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In this paper, a foot-mounted pedestrian navigation system using MEMS inertial sensors is implemented, where the zero-velocity 

detection is abstracted into a hidden Markov model with 4 states and 15 observations. Moreover, an observations extraction 

algorithm has been developed to extract observations from sensor outputs; sample sets are used to train and optimize the model 

parameters by the Baum-Welch algorithm. Finally, a navigation system is developed, and the performance of the pedestrian 

navigation system is evaluated using indoor and outdoor field tests, and the results show that position error is less than 3% of total 

distance travelled. 
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1.  INTRODUCTION 

PS IS AN IMPORTANT component in the positioning 

system and plays a key role in outdoor positioning. 

However, GPS continues to struggle indoors due to the 

failure of satellite signals to penetrate buildings [1]. 

Furthermore, recent developments in the field of smart 

mobile terminals have led to an increased interest in indoor 

positioning and navigation. In most recent studies, indoor 

positioning and navigation has been discussed in two 

different ways, one is Local Positioning System (LPS), and 

the other one is Pedestrian Dead Reckoning (PDR) [2]. 

Compared with LPS, PDR approach has a number of 

attractive features: autonomy, cost-effectiveness, no 

installing markers or instrumentation in advance [3]. 

Specifically, PDR is divided into stride and heading system 

(SHS) and inertial navigation system (INS) [4]. Pedestrian 

inertial navigation system which is based on MEMS inertial 

sensors has gradually become an indoor navigation solution 

due to its independence, portability, and low cost, and can 

be used in 3D navigation environment. 

Pedestrian inertial navigation system widely adopts a 

system framework that is characterized by extended Kalman 

filtering and strapping of MEMS inertial sensors on insteps, 

which is proposed by Foxlin [5]. The main problem of the 

system is error accumulation caused by inertial sensor drift 

error [4], [6], [7]. A considerable amount of literature has 

been published on this problem. Researchers found that two 

feet touch the ground alternately and stay for a short time for 

approximately 0.3 s-1 s in a normal walking cycle. The short 

interval is called the zero velocity intervals [8]. As the real 

velocity of foot in zero velocity intervals is zero, if a zero 

velocity state is detected, the velocity error can be 

eliminated. This algorithm is called zero velocity updates 

algorithm. Therefore, zero velocity detection is an extremely 

important part of the pedestrian navigation system. It 

provides the required information to reset the velocity error. 

Zero velocity detection algorithms can be divided into two 

kinds. One option is based on the hypothesis that the 

measured acceleration is constant and equal to gravity and 

the measured angular velocity is zero in zero velocity 

intervals. A range of zero velocity detection algorithms have 

been proposed based on inertial sensor outputs, where the 

main difference is the disposal method of sensor outputs and 

the compound modes of inertial sensors. In reference [5], the 

zero velocity intervals are determined based on inertial 

sensors (accelerometers and gyroscopes) output norms. If 

the outputs are smaller than some thresholds for a 

predetermined time, then the zero velocity is decided. In 

reference [9], the zero velocity is determined based on 

Z-axis accelerometer and Y-axis gyroscope outputs. In 

reference [10], the zero velocity is determined based on 

gyroscope output norms. In reference [11], [12], the zero 

velocity intervals are determined based on the variance of 

accelerometer values. In reference [13], the zero velocity is 

determined based on norms of accelerometers and 

gyroscopes along with variance of accelerations. In 

reference [14], the zero-velocity detection problem is 

abstracted as a hypothesis-testing problem. However, the 

proposed algorithms need corresponding threshold values, if 

the chosen threshold values are too small or large, the real 

zero velocity intervals will be missed and the wrong interval 

will be detected. The other option is using the walking 

characteristics to detect the zero velocity intervals. 

Typically, the walking motion is modeled as a repeating 

sequence of push off, swing, heel strike and stance. If each 

state is detected accurately, then zero velocity intervals can 

be determined reliably. 

Compared with the former algorithm which needs 

corresponding threshold values, the latter algorithm has a 

threefold advantage. To begin with, the latter algorithm is 

more reliable, because the threshold is constant, it may be 

suitable in some cases, but may be too small or large in 

some other cases. Secondly, the latter algorithm is based on 

the walking characteristics, not only the zero velocity 

intervals, but also the other stage can be determined, and the 

other stage is useful to verify the zero velocity intervals and 

inspire potential applications. Finally, the latter algorithm is 

a new research field which relates to pattern recognition, etc., 

therefore, the pedestrian navigation system will be extended 

with latter algorithm. 
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The aim of this paper is to design a pedestrian inertial 

navigation system using MEMS inertial sensors which is 

based on the hidden Markov model. Specifically, the zero 

velocity detection problems are abstracted as a hidden 

Markov model. The observations extraction algorithm is 

developed to extract observations from sensor outputs, in 

addition, a sample set and Baum-Welch algorithm are used 

to train and optimize the model. Finally, the performance of 

the HMM-based pedestrian navigation system is evaluated 

using indoor and outdoor field tests, and the results show 

that the proposed algorithm is reliable. 

The most relevant result is reference [8], where a zero 

velocity detection algorithm using a hidden Markov model 

is also used. The main difference is threefold. One is that 

statistical method is used in this paper to generate the initial 

observation probabilities while threshold values are used in 

reference [8]. The second difference is that a new 

observations extraction algorithm is developed. The data 

volume is only 5 % of sensor outputs. The third difference is 

that the Baum-Welch algorithm is used in this paper to train 

and validate the hidden Markov model. 

The paper has been organized in the following way. 

Section 2 explores characteristics of pedestrians through 

experiments. Section 3 abstracts the zero velocity detection 

into a hidden Markov model problem. Section 4 describes 

the pedestrian navigation system framework. Section 5 

evaluates the performance of the HMM-based pedestrian 

navigation system using indoor and outdoor field tests. 

 

2.  CHARACTERISTICS OF PEDESTRIANS WALKING MOTION 

Compared with traditional carriers of inertial system, such 

as aircrafts, ships and guided missiles, pedestrians are 

characterized by low speed, little mass, small inertial and 

periodic motion [15]. 

For the pedestrian walking motion, the movement depends 

on two feet. To be exact, two feet swing forward alternately, 

and the center of gravity of a pedestrian is moving 

horizontally with the rise and fall of a small scale. Two 

phases exist, one phase where the foot is firmly planted on 

the ground is called stance phase, and the foot is called 

supportive foot, providing a pivot point over which to vault. 

The other phase where a foot lifts from behind the 

pedestrian and swings to enter its stance phase is called 

swing phase, and the foot is called swing foot which breaks 

the fall. Therefore, the pedestrian walking motion can be 

characterized by alternate ‘vaulting’ of the body over a 

stiffened leg, with the fall being broken by the opposing leg 

[4]. 

In order to explore the motion characteristics of a 

pedestrian, inertial sensors are attached to the insteps to 

record inertial measurements at 120 samples per second. 

The Inertial Measurement Unit used in this work is the 

Xsens MTx sensor (model 28A53G25) (Xsens), as shown in 

Fig.1., which is the standard model with the accelerometers 

with a full scale of ±50 m/s
2
 and the gyroscopes with a full 

scale of ±1200 º/s. It has a size of 38×53×21 mm, and a 

weight of 30 grams. Therefore, it is small enough to be 

mounted on the instep of a pedestrian. 

The inertial sensors outputs are collected by a laptop 

which is connected to the experimenter through serial port. 

The change rules of acceleration and angular velocity of the 

walking motion are shown in Fig.2. 

 

 
 

Fig.1.  The MEMS inertial sensors MTX. 
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a) Acceleration along X axis 
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b) Acceleration along Y axis 
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c) Acceleration along Z axis 
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d) Angular velocity around X axis 
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e) Angular velocity around Y axis 
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f) Angular velocity around Y axis 

 
Fig.2.  The acceleration and angular velocity curves during  

walking motion. 

 

The data described above indicate that the acceleration 

changes periodically, especially, the acceleration along the 

X axis changes between 15 m/s
2
 and -35 m/s

2
, and the 

acceleration along the Z axis changes between -20 m/s
2
 and 

50 m/s
2
. Similarly, the angular velocity around the three 

axes changes periodically. Compared with X and Z axes, the 

angular rate around the Y axis changes significantly, 

specifically, between -7 rad/s and 9 rad/s. What is more, the 

periodical characteristics are more obvious. 

 

3.  THE ZERO VELOCITY DETECTION ALGORITHM 

This section studies how to describe the zero velocity 

detection problems with a hidden Markov model, such as 

description of observations, development of observations 

extraction algorithm to extract observations from sensors 

outputs, initial and train state transfer probability and 

observation probability. The hidden Markov model is a 

statistical Markov model on which the system being 

modeled is assumed to be a Markov process with 

unobserved states. The state is not directly visible, but 

output, dependent on the state, is visible. Each state has a 

probability distribution over the possible output. For 

pedestrian walking motion zero velocity detection, two 

random processes exist. One is measured acceleration and 

angular velocity with inertial sensors, which is a visible 

process. The other is transfer process of four states of 

walking motion, which is not visible. 

Hidden Markov model is a probability model used to 

represent the statistic property of the stochastic process and 

is characterized by model parameters. In order to define an 

HMM completely, following elements are needed [16]: 

(1)  N, the number of states of the model; 

(2)  M, the number of mixtures in each state; 

(3)  { }ijA a= , the state transition probability matrix 

 

 { }1
| 1 ,

ij t t
a P q j q i i j N+= = = ≤ ≤    (1) 

 

Where 
t

q  is the state at time t and 
ij

a  is the transition 

probability from state i  to state j ; 

(4)  ( ){ }j tB b O= , the output probability distribution 

where ( )j t
b O  is a finite mixture of Gaussian distributions 

associated with state j of the form: 

 

 ( ) ( )
1

, ,
M

j t jm jm jm t

m

b O c G Oµ
=

= ∑∑   (2) 

 

Where 
t

O  is the t-th observation vector, 
jm

c  is 

weighting coefficient for the m-th mixture in state j , and G 

is the Gaussian distribution with mean vector 
jm

µ  and 

covariance matrix 
jm

∑  for the m-th mixture component in 

state j . 

(5)   { }jπ π= , the initial state distribution that is used to 

describe the probability distribution of the observation 

symbol in the initial moment when t = 1. 

In order to abstract the zero velocity detection into a 

hidden Markov model, the states and observations are 

defined, and the state transition probability is initialized, in 

addition, the observation probability is initialized using the 

statistical analysis method, finally, the estimated state 

transition and observation probabilities are optimized using 

the Baum-Welch algorithm. 

 

3.1.  States and observations 

Four states alternate in turn in a walking cycle, as is shown 

in Fig.3. The push off state is defined as state A, swing state 

is defined as state B, heel strike state is state C and stance 

state is state D. As angular velocity around Y axis changes 

significantly (see Fig.2.e)), so it is chosen as observations. 

Fig.4. shows angular velocity changes during one walking 

cycle, and it is divided into four parts according to four 

states. As mentioned above, Y axis angular velocity is used 
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to construct observations. Each state will have a different 

value in different cycle due to the randomness of walking 

motion. In order to describe each state, angular velocity is 

subdivided into 15 grades (see Fig.4.). So, 4 states (A, B, C 

and D) and 15 observations (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 

12, 13, 14 and 15) are defined. 

 

 

 
 

Fig.3.  The state transition during a walking motion cycle. 
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Fig.4.  The definition of states and observations of HMM. 

 
3.2.  State transition probability 

In pedestrian walking motion, the ideal state transition is 

A→B→C→D→A, so the ideal state transition probability is 

A. 

 

0 1 0 0
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However, considering randomness motion and external 

factors, state transition is not the same as the ideal one. 

Therefore, parameters in A should be adjusted to cope with 

special state transitions. And A1 is constructed to be the 

initial state transition probability, which is determined using 

the trial and error process. 
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In the following steps, the initial state transition 

probability will be optimized to get the final state transition 

probability. 

3.3.  Observation probability 

Observation probability indicates the probability of each 

state generating each observation. In order to get initial 

observation probability, the statistical analysis method is 

used to process the observations in the sample set. The 

sample set is raw angular velocity measured by MEMS 

inertial gyroscopes. In addition, the observations extraction 

algorithm is developed to extract observations from sample 

set. The flow chart is shown in Fig.5. 
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a) Raw angular velocity around Y axis. 
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b) Smoothed angular velocity around Y axis 
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c) Extreme points of angular velocity around Y axis 
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d) Removed redundant extreme in state B 
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e) Observations of angular velocity around Y axis 
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f) Removed redundant extreme in state D. 

 
Fig.5.  The flow chart of observations extraction algorithm. 

 

 
Table 1.  Statistical analysis results of observation. 

 

Probability (%) 
Observation 

State A State B State C State D 

1 72.3 12.3 0 0 

2 9.23 1.54 0 1.52 

3 1.54 0 7.69 1.52 

4 0 0 43.08 7.58 

5 0 0 30.77 4.55 

6 1.54 0 1.54 0 

7 0 1.54 0 0 

8 7.69 0 0 24.2 

9 7.69 0 0 60.6 

10 0 0 1.54 0 

11 0 3.08 0 0 

12 0 1.54 1.54 0 

13 0 1.54 1.54 0 

14 0 73.85 12.31 0 

15 0 6.15 0 0 

 

The algorithm is introduced in detail as follows: at first, 

raw angular velocity around the Y axis is stored in a vector 

(see Fig.5.a)); and then in order to eliminate small noise 

values, the vector is smoothed using moving average 

method (see Fig.5.b)) after that, the maximum and minimum 

values from the vector are used to describe each state (see 

Fig.5.c)). From experimental results, we find that 

consecutive extreme values exist within state B and D. 

Because consecutive extreme values stand for the same state, 

so redundant extreme values are deleted (see Fig.5.d) and f)); 

then, the observation value is used to present the processed 

Y axis angular velocity according to 15 grades (see Fig.4. 

and Fig.5.e)). As mentioned above, observations from raw 

angular velocity are acquired and the data volume is only 

5 % of raw data volume. The result obtained through the 

analysis of observation vector is shown in Table 1. 

 

3.4.  Estimated probability optimization 

As mentioned above, state transition probability and 

observation probability have been initialized. In order to 

optimize the model parameter, the Baum-Welch algorithm 

and the sample set were used to train the model parameter. 

The adopted sample set (data volume is 55459) was 

collected in an experiment. The Baum-Welch algorithm is a 

particular case of a generalized expectation-maximization 

algorithm. It can compute the maximum likelihood estimate 

and posterior mode estimates for the parameters (transition 

and observation probabilities) of an HMM. The algorithm 

process is as follows [17]: 
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Where iπ , ija , jmc , jmu and jmU  are the model parameters, 

( ),
t

j mγ  is the probability of beginning in state j at time t  

with 
th

m  mixture component accounting for 
t

O  of the 

form 
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Optimized state transition probability and observation 

probability are as follows, and the state transition diagram is 

shown in Fig.6. The optimized observation probability is 

shown in Table 2. 
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Fig.6.  The state transition diagram. 

 
Table 2.  Optimized observation probability. 

 

Probability (%) 
Observation 

State A State B State C State D 

1 78.09 0 0 0 

2 16.98 0 0 0 

3 2.83 0 17.29 0 

4 0 0 46.63 0 

5 0 0 27.06 0 

6 2.11 0 5.27 0 

7 0 3.1 0 0 

8 0 0 0 38.95 

9 0 0 0 61.05 

10 0 0 0.49 0 

11 0 3.75 0 0 

12 0 0 3.26 0 

13 0 16.15 0 0 

14 0 68.19 0 0 

15 0 8.81 0 0 

 

It is important to note that optimized state transition 

probability and observation probability are based on raw 

angular velocity measured by MEMS inertial gyroscopes, so 

it relates to specific experimental parameters, such as the 

walking characteristics of experimenters and different 

experimental environment. Therefore, the optimized state 

transition probability and observation probability (obtained 

after applying the Baum-Welch algorithm) are not used for 

all the datasets, and the optimized state transition probability 

and observation probability should be optimized with 

different databases, just as the train process. 

 

4.  PEDESTRIAN NAVIGATION SYSTEM FRAMEWORK  

Today, pedestrian navigation system widely adopts a 

system framework that is characterized by extended Kalman 

filtering and strapping MEMS inertial sensors on insteps, 

which is proposed by Eric Foxlin, whereby the filter tracks 

the errors in the system state rather than the system state 

directly, named an error-state, or complementary filter. In 

addition to the values of state errors, the filter also estimates 

their error covariance and cross-covariance, which enables 

the filter to correct the position (not only the velocity) 

during a ZUPT. As a pseudo-measurement, zero velocity 

provides the required information to reset the state errors 

when the IMU is detected in stationary period between each 

footstep. During the normal walking, zero-velocity occurs 

during the stance phase, when one foot is carrying the full 

weight of the body, which has made the solution based on 

foot-mounted IMU a popular choice for the PIN system. 

In our system, a novel zero velocity detection algorithm is 

used, and the framework is shown in Fig.7. As mentioned 

above, the angular velocity around the Y axis is used to 

detect zero velocity. The navigation software based on this 

framework is developed and will be introduced in the next 

section. 

 

 
Fig.7.  The pedestrian navigation system framework diagram. 

 

5.  PEDESTRIAN NAVIGATION FIELD TEST 

In this section, the navigation software based on 

MATLAB platform is described; secondly, the field test is 

introduced; finally, a general description of the experiments 

is given. 

 

5.1.  Navigation software 

The experiments were run using custom software 

developed based on the MATLAB platform, which 

processes the data measured by inertial sensors in off-line 

way. The system is built on the extended Kalman filtering 

framework mentioned above. In addition, the relevant 

parameters, such as distance travelled, and displacement in 

3D space, are computed accurately. Finally, the trajectory of 

a pedestrian can be plotted in vertical view, side view, and 

stereo view. It is worth mentioning that the animation is 

used to perform the movement process. 

The user interface of the pedestrian navigation software is 

shown in Fig.8. 

 

 
 

Fig.8.  The User interface of navigation software. 
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5.2.  Field tests 

In order to verify the validity of our navigation system, 

several field tests have been conducted. Generally, the field 

test can be divided into two kinds according to the 

navigation environments, one is outdoor test, and the other 

is indoor test. A square is selected as outdoor field, and a lab 

building with complex interior structure is selected as indoor 

field. The lab building has five floors, as a general building, 

each floor is connected by stairs, and an interlayer exists 

between two floors. 

The experimenter is a male who is 1.80 m tall and weighs 

65 kg. In addition, the walking speed is 1.5 m/s on average. 

As mentioned above, the inertial sensor used is MTx 

(MTx-28A53G25) from Xsens technologies B.V., which is 

attached with shoelaces on the instep of the pedestrian. 

 

5.2.1.  Outdoor test 

The outdoor test was conducted on a square, and the 

planned path was along the sidelines of a square, which was 

a 3925 m
2
 circular area and the radius was 50 m, as shown 

in Fig.9. More specifically, two tests have been conducted 

on this square, one is rectangle walking motion which is 

plotted in red, and the other is circular walking motion 

which is plotted in blue. 

 

 
 

Fig.9.  The satellite photo of the test square. 

 

To begin with, the rectangle walking motion is analyzed. 

The perimeter is 75.00 m measured by the experimenter, and 

the path length is 74.39 m computed by the navigation 

system. The trajectory is plotted in vertical view as shown in 

Fig.10. As the route is closed, the start point and the end 

point are overlapping in theory, but the reality is different, 

as shown in Fig.10. and in Table 2. The displacement error 

is 2.3 m, 3.0 % of total path length. 

The second test is a circular walking test, and the planned 

path is plotted in blue as shown in Fig.9. The triangle 

symbol is the starting point, walking in the 

counter-clockwise direction until reaching the circular 

symbol, which is the end point. As mentioned above, the 

actual measured distance of walking path is 304 m, as 10 m 

distance exists between starting and end point. The path 

length is 310 m computed by the navigation system. The 

trajectory is plotted in vertical view as shown in Fig.11. The 

displacement error is 6 m, 2 % of total path length. 
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Fig.10.  The walking trajectory of rectangle walking motion. 

 

Table 3.  Navigation error of rectangle walking motion. 

 

Direction Displacement [m] 
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Y Axis 1.50 
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Fig.11.  The walking trajectory of circular walking motion. 

 
Table 4.  Navigation error of circular walking motion. 

 

Direction Displacement [m] 

X Axis 12.25 

Y Axis 0.4 

 

As mentioned above, the two outdoor test results show that 

accuracy of pedestrian navigation system is reliable, about 

2~3 % of total path length. Nevertheless, the outdoor tests 

are conducted on the ground, in order to research the 

navigation accuracy in buildings; the indoor tests are 

conducted, which will be discussed in the next section. 

 

5.2.2.  Indoor test 

The indoor tests are conducted in a lab building with 

complex interior structure. The lab building which has five 

floors, as a general building, each floor is connected by 

stairs, and an interlayer exists between two floors. 
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To begin with, the first test is analyzed, the walking 

planned path is a closed route from a point on NO.1 floor, 

then going upstairs to NO.2 floor, through the corridors, and 

going downstairs back to NO.1 floor, finally going back to 

the starting point. As the route is closed, the starting point 

and the end point are overlapping in theory, but the reality is 

different, as shown in Fig.12., which is a 3D view of the 

walking trajectory. In addition, the navigation error is shown 

in Table 4. And the height walking trajectory is shown in 

Fig.13. The displacement error is 1.95 m, 2.4 % of total path 

length. 
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Fig.12.  The 3D walking trajectory. 
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Fig.13.  The height walking trajectory. 

 
Table 5.  Navigation error of first indoor test. 

 

Direction Displacement [m] 

X Axis 1.25 

Y Axis 1.50 

Z Axis 0.10 

 

Secondly, another indoor test in the lab building was 

conducted, specifically, the planned walking path covered 

three floors, and the starting point was on NO.1 floor, 

climbing up to NO.3 floor and a rectangular path was 

followed on this floor, then climbing down to NO.1 floor 

through another flight of stairs. The end point deviates from 

the start point in the Y axis about 1.0 m. 
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Fig.14.  The 3D walking trajectory. 

 
The computed 3D walking trajectory is shown in Fig.14., 

and the height walking trajectory is shown in Fig.15. The 

navigation error is shown in Table 4. The displacement error 

is 1.80 m, 1 % of total path length. 
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Fig.15.  The height walking trajectory. 

 
Table 6.  Navigation error of second indoor test. 

 

Direction Displacement [m] 

X Axis 1.32 

Y Axis 1.22 

Z Axis 0.15 

 

As mentioned above, two outdoor navigation tests and two 

indoor navigation tests were conducted, which were 

processed with the pedestrian navigation software developed 

on MATLAB. The computed displacement in three axes was 

analyzed, the navigation error of outdoor and indoor 

navigation field tests was less than 3 % of total distance 

travelled. The walking trajectories were plotted in different 

view. The experimental results indicate that the pedestrian 

navigation system proposed in this paper can eliminate error 

caused by inertial sensors and other factors effectively, and 

the navigation algorithm is suitable for horizontal navigation 

and stereo navigation, and the navigation accuracy is 

acceptable. 
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6.  CONCLUSIONS 

Zero velocity detection is an essential part of pedestrian 

inertial system, it provides the required information to reset 

velocity estimated error, otherwise the velocity estimated 

error would increase linearly with time, and the estimated 

position error would increase at least quadratically. In this 

paper, in order to detect zero velocity state accurately, a zero 

velocity detection algorithm based on the hidden Markov 

model is proposed. The core idea is describing zero velocity 

detection with the hidden Markov model, and four states are 

used to describe the walking motion. Therefore, zero 

velocity detection is converted to detect a state in the hidden 

Markov model using the Baum-Welch algorithm. In 

addition, pedestrian navigation software was developed 

based on the extended Kalman filtering and strapping 

MEMS inertial sensors on insteps. Finally, employing the 

several indoor and outdoor navigation tests in lab buildings 

and squares, we evaluated the performance of pedestrian 

inertial navigation based on hidden Markov model proposed 

in this paper. The test results show that the position error 

was less than 3% of total distance travelled. In addition, it 

works well in indoor and outdoor navigation environment. 
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