk]. Finally, 

the training set contained feature vectors x1x, x2x,…, xnx. The 

test set contained new feature vectors h1x, h2x,…, hnx. 

The method classified feature vectors based on the closest 

training examples. It contained two steps. The training step 

involved storing every training feature vector with its label. 

The identification step for a test feature vector was 

performed as follows: compute its distance to every training 

feature vector, next, select the closest training feature vector. 

In the proposed approach the Nearest Neighbor classifier 

used feature vectors to identify the type of fault in the 

motor. 

Next, the closest distance was calculated with the help of 

Manhattan distance. Manhattan distance was defined as the 

distance between two vectors. For vectors hnx and xnx with 

the length k it was expressed as follows: 
 

∑
1=

|)-(|=),(

k

i

iinxnx xhd xh                  (12) 

 

where hnx and xnx were feature vectors defined as follows: 

hnx=[h1, h2,…, hk], xnx=[x1, x2,…, xk]. 

Classes of types of faults of motor were denoted as w1, 

w2,…, wn, where n was the index of the class. The test 
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feature vector hnx was assigned to the class wn when d(hnx, 

xnx) was the closest distance: 
 

 K,… 2, 1,=    →⇒)),((min nwd nnxnxnx hxh       (13) 

 

Results of Nearest Neighbor classifier were dependent on 

features and selected measure of distance, e.g., Euclidean, 

Minkowski, Jacquard, cosine distance. The proposed 

method of classification used Nearest Neighbor with 

Manhattan distance. Other measures of distances were not 

analyzed in this paper. 

 

4.  RESULTS OF THE ACOUSTIC SIGNAL RECOGNITION 

The stator circuit of the synchronous motor contained 

broken coils and short circuit (Fig.11. – Fig.13.). The 

following operation parameters of the synchronous motor 

were measured: 

- faultless motor, IR = 30.9 A, Nrotations = 1500 rpm,  

Iexcitation ≈ 0 A, URS = 100 V, 

-  shorted stator coils (A3-B3) of stator windings of motor, 

IR = 31.2 A, Nrotations = 1500 rpm, Iexcitation≈ 0 A, 

URS = 100 V, Rs=2.5 Ω, 

-  broken coil (B1-B4) of stator windings of motor, 

IR = 24 A, Nrotations = 1500 rpm, Iexcitation≈ 0.3 A,  

URS = 100 V, 

-  broken coils (B1-B4, D1-D4, H1-H4) of stator windings 

of motor, IR = 36 A, Nrotations = 1500 rpm, 

Iexcitation≈ 0.245 A, URS = 100 V. 

 

When Nrotations was equaled 1500 rpm, then kc=1500/60= 

25 Hz. Method of amplitude selection selected 6 amplitudes 

of frequencies: 75, 100, 125, 150, 175, 250 Hz. 

 

 
 

Fig.11.  Shorted stator coils (A3-B3) of stator windings of 

synchronous motor. 

 

Measurements and analysis were carried out for acoustic 

signals of the faultless synchronous motor, motor with 

shorted stator coils (A3-B3), motor with one broken coil 

(B1-B4), and a motor with three broken coils (B1-B4, D1-

D4, H1-H4). The pattern creation process was conducted for 

28 samples with a duration of 5 seconds for each type of 

acoustic signal of a synchronous motor. Samples from the 

test set were used in the identification process. Efficiency of 

acoustic (electric, thermal) signal recognition was expressed 

by the equation:   

 100%   =
NAS

NPIS
ES                       (14) 

 

where: ES – acoustic (electric, thermal) signal recognition 

efficiency, NPIS – number of properly identified samples in 

the test set, NAS –  number of all samples in the test set. 

 

 
 

Fig.12.  Broken coil (B1-B4) of stator windings of synchronous 

motor. 

 

 
 

Fig.13.  Broken coils (B1-B4, D1-D4, H1-H4) of stator windings 

of synchronous motor. 

 

 
 

Fig.14.  Acoustic signal recognition efficiency of synchronous 

motor depending on length of sample for MoFS and neural 

network. 

 

Acoustic signal recognition efficiency of a synchronous 

motor depending on the length of the sample with MoFS 

and neural network was presented in Fig.14. This 

recognition efficiency was in the range of 57.5-100 %. 

Acoustic signal recognition efficiency of a synchronous 

motor depending on the length of the sample with MoFS 

and classifier based on words coding is shown in Fig.15. 

This recognition efficiency was in the range of 82.5-100 %. 



 
MEASUREMENT SCIENCE REVIEW, Volume 15, No. 4, 2015 

 

 

 173 

Acoustic signal recognition efficiency of a synchronous 

motor depending on the length of the sample with MoFS 

and Nearest Neighbor classifier was presented in Fig.16. 

This recognition efficiency was in the range of 93.75-100 %. 

 

 
 

Fig.15.  Acoustic signal recognition efficiency of synchronous 

motor depending on the length of the sample for MoFS and 

classifier based on words coding. 

 

 
 
Fig.16.  Acoustic signal recognition efficiency of synchronous 

motor depending on length of sample for MoFS and Nearest 

Neighbor classifier. 

 

5.  VERIFICATION OF THE METHOD 

Electric signals and thermal images were used to verify 

results of acoustic signal recognition (Fig.17.). Methods of 

recognition of electric and thermal images were 

implemented.  

These methods were discussed in the literature. 

Verification based on electric signal recognition was carried 

out. It used excitation current (Fig.18.). This verification 

method used a digital filter (which passes frequency at 

100 Hz), Fast Fourier Transform and the Nearest Mean 

classifier. Current signal recognition efficiency of the 

synchronous motor was 100 % , see equation (14). 

 

 
 

Fig.17.  Verification scheme. 

 

 
 

Fig.18.  Amplitudes of excitation current of synchronous motor 

depending on frequency 100 Hz. 

 
               a)                                 b) 

 
 

Fig.19.  a) Thermographic image of rotating rotor of synchronous 

motor with no damage, b) Thermographic image of rotating rotor 

of synchronous motor with damaged rotor bar [48]. 

 

Verification based on recognition of thermal images was 

carried out in the literature [48]. Thermal verification was 

conducted with application of image cross-section and linear 

perceptron classifier (Fig.19.). 

Thermal signal recognition efficiency of the synchronous 

motor was 100 %, see equation (14). The obtained results 

show that the diagnostic method based on acoustic signals is 

competitive with the diagnostic methods based on thermal 

and electric signals. 

 

6.  CONCLUSIONS 

This paper proposes an approach based on acoustic signals 

for detection of faults appearing in synchronous motors. The 

proposed method in this paper deals with the analysis of 

acoustic signals generated by a synchronous motor. Results 

of the acoustic signal recognition were sufficient enough for 

MoFS and neural network. Classifier based on words coding 

and Nearest Neighbor classifier generated good results.  

Acoustic signal recognition system was implemented for 

electrical rotating machines. This system can be used to test 

electrical rotating machines including synchronous motors. 
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In the future, new methods of recognition of acoustic signals 

will be developed. These methods will be supported by 

other diagnostic methods based on vibrations, thermal, and 

electrical signals. 
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