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Infrared thermography can measure the temperature of a surface remotely. In this article authors present a diagnostic method 

of incipient fault detection. The proposed approach is based on pattern recognition. It uses monochrome thermal images of the 

rotor with the application of an area perimeter vector and a Bayes classifier. The investigations have been carried out for direct 

current motor without faults and motor with shorted rotor coils. The measurements were performed in the laboratory. The 

efficiency of recognition using the area perimeter vector and the Bayes classifier was 100 %. The investigations show that the 

method based on recognition of thermal images can be profitable for engineers. The proposed method can be applied in mining, 

metallurgy, fuel industry and in factories where electrical motors are used. 
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1.  INTRODUCTION 

NFRARED THERMOGRAPHY can measure the 
temperature of a surface remotely. This type of energy is 
emitted by matter as a result of its temperature. All 

objects above 0 K (absolute zero) emit this type of radiation. 
It is the result of thermally excited electron oscillations and 
transitions within the matter. Thermal radiation can be 
viewed as a surface phenomenon, because radiation is 
emitted from the molecules. 

Direct current (DC) motors are designed to operate below 
a designated temperature (Fig.1.). Generally, the insulation 
life is decreased when temperature is increased. For this 
reason an overheated motor can be diagnosed by thermal 
images [1].  

Rotating machines are often used in industry. 
Development of new materials and their properties is 
important for the diagnostics of such machines [2-4]. There 
is also a wide research field on the development of methods 
for incipient fault diagnostics. Fault diagnostics in rotating 
machines is mainly carried out through vibration, electrical, 
acoustic, and thermal analysis [5-24].  

Thermal signals were used to identify overheated zones on 
machinery associated with faults. In the literature the results 
of the application of selected methods of thermogram 
analysis were presented [25]. Recognition of monochrome 
thermal images of electric motor was also discussed in the 
literature [26], [27]. A system for the diagnosis of the rotor 
bars of the induction motor was also shown in the literature. 
This system used spectral analysis and backpropagation 
neural network [10]. These analyses were conducted for 
synchronous and induction motors. It is a reason to analyze 
thermal images of a DC motor. 

Methods of image processing were also described [28-29]. 

The number of interesting image processing methods is 
growing. The purpose of research is to combine selected 
methods with thermal imaging. Thermal imaging systems 
enable localization of overheated zones in motors associated 
with faults. Thermal phenomena are essential for the 
following reasons: 
(1)  The windings dissipate power, 
(2)  Increased resistance causes a loss of electrical energy, 
(3)  The higher temperature of motors accelerates the aging 
process, 
(4)  Overheated components of motors can cause delays. 

 

Fig.1.  Analyzed direct current motor. 

 
In this work authors present the method of incipient fault 

diagnostics of a DC motor. The proposed approach is based 
on pattern recognition. It uses monochrome thermal images 
of the rotor with the application of an area perimeter vector 
and a Bayes classifier.  
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2.  THE PROCESS OF RECOGNITION OF THERMAL IMAGES OF DC 

MOTOR 

The process of recognition of thermal images has two 
phases. The first phase is a pattern creation process (Fig.2.). 
The second phase is an identification process. 
 

 
 
Fig.2. The process of recognition of thermal image of a DC motor 
with the use of an area perimeter vector and the Bayes classifier. 

 
Methods of image processing are used during these 

processes. A video sequence is recorded within the 
computer’s memory at the beginning of the pattern creation 
process. Next, monochrome thermal images are extracted 
from recording. A training set and a test set contained 
extracted thermal images. These images are converted 
through a binarization algorithm. After that, a circular 
averaging filter is used. Afterwards, area perimeter vectors 
are calculated. Next the training step of the Bayes classifier 
is carried out. 

The first steps of the identification process are the same as 
for the pattern creation process (binarization, circular 
averaging filter, area perimeter vectors). The last step of the 
identification process is the prediction step of the Bayes 
classifier. 

 

2.1.  Video sequence recording 

A thermographic camera detects thermal radiation. Based 
on detected temperature of the object’s surface, the 
thermographic cameras can create a thermal image. Usually 
the higher an object's temperature is, the more thermal 
energy this object emits. The thermographic camera was 
installed 0.25  above rotor of the direct current motor during 
the investigations (Fig.3.). Thermal analysis is performed 
using a thermographic camera and PC image analysis 
software. Grayscale images are recorded at a resolution of 
256 × 256 pixels. 

a)                                              b) 

 
 
Fig.3.  a) Rotor of DC motor with shorted rotor coils, b) thermal 
image of rotor of DC motor with shorted rotor coils. 
 

These images had 256 colors (resolution of 8 bits, values 
0-255). After that, the video recording was stored on a PC 
(filesystem) in AVI format (Audio Video Interleave). 
 

2.2.  Acquisition of thermal images 

25 monochrome thermal images are included in the video 
recording with duration of 1 second. A program in the Perl 
language extracts a single thermal image from the video. 
The program also uses mplayer library. Obtained thermal 
images have a resolution of 256 × 256 pixels. Thermal 
images were made under laboratory conditions. 

 
2.3.  Binarization 

The first step of image processing is binarization. It 
converts a grayscale image into a binary image. The brighter 
pixels of grayscale image form an object when values of 
pixels are greater than the specific threshold value. This 
method of binarization is called threshold above. 

 

a)                                               b) 

 
c)                                                d) 

 
 
Fig.4.  a) Thermal image of rotor of a faultless DC motor after 
binarization with threshold above 0.36, b) thermal image of rotor 
of a faultless DC motor after binarization with threshold above 
0.46, c) thermal image of rotor of a faultless DC motor after 
binarization with threshold above 0.56, d) thermal image of rotor 
of a faultless DC motor after binarization with threshold above 
0.66. 
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The method opposite of the above mentioned is called 

threshold below. Another method of binarization is called 

threshold inside. In this method pixels form a white object 

when values of pixels are between two specific thresholds. 

When binarization is finished white pixels (values 1) and 

black pixels (values 0) are obtained [30]. In this work 

authors used the method of binarization - threshold above 

(Fig.4., Fig.5.). 

 
a)                                               b) 

 
 
c)                                                d) 

 
 
Fig.5.  a) Thermal image of the rotor of a DC motor with shorted 
rotor coils after binarization with threshold above 0.36, b) thermal 
image of the rotor of a DC motor with shorted rotor coils after 
binarization with threshold above 0.46, c) thermal image of the 
rotor of a DC motor with shorted rotor coils after binarization with 
threshold above 0.56, d) thermal image of the rotor of a DC motor 
with shorted rotor coils after binarization with threshold above 
0.66. 

 
The threshold values of the binarization method were 

within the range of <0.36, 0.81>. 
 

2.4.  Circular averaging filter 

A circular averaging filter is useful for smoothing thermal 

images. Filling holes in the image is one of the main 

advantages of using this filter [31]. A circular averaging 

filter uses a square matrix of side 11 (pixels). Thermal 

images of a DC motor with binarization and a circular 

averaging filter were shown in Fig.6., Fig.7. 

 
a)                                               b) 

 
 

c)                                                d) 

 
 
Fig.6.  a) Thermal image of the rotor of a faultless DC motor after 

binarization with threshold above 0.36 and circular averaging filter, 

b) thermal image of the rotor of a faultless DC motor after 

binarization with threshold above 0.46 and circular averaging filter, 

c) thermal image of the rotor of a faultless DC motor after 

binarization with threshold above 0.56 and circular averaging filter, 

d) thermal image of the rotor of a faultless DC motor after 

binarization with threshold above 0.66 and circular averaging filter. 

 
 
a)                                               b) 

 
 
c)                                                d) 

 
 
Fig.7.  a) Thermal image of the rotor of a DC motor with shorted 

rotor coils after binarization with threshold above 0.36 and circular 

averaging filter, b) thermal image of the rotor of a DC motor with 

shorted rotor coils after binarization with threshold above 0.46 and 

circular averaging filter, c) thermal image of the rotor of a DC 

motor with shorted rotor coils after binarization with threshold 

above 0.56 and circular averaging filter, d) thermal image of the 

rotor of a DC motor with shorted rotor coils after binarization with 

threshold above 0.66 and circular averaging filter. 

 
 

2.5.  Area perimeter vector 

Each sample which is used in the pattern creation and the 

identification process produces a black and white image. 

This image contains white objects. Areas and perimeters of 

white objects are calculated. These 2 values form an area 

perimeter vector (area - sum of white pixels, perimeter - 

length of object perimeter). Perimeters of white objects are 

shown in Fig.8. - Fig.11. 
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a)                                               b) 

 
 
Fig.8.  a) Area and perimeter of thermal image of the rotor of a 

faultless DC motor after binarization with threshold above 0.36 and 

circular averaging filter, b) area and perimeter of thermal image of 

the rotor of a DC motor with shorted rotor coils after binarization 

with threshold above 0.36 and circular averaging filter. 

 
 
 

a)                                               b) 

 
 
Fig.9.  a) Area and perimeter of thermal image of the rotor of a 

faultless DC motor after binarization with threshold above 0.46 and 

circular averaging filter, b) area and perimeter of thermal image of 

the rotor of a DC motor with shorted rotor coils after binarization 

with threshold above 0.46 and circular averaging filter. 

 

 

 
a)                                               b) 

 
 
Fig.10.  a) Area and perimeter of thermal image of the rotor of a 

faultless DC motor after binarization with threshold above 0.56 and 

circular averaging filter, b) area and perimeter of thermal image of 

the rotor of a DC motor with shorted rotor coils after binarization 

with threshold above 0.56 and circular averaging filter. 

 
 
 
 

a)                                               b) 

 
 
Fig.11.  a) Area and perimeter of thermal image of the rotor of a 
faultless DC motor after binarization with threshold above 0.66 and 
circular averaging filter, b) area and perimeter of thermal image of 
the rotor of a DC motor with shorted rotor coils after binarization 
with threshold above 0.66 and circular averaging filter. 

 

 
 

2.6.  Bayes classifier 

Recently, many classification methods were developed in 

the literature [32-45]. The artificial intelligence in 

diagnostics of electric machines was discussed [15], [25].  

In this approach, the Bayes classifier is used. This 

classifier is an efficient learning method for machine 

learning. This approach uses statistical parameters. These 

parameters are associated with a posterior probability. This 

probability quantifies the degree of belief in the different 

values. Posterior probability is defined as: 
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where p(cj | d) - probability of instance d being in class cj 

(Posterior probability); p(d | cj) - probability of generating 

instance d given class cj; p(cj) - probability of occurrence of 

class cj; p(d) - probability of instance d occurring. 

The Bayes classifier assumes attributes that have 

independent distributions. For this reason, there is the 

following formula: 

 

)|()...|()|(=)|( 21 jnjjj cdpcdpcdpcdp          (2) 

 

This classifier assumes that features of feature vector are 

not related to other features. As a result, it requires a small 

amount of training data to classify the data. Classifier uses 

two steps: 

- Training step: parameters of a probability distribution are 

estimated with the use of the training samples. 

- Prediction step: probability of the test sample belonging 

to specific class is computed. 

Test sample is classified according to the higher posterior 

probability [31], [40]. 
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3.  THE PROCESS OF RECOGNITION OF THERMAL IMAGES OF 

DIRECT CURRENT MOTOR 

Two different classes of thermal images were analyzed. 
These classes are defined as follows: faultless DC motor 
(Fig.12.), and DC motor with shorted rotor coils (Fig.13.).  

The analyzed DC motor was connected with external 
resistance. This served as protection of the rotor windings of 
the motor. The operation parameters of the DC motor were: 
UENVDC = 220 V, IENCDC  = 4 A, UNRVDC = 75 V, INRCDC  = 

200 A, nS = 700 rpm, PM = 13 kW, 
where: UENVDC – excitation nominal voltage of motor, IENCDC 
– excitation nominal current of motor, UNRVDC - nominal 
rotor voltage of motor, INRCDC - nominal rotor current of 
motor, nS - rotor speed, PM - motor power. 
Each group of three loop rotor coils of a DC motor was 
shorted with the use of resistance RSC = 7.7 mΩ. 
 

 
 

Fig.12.  Scheme of rotor winding of a faultless DC motor. 
 
 

 
 

Fig.13.  Scheme of rotor winding of a DC motor with shorted coils. 

The measurements were performed in the laboratory of 
electrical machines. Two video sequences were recorded. 
These recordings contained thermal images of a faultless 
DC motor and a DC motor with shorted rotor coils. 20 
monochrome thermal images were used in the pattern 
creation process. 100 monochrome thermal images were 
applied in the identification process. Efficiency of thermal 
image recognition is defined as: 

 

%100=
NATI

NCITI
T                        (3) 

 
where: T – efficiency of thermal image recognition, NCITI – 
number of correctly identified test images, NATI – number 
of all test images.  

Efficiency of thermal image recognition of a DC motor 
depending on binarization threshold was presented (Fig.14.).  

 

 
 

Fig.14.  Efficiency of thermal image recognition of a DC motor 
depending on binarization threshold. 

 
The best results were obtained for binarization threshold in 

the range <0.46, 0.66>. When binarization threshold was 
0.81, the black image and T = 0 % were obtained. 

 

4.  DISCUSSION 

The main challenge for the system is the number of faulty 
states of the DC motor being recognized. It was found that 
good results for two states of direct current motor (faultless 
motor and motor with shorted rotor coils) can be obtained. 
Another issue is the number of DC motors. In this paper, 
one DC motor was analyzed. The best idea is to consider 
numerous machines and various states of machines.  

The first problem is access to a large number of machines. 
This is a real problem, because it requires strict cooperation 
with industry and machine operators. Moreover, a 
construction scheme of each machine is required. It should 
be defined what faults to look for after access to such a 
machine is granted. Real experiments with machines and 
time to prepare controlled faults are also necessary. Many 
different parameters of direct current motors like currents, 
voltages, power, and speed of rotation make for a very time-
consuming task. 

The second problem is that long durations of shorted rotor 
coils can cause permanent damage to a DC motor. This 
requires at the minimum, accessibility of spare parts or an 
electric motor replacement. 



 
MEASUREMENT SCIENCE REVIEW, Volume 15, No. 3, 2015 

 
 

 124 

The third problem is the time it takes (about 30 seconds) to 
heat up rotor coils. This is a problem for the early diagnostic 
system. In some cases after such duration the machine can 
accumulate a lot of damage. 

The next problem is that the surface of the rotors should be 
free of moisture and dirt. In one proposed approach, thermal 
images were made under laboratory conditions 
consequently, the system was working well.  

There are some considerations on environment conditions. 
Water vapor, carbon dioxide and other molecules can cause 
partial heat absorption or dispersion before it reaches the 
image sensor. Thermal image quality is also dependent on 
overall surroundings and general temperature. In the future, 
the authors plan to analyze electric machines in various 
weather conditions, varying temperature, humidity, etc. 

The last issue is the cost of the sensors. The cheapest 
thermographic camera in the market costs about $ 1000. In 
comparison, a digital voice recorder costs about $ 100.  

 

5.  APPLICATION 

The proposed method is applied in the following 
monitoring architecture (Fig.15.). The system takes 
advantage of an integrated IP camera that performs as a 
thermal image sensor for the presented thermal diagnostics 
method, an intermediate node for other sensors, and an 
advanced data server for transferring measurements to a 
network database. The number of such devices constitutes a 
monitoring network in which multiple objects (machines) 
can be supervised by the operator in remote locations or 
with the use of an external alarm system (e.g., via GSM 
network). 

 

 
 

Fig.15.  Monitoring system architecture. 

 
The presented architecture enables a fully automatic 

diagnostics process with the application of the proposed 
thermal recognition method. Additional analog sensors can 
be connected through a dedicated sensor adapter. It has been 
developed in hardware for collecting measurements and it 
interconnects to the camera using RS-485 interface. Such 
elementary sensors can directly measure objects and 
environment properties, e.g., temperature, humidity, 
vibrations, etc., in order to support the whole decision-
making system. 

The development of such a system also requires 
implementation of a dedicated operator application, which 
was obtained from the LabView environment. 

The use of a RS-485 terminal enables covering the area 
within the distance of over 100 m between the camera and 
additional sensors (that is, however, limited for the 
presented method by an effective video recording range). 

An acoustic sensor is connected to the built-in external 
line input of a camera. Network integration is achieved on 
the basis of IP protocol and standard network interfaces. 
This approach provides a convenient way of transmitting 
digital images and measurement data. 

The thermal network camera used in the experiments 
contained an uncooled micro bolometer sensor in spectral 
range 8-14 µm with a sensitivity of 0.1 K, in water-proof 
outdoor casing with a germanium window. 

 

6.  CONCLUSIONS AND FUTURE WORK 

The application of infrared thermography is essential for 
diagnostics of DC motors. This technique is helping 
engineers to predict any incipient failure. This ensures 
equipment safety and saves production loss. In this paper the 
method and the system of recognition of thermal images of a 
DC motor were shown.  

The investigations have been carried out for a DC motor 
without faults and a motor with shorted rotor coils. The 
results of recognition using an area perimeter vector and the 
Bayes classifier were 100 % (for two classes). The 
investigations show that the method based on recognition of 
thermal images can be profitable for engineers. The 
proposed method can be used in mining, metallurgy, fuel 
industry, and in factories where electrical motors are used. 
Unfortunately, it takes time to heat the rotor of a machine 
and the proposed method is not as fast as other methods of 
diagnostic such as: methods based on electrical or acoustic 
signals. 

In the near future, new applications of recognition of 
thermal images will be developed. There is also an idea to 
use thermographic images, vibrations, acoustic, and 
electrical signals together. 
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