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Heart rate variability (HRV) is an important dynamic variable of the cardiovascular system, which operates on multiple time 

scales. In this study, Multiscale entropy (MSE) analysis is applied to HRV signals taken from Physiobank to discriminate 

Congestive Heart Failure (CHF) patients from healthy young and elderly subjects. The discrimination power of the MSE method 

is decreased as the amount of the data reduces and the lowest amount of the data at which there is a clear discrimination between 

CHF and normal subjects is found to be 4000 samples. Further, this method failed to discriminate CHF from healthy elderly 

subjects. In view of this, the Reduced Data Dualscale Entropy Analysis method is proposed to reduce the data size required (as low 

as 500 samples) for clearly discriminating the CHF patients from young and elderly subjects with only two scales. Further, an easy 

to interpret index is derived using this new approach for the diagnosis of CHF. This index shows 100 % accuracy and correlates 

well with the pathophysiology of heart failure.  
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1.  INTRODUCTION 

ULTISCALE SYSTEMS possess complicated 

nonlinear interactions and consist of multiple 

subsystems. A cardiovascular system is the best 

example of multiscale system and heart rate variability 

(HRV) is an important dynamical variable of it, which refers 

to the beat-to-beat alterations in the heart rate. The 

important feature of HRV is that a variable heart rate is a 

normal physiological feature. Even under constant 

environmental parameters and without any perturbing 

influences the HRV shows spontaneous fluctuations.  

In healthy subjects, the sinus node of heart spontaneously 

depolarizes approximately at a rate of 100 beats/min in the 

absence of sympathetic and parasympathetic inputs and is 

called intrinsic heart rate. Heart rate decreases on the release 

of acetylcholine from efferent vagal nerve endings 

(parasympathetic activation), whereas heart rate increases on 

the circulation of epinephrine or neural release of 

norepinephrine (sympathetic activation). As the sympathetic 

and parasympathetic inputs are generally antagonistic in 

nature in a stable physiological state the dominant level of 

activity determines the actual heart rate at that state. Based 

on the physiological state, the heart rate consistently 

responds in an expected direction (sympathetic and 

parasympathetic stimulation or blockade). Usually the R 

peaks of electrocardiogram (ECG) are taken as heart beat 

instants and consequently the inter beat intervals are 

obtained as the time interval from one R peak to the next 

one. When these R-R intervals are plotted against their beat 

number, it shows the alterations in the heart rate over a 

period of time (i.e., HRV) and is called a tachogram (Fig.1.). 

Therefore, the balance between sympathetic and 

parasympathetic activities can be assessed using the HRV 

analysis [1]. 

In 1996, the Taskforce of the ESC/NASPE [2] published 

standards in HRV analysis and proposed several time and 

frequency parameters based on short-term (5-min) and long-

term (24-h) HRV data, which are broadly classified into 

time domain and frequency domain methods. However, 

nonlinear analysis methods are more appropriate means to 

get accurate information about the heart rate variability as 

the dynamics of heart rate is nonlinear in nature. 1/f scaling 

of Fourier spectra, H scaling exponent, Coarse graining 

spectral analysis, Poincare plots, and Correlation dimension 

are some of the emerging nonlinear analysis methods of 

HRV [2]. 

As Physiological systems are governed by mechanisms 

which are operating over multiple time scales, many 

methods, such as Scale dependent Lyapunov 

exponent(SDLE) [3, 4], Multifractal Analysis (MFA) [5–7] 

and Entropy analysis [8, 9] have been developed in the last 

few years for the analysis of  these complex physiological 

signals. By analyzing the degree of complexity, a greater 

understanding can be achieved on the fundamental 

mechanisms and their underlying dynamics of physiological 

systems. This can be only obtained by studying such 

systems on multiple time scales. In a recent study, 

Multiscale Entropy (MSE) analysis approach [10, 11] has 

been applied to 24 hour ECG recordings to analyze heart 

rate dynamics. 

Although HRV has been the subject of many clinical 

studies investigating a wide spectrum of cardiological and 

non-cardiological diseases and clinical conditions, a general 

consensus of the practical use of HRV in medicine has been 

reached only in two clinical scenarios: depressed HRV can 

be used as a predictor of risk after acute myocardial 

infarction, and as an early warning sign of diabetic 

neuropathy [2]. 

Depressed HRV has also been observed in patients 

suffering from dilated cardiomyopathy and congestive heart 

failure (CHF) [12]. Heart failure is characterized by 

increased sympathetic activity, which decreases the heart 

rate  variability.   The  ability  of  the heart  to fill  itself with 
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Fig.1.  Tachogram of      a) CHF patient     b) young healthy subject  

c)  old healthy subject. 

 

blood or empty the blood will be decreased in heart failure. 

Accumulation of fluid in various parts of the body is usually 

found in heart failure patients, and hence, it is called as 

congestive heart failure. 

The HRV linear and nonlinear measures are used as 

prognostic values of CHF for predicting the risk of mortality 

in most of the research studies [12–19]. Only a few 

researchers focused on diagnosis of CHF using HRV 

parameters. Isler and Kuntalp [20] reported 100 % 

sensitivity and 94.74 % specificity by using short-term time 

and frequency domain measures of HRV, including 

nonlinear measure wavelet entropy to discriminate CHF 

patients from Normal subjects. Further, they used Genetic 

algorithm (GA) in their study to get a better performance. 

The same authors in another study [21] reported 100 % 

specificity and only 82.76 % sensitivity. This increase in 

specificity is achieved by employing heart rate 

normalization in addition to K-nearest neighbor classifier 

and genetic algorithm for feature selection. Pecchia et al. 

[22] developed a classifier using Classification and 

Regression Tree (CART) to study the discrimination power 

of identified HRV standard measures and achieved a 

specificity of 79.31 % and sensitivity of 100 %. They also 

reported an increased specificity of 89.7 % by taking two 

non-standard long-term HRV measures into consideration.  

Sung-Nien Yu and Ming-Yuan Lee [23, 24] proposed two 

different classification algorithms to recognize CHF patients 

using HRV based on feature selection. One algorithm uses 

the conditional mutual information feature selector with 

uniform distribution (UCMIFS) and the other uses a GA 

feature selector. With UCMIFS an accuracy of 97.59 % was 

obtained in recognizing CHF patients by using 15 features 

derived from personal, time-domain, frequency-domain, 

Poincare and bispectral categories. GA feature selector uses 

features from bispectral analysis and recognized CHF 

patients with an accuracy of 98.79 %. Jing Hu et al. [25] 

proposed SDLE as a multiscale complexity measure to 

distinguish between CHF and healthy subjects. They 

achieved 100 % accuracy with false positive rate percentage 

of ≤ 5 %.  In all these studies, there is no report on the 

discrimination between CHF patients and healthy elderly 

subjects having more than 70 years of age and all these 

methods require huge data and lack the simplicity of 

screening CHF patients by using short-term data of as little 
as 500 samples. 

The present study aims for the development of an easy to 

interpret measure for the diagnosis of CHF, in particular, for 

screening large populations, without any complex classifiers 

or genetic algorithms and many other variables. This study 

also aims for diagnosis using short-term data comprising of 

only 300 to 500 RR intervals. In this paper, we proposed the 

Reduced Data Dualscale Entropy (RDDE) analysis method 

which can be successfully used to short-term HRV 

recordings to discriminate CHF patients from normal 

subjects. 

 
2.  METHODS & DATA 

A.  Data. 

This study is based on the data obtained from Physionet 

data bank [26], the MIT/BIH Normal database [26] and 

BIDMC congestive heart failure database [27]. The 

MIT/BIH normal database includes 18 long term ECG 

recordings of 5 men and 13 women having the age between 

20 and 50 years, referred to the Arrhythmia Laboratory at 

Boston’s Beth Israel Hospital. Further, these subjects were 

found to have no significant arrhythmias. The recordings 

were digitized at 128 samples per second. The BIDMC 

congestive heart failure database includes long-term ECG 

recordings of 15 subjects (11 men, aged 22-71 years and 4 

women, aged 54-63 years) with severe congestive heart 

failure (NYHA class 3-4). This group of subjects was part of 

a larger study group receiving conventional medical therapy 

prior to receiving the oral inotropic agent, mirinone. The 

individual recordings were sampled at 250 samples per 

second and were 20 hours in duration. Heart beat annotation 

files for these long-term ECG recordings obtained using 

automated analysis software with manual inspection and 

correction were also available in these databases.  

Another database used in this study is publicly available 

FANTASIA [28] database from the Physionet website. This 

database contains rigorously-screened twenty young healthy 

subjects between 21-34 years of age and twenty healthy 

elderly subjects (aged 68-85 years) ECG, and respiration 

signals of 120 minutes duration. Each group of subjects 

includes equal numbers of men and women. All the subjects 

are made to watch the movie Fantasia (Disney, 1940) in a 

resting position to maintain wakefulness. The signals were 

digitized at a rate of 250 Hz. Heart beat instances annotated 

using an automated arrhythmia detection algorithm and 

verified by visual inspection are provided in this database 

for all the signals. In this study, nineteen records from 

young group and nineteen records from elderly group are 

considered, because the two records f2o08 and f2y09 are of 

poor quality having lot of ectopic beats. 

B.  Multiscale Entropy analysis. 

In this section, we briefly describe the multiscale entropy 

analysis. To determine the complexity of finite length time 

series, Costa et al. [10, 11] introduced a new method called 

Multiscale Entropy (MSE) analysis, which is based on 

calculating the entropy on multiple time scales. The entropy 

which is used to quantify the regularity of the time series in 

MSE analysis is Sample Entropy (SampEn). In this paper, a 
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modified MSE method is used for the diagnosis of 

congestive heart failure. Entropy characterizes the rate of 

creation of information in dynamical systems and is one of 

the mostly used complexity measures for biomedical signal 

analysis. The potential application of complexity related 

metrics is to discriminate signals generated either by the 

system under different conditions or by different systems. 

Traditional entropy based measures quantify the degree of 

regularity by evaluating the appearance of repetitive patterns 

in the time series on a single scale only. Complexity 

incorporates correlations over multiple spatial and temporal 

scales, and exhibits relatively higher regularity compared to 

random phenomena. Complexity is associated with 

meaningful structural richness [10, 11]. Further, it is 

observed that single scale entropy estimates tend to show 

lower entropy value in physiological time series than in 

surrogate series. This is misleading as original series is more 

complex than the surrogate; the original data contains 

correlations at multiple time scales, whereas the surrogate 

data destroys the correlations [10, 11]. According to Costa et 

al., traditional entropy based measures assign higher entropy 

values to certain pathologic cardiac rhythms that generate 

erratic outputs than to healthy cardiac rhythms that are 

exquisitely regulated by multiple interacting control 

mechanisms [10, 11]. 

Consider a single-dimensional discrete time series 

consisting of N samples, 

 
{x1,....., xi,...., xN}, 

 
The consecutive coarse-grained time series, {y

(τ)
}, 

determined by the scale factor, τ , is to be constructed 

according to the equation: 
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where τ represents the scale factor and 1≤ j ≤ N /τ 

The length of each coarse-grained time series is N /τ. For 

scale one, the coarse-grained time series is simply the 

original time series. Next, SampEn for each scale using the 

following method is calculated. 
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Let nm(r) represent the number of vectors um(j) within 

distance r of um(i) where i, j ranges from 1 to (N-m) and j≠i 

to exclude the self matches.  
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um(i) is given by 
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For finite length N the Sample Entropy is estimated by the 

statistics 
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Sample Entropy is less dependent on time series length 

and is relatively consistent over broad range of possible r, m 

and N values [11]. 

We have calculated SampEn for all the studied data sets 

with the parameters m=2 and r=0.15x SD (SD is the 

standard deviation of the original time series). Fig.2. shows 

the average sample entropy values of the Normal and CHF 

datasets for a template length of m=1 to m=5 on the 

segments of data comprising of 20,000 samples. The values 

are almost constant from m=2 to m=5.  

 

 
 

Fig.2.  Average SampEn value of HRV signals on BIDMC CHF 

dataset (n=15) and MIT/BIH normal dataset (n=18) for different 

template lengths. 

 

We consider the application of MSE analysis to the RR 

interval records of Normal and BIDMC congestive heart 

failure databases of MIT/BIH database of the Physionet data 

bank. From each long-term data record we randomly 

extracted data segments of varying lengths (N=1200, 2000, 

3000, 4000, 6000, 8000, 10000 and 20,000 RR intervals) 

and the MSE analysis was carried out on each realization 

with the scale factor τ =20. We report in Fig.3. averaged 

SampEn with standard deviation of all the records of Normal 

as well as CHF databases versus scale factor for eight values 

of N. These results are encouraging and coincide with the 

previous studies that MSE analysis can be applied to short-

term data and there is a clear discrimination between the two 

groups in some of the intermediate scales [29-30]. Further, 

we have applied the MSE analysis on the HRV data of 

elderly healthy subjects of age greater than 70 years (data 

taken from FANATASIA database of the Physionet data 

bank) with N=4000 and compared with the MSE values of 

CHF patients. The results, depicted in Fig.4., show no 

discrimination between the aged people and CHF patients. 
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However, RDDE analysis resulted in excellent 

discrimination between healthy subjects and the CHF 

patients and it is described in the section 2(D). 

 

C.  Empirical mode decomposition. 

Empirical Mode Decomposition (EMD) is a signal 

processing technique used in combination with Hilbert 

Transform to analyze non-stationary, nonlinear multi-

component signals [31]. EMD decomposes a complex time 

series into a number of components called intrinsic mode 

functions (IMFs) based on a posteriori basis that is data 

dependent. By definition, an Intrinsic Mode Function (IMF) 

should satisfy the following two conditions.  

a)  The number of extrema and the number of zero 

crossings must be equal or may differ at most by one.  

b)  The local mean, defined by the average of the upper 

and lower envelopes, is zero everywhere. 

 

 
 
Fig.3.  Multiscale entropy analysis of HRV signals on BIDMC 

CHF dataset (n=15) and MIT/BIH normal dataset (n=18) for 

different time series lengths  a) 20000 samples b) 10000 samples  

c) 8000 samples  d) 6000 samples e) 4000 samples f) 3000 samples 

g) 2000 samples h) 1200 samples. 

The process of extracting IMFs is called sifting process 

and for a given signal f(t), t = 1,..., T; it can be implemented 

by the following procedure: 

1.  First all the maxima and minima of f(t) are to be 

identified, 

2.  Through cubic spline interpolation, all maxima are 

connected to generate the signal’s upper envelope, Fu(t) and 

similarly lower envelope Fl(t) is generated,  

3.  Determine the local average (i.e., on point-by-point 

basis) from the upper and lower envelopes, by using  
 

m1(t) = (Fu (t) + Fl (t))/2, 
 

4.  The first proto-IMF is extracted by subtracting the local 

mean from the signal,   h1(t) = f(t) – m1(t), 

5.  a)  If h1(t) satisfies the two conditions of IMF 

definition, then the first IMF is extracted,  c1(t)= h1(t) and 

f(t) is replaced with the residue  r1(t) = f(t) - c1(t); and the 

steps 1 to 5 (sifting process) are repeated to extract the 

second IMF, c2(t), 

     b)  If h1(t) is not an IMF, f(t) is replaced with h1(t), and 

the sifting process is repeated until the first IMF, c1(t) is 

extracted. 

This process is repeated until the residue is a monotonic, a 

constant or a single maximum or minimum. In practice, the 

second condition for IMF is only approximately satisfied 

and a function is accepted as an IMF, whenever the mean 

squared error between two consecutive proto-IMFs, hk-1(t) 

and hk(t) is smaller than a pre-specified threshold, which is 

very small. 

At the end of this process, the signal f(t) can be expressed 

as follows: 
 

∑
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n
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where N is the number of intrinsic mode functions, 

rN(t) denotes the final residue, which can be interpreted as 

the DC component of the signal,  

cn(t) are the intrinsic modes, orthogonal to each other and 

all have zero means. 

EMD of a typical RR interval time series for N=500 is 

shown in Fig.5. 

 

 
 

Fig.4.  Multiscale entropy analysis of HRV signals on BIDMC 

CHF dataset (n=15) and old healthy subjects of FANATASIA 

dataset, older than 70 years of age (n=5) for a data length of 4000 

samples. 

 

D.  Reduced data dualscale entropy analysis. 

The application of the EMD method to a signal results in 

producing N IMFs and a residue signal. If we consider cn(t) 

as the nth-order IMF then, the lower-order IMFs are high 

frequency components, while higher-order IMFs represent 

low frequency components. In this paper, the EMD is 
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considered as a time-scale analysis method, the increasing 

order of IMFs corresponding to the fine to coarse scaling of 

the signal. 

We replaced the coarse graining procedure for scaling the 

original time series in MSE analysis with the EMD. The 

advantage of using EMD for scaling is that all the scaled 

series are of the same length as the original time series. The 

MSE analysis is carried on all the IMFs generated for both 

the normal and CHF data sets taking N=1000 and is 

depicted in Fig.6. The circled portion of Fig.6. is interesting 

and encourages the authors to modify the method further. 

Now, as a further modification, the SampEn is calculated for 

two scales only. The IMF1 is taken as first scaled time 

series, IMF2 and IMF3 are added to make second scaled 

time series. The selection of only first three IMFs as scaled 

time series and their physiological correlation needs to be 

clarified and is described in the Discussion section. These 

modifications are primarily made to the original MSE 

analysis to obtain a clear index to separate out CHF patients 

from healthy population, irrespective of their age, by taking 

only two scales and very short data segments of only 10 

minute duration or 500 RR intervals.  

 

 
 

Fig.5.  Empirical mode decomposition of HRV signal showing all 

the extracted intrinsic mode functions (c1 to c8) for a data length of 

500 samples. 

 

3.  RESULTS 

In Fig.2. we showed the sample entropy values for 

different template lengths for a HRV time series. A large 

deviation can be observed in the SampEn value from m=1 to 

m=2 for both CHF group and Normal group. It is also 

obvious that the entropy value of CHF group is larger than 

the Normal people. The entropy value remained almost the 

same for m=2 to m=5. This is a misleading result, as 

depicted by Costa et al. [11], single scale based entropy 

measures assign higher entropy values to certain pathologic 

cardiac rhythms that generate erratic outputs than to healthy 

cardiac rhythms that are exquisitely regulated by multiple 

interacting control mechanisms. In Fig.3., the entropy values 

for HRV data of CHF patients are lower than the healthy 

people from τ = 2 onwards. The discrimination is very good 

for τ = 2 to 9 for 20,000 data points and as the data size 

reducing the discrimination capability decreased. A data 

segment of length 4000 is an optimum choice to have a clear 

discrimination at τ = 4 to 6. Beyond this value, if the data 

size is reduced the discrimination power of MSE will be 

lost. In Fig.4., MSE analysis of CHF group is compared 

with elderly healthy subjects of age 70 years and above. It is 

clear that the MSE method could not resolve the groups. The 

EMD based MSE analysis is shown in Fig.6. An interesting 

result is found in the circled portion of Fig.6. The entropy 

value of the normal group is more than the CHF group in the 

first scale (IMF1) and the entropy value of the CHF group is 

more than the normal in second scale (IMF2). This 

crossover of entropy values for the first two IMFs gave an 

excellent discrimination of CHF and Normal groups, 

irrespective of age. The results are shown in Fig.7. As we 

are going from the first IMF to the second IMF, the entropy 

is increased for the CHF group and contrastingly it 

decreased for the Normal group. From Fig.7. it is obvious 

that all the ages of healthy people have a negative slope 

indicating a decrease in entropy from IMF1 to IMF2 while 

the CHF patients have a positive slope indicating an increase 

in entropy from IMF1 to IMF2. The second coarse grained 

series is taken as IMF2+IMF3 instead of just IMF2 and is 

discussed in the next section. The slopes of all the lines in 

Fig.7. corresponding to Normal dataset, CHF dataset, Old 

healthy dataset and Young healthy dataset are given in 

Fig.8. There is 100 % accuracy found in distinguishing the 

CHF patients from normal subjects of young and aged 

group. 
 

 
 

Fig.6.  EMD based MSE analysis on BIDMC CHF dataset (n=15) 

and MIT/BIH normal dataset (n=18) for a data length of 500 

samples. 

 

4.  DISCUSSION  

In this paper we have presented EMD based MSE analysis 

to discriminate CHF patients from young, middle aged and 

elderly healthy population. We have shown that the MSE 

analysis of Costa et al. [10] can be applied to short-term 

time series of length about 4000 data points to discriminate 

between the CHF and Normal group consisting of only 

young and middle aged. It is also observed that as the data 

size is reduced the discrimination power of MSE decreases 

and it cannot resolve the CHF and Normal subjects for a 

data size of 2000 and below. The separating capability is 

observed to be high for τ values of 4, 5 and 6. We have 

found that the MSE could not discriminate the CHF from 
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elderly healthy subjects of age 70 years and above (Fig.4.). 

Wessel [32], Thuraisingham [33] and Huang XiaoLin [30] 

have also reported that the CHF patients and elder subjects 

cannot be discriminated using the MSE analysis.  

To be able to reduce the data size to a smaller interval of 

10 minutes (around 500 RR intervals) and effectively 

separate the old people from CHF group, we have 

successfully introduced EMD into the MSE analysis. Coarse 

graining procedure of MSE analysis is replaced with EMD 

to divide the original RR interval time series into different 

intrinsic mode functions. Each IMF is a scaled component 

of the original signal and MSE can be applied to all the 

IMFs. This reduces the number of scales to be considered 

and each IMF will have the same size of the original signal. 

For a simple MSE analysis, the 20
th 

scale component will 

consist of 1000 data points for a signal of 20,000 data points 

whereas a 1000 data point signal’s last IMF (coarsely 

grained) or first IMF (fine grained) will have the same 

length of 1000 data points which leads to an accurate 

calculation of SampEn. Isler and Kuntalp also studied the 

short term heart rate variability to discriminate the CHF 

patients from normal subjects. Their study involved many 

features of heart rate variability which makes complex 

feature selection and classification algorithms necessary to 

discriminate the people [21]. This study is the first of its 

kind to discriminate elderly people from CHF patients. We 

have found that, as we go from the first IMF to the second 

IMF, entropy increased for the CHF group and it also 

decreased for the Normal group. From Fig.7. it is obvious 

that all the ages of healthy people have a negative slope 

indicating a decrease in entropy from IMF1 to IMF2 while 

the CHF patients have a positive slope indicating an increase 

in entropy from IMF1 to IMF2. The second coarse grained 

series is taken as IMF2 +IMF3 instead of just IMF2 due to a 

striking agreement found by E.P. Souza Neto et al. [34] 

between the  LF and HF structure of the signal and the first 

three  IMFs. E.P. Souza Neto et al. [34] showed that HF 

component of RR intervals in time frequency domain is 

identified as IMF1 of the EMD and LF component of RR 

intervals in time frequency domain is identified as 

IMF2+IMF3 of the EMD. Now it has become possible to 

separate out the LF and HF components and process them 

independently. From Fig.7. it implies that the entropy in LF 

component is more than the entropy in HF component for 

the CHF group and the entropy in HF component is more 

than the entropy in LF component for the Normal group 

including elderly people. It is widely accepted that heart 

failure patients had high sympathetic and low 

parasympathetic outflows and healthy subjects had low 

sympathetic and high parasympathetic outflows [35]. Most 

of the studies attribute LF component of HRV to 

sympathetic activity and HF to parasympathetic activity. 

This may be a reason for what we observed in Fig.7. The 

slope of the line joining the SampEn value of scale 1 series 

(IMF1) and SampEn value of scale 2 series (IMF2+IMF3) is 

found to be an excellent discriminator of CHF and healthy 

subjects, as shown in Fig.8. The result can be interpreted 

just as ‘Positive slope’ or ‘Negative slope’. Positive slope 

indicates CHF, Negative slope indicates Normal. 

 

 
 

Fig.7.  Entropy analysis for two scales (scale1: IMF1, scale2: 

(IMF2+IMF3)) on a) BIDMC CHF dataset for data length of 1000 

samples b) MIT/BIH normal dataset for data length of 1000 

samples  c) BIDMC CHF dataset for data length of 500 samples d) 

MIT/BIH normal dataset for data length of 500 samples  e) Young 

healthy dataset of FANATASIA dataset for data length of 500 

samples f) Elderly healthy dataset of FANATASIA dataset for data 

length of 500 samples. 

 

 
Fig.8.  The slope values of all the lines in Fig.7., as a measure of 

discrimination of CHF patients from normal. 

 

 

 

7.  CONCLUSION 

Modified MSE analysis is carried out successfully on the 

HRV signals pertaining to the datasets of normal subjects, 

CHF patients, and young healthy and old healthy subjects 

taken from the Physiobank website. We have suggested an 

easy to interpret single measure to distinguish CHF patients 

from healthy people. This study finds a way to diagnose 

CHF especially while screening large populations by using 

short-term data. The HRV data of size 500 samples is 

sufficient for this method, which corresponds to only a 10 

minute ECG recording. Further, we are working on develo-

ping a standalone system using a Photoplethysmographic 

signal to derive HRV and identify CHF based on this 

modified method.  
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