
 

MEASUREMENT SCIENCE REVIEW, Volume 14, No. 4, 2014 

 

 

 190 

 

Multiple Iterations of Bundle Adjustment for the Position 

Measurement of Fiber Tips on LAMOST 

Mingchi Feng
1
, Yonggang Gu

2
, Yi Jin

2
, Chao Zhai

2
 

1 Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, 
230027, Hefei, China, fmc105@mail.ustc.edu.cn 

2 Experimental Center of Engineering and Material Sciences, University of Science and Technology of China, 230027, 
Hefei, China, yggu@ustc.edu.cn (corresponding author),  yjin@ustc.edu.cn, zhaichao@ustc.edu.cn 

 
In the astronomical observation process of multi-object fiber spectroscopic telescope, the position measurement of fiber tips on 

the focal plane is difficult and critical, and is directly related to subsequent observation and ultimate data quality. The fibers 

should precisely align with the celestial target. Hence, the precise coordinates of the fiber tips are obligatory for tracking the 

celestial target. The accurate movement trajectories of the fiber tips on the focal surface of the telescope are the critical problem 

for the control of the fiber positioning mechanism. According to the special structure of the LAMOST telescope and the 

composition of the initial position error, this paper aims at developing a high precision and robust measurement method based on 

multiple iterations of bundle adjustment with a few control points. The measurement theory of the proposed methodology has 

been analyzed, and the measurement accuracy has been evaluated. The experimental results indicate that the new method is more 

accurate and more reliable than the polynomial fitting method. The maximum position error of the novel measurement algorithm 

of fiber tips with simulated and real data is 65.3 µm, and most of the position errors conform to the accuracy requirement (40 µm).  
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1.  INTRODUCTION 

ITH THE CONTINUOUS DEVELOPMENT of the 

multi-object fiber spectroscopic telescope, the 

integrated number of optical fibers on the focal plane 

is increasing, from 400 of AAT [1] to 640 of SDSS [2], 

4000 of LAMOST [3], and 5000 of BIGBOSS [4]. As an 

important part of these telescopes, the fiber positioning 

system is capable of actuating the fiber-positioner and 

targeting the celestial object. With the consecutive increase 

of the fiber number and the operation speed, the fiber 

positioning cannot be accomplished artificially anymore. 

Therefore, the LAMOST has developed the parallel 

controllable fiber positioning technique. Aiming to control 

the fiber tips on the focal surface of the telescope accurately, 

the movement trajectories of the fiber tips must be 

accurately measured in advance, so the crucial problem is 

the fiber position measurement. This paper introduces a 

measurement method with high precision and robustness by 

using the bundle adjustment (BA) method with a few control 

points. 

At present, the position measurement methods include the 

contact measurement and the non-contact measurement. The 

contact measurement with a high measuring precision has 

been widely adopted, such as the laser tracker and the 

coordinate measuring machine (CMM). C. Read [5] utilized 

four laser tracker measurement systems for the surface-panel 

segments and developed a new method of analysis which 

was designated as the Mahalanobis Bundle Adjustment [6]. 

R. D’Amato [7] used CMM to measure angles by the 

geometric characterization of perpendicular planes and 

estimated the uncertainty of angle measurements. There are 

numerous fiber-positioners on the focal plane with micron 

diameter fibers, therefore, the efficiency and applicability of 

the traditional contact measurement method such as CMM 

and the laser tracker are insufficient to measure the fiber tip 

position. 

The vision measurement method featured with high 

precision and high efficiency can overcome these 

difficulties. This method can be classified as the linear CCD 

(Charge Coupled Device) measurement, the single view 

measurement, and the multi-view measurement. Shi et al. 

[8] proposed a high-speed measurement algorithm based on 

the linear CCD for the position of holes on a large plane. 

The high-resolution linear CCD associated with a grating 

ruler scanned the plane to be measured and grabbed the 

overall image of the holes on the plane. The fiber-

positioners are distributed on the focal plane of 1.75 meters 

in diameter and the focal plane has no space to install the 

linear CCD. A lot of stress and strain measurement methods 

are based on the single view [9], [10]. In the past years, 

several kinds of vision measurement methods for the 

LAMOST’s fiber position based on the single camera have 

been presented [11], [12], and these methods are based on 

the polynomial fitting method. The multi-view measurement 

method has been widely used. The subpixel edge detections 

of coded points properly distributed on complex surfaces are 

applied in the common marker-based method. This 

methodology is suitable for various applications, though it is 

typically based on time-consuming procedures [13], [14]. 

Recently, a developed system merged stereo vision and 

fringe projection to measure a large area free form surfaces 

with a freely definable density of points expressed in a 

global coordinate system [13]. This system relied on high-

precision Digital Light Procession (DLP) projector and the 

measuring precision cannot meet the requirement for fiber 

positioning. Moreover, the stereo vision and the fringe 

projection cannot measure complex surfaces like the 

LAMOST focal plane (as shown in Fig.1.). 
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Because all these methods are passive methods and the 

diameter of the fiber is micron scale, the direct feature point 

extraction will bring more errors into the measuring result. 

Fortunately, the fiber position measurement with the help of 

backward lighting is feasible, in which the fibers transfer the 

backward lighting to the measured fiber tips, and then, the 

camera takes pictures of the telescope focal plane. So this 

paper develops an active multi-view measurement method 

based on the bundle adjustment to improve the precision of 

the fiber position measurement. 

In general, sensor models are classified into two 

categories: the physical sensor model and the alternative 

generalized model [15]. The physical camera model, based 

on the collinearity condition, describes the rigorous imaging 

geometric relationship between the image point and the 

object point with parameters of physical meanings. In 

contrast, the polynomial fitting method belongs to the 

alternative generalized models utilizing only one view. The 

polynomial fitting method supplied with calibrated 

polynomial coefficients, expresses the object point 

coordinates as a ratio of two polynomials with variables of 

image coordinates. In practice, the polynomial fitting 

method is widely applied due to its capability of maintaining 

the accuracy of the physical sensor models and real-time 

calculation. But the coefficients of the polynomial fitting 

method must be obtained based on the known high-precision 

3D (3 Dimensions) points on the focal plane, and the image 

plane must keep parallel to the measuring surfaces. This 

method is only suitable for the measurement of planar 

object. Inconvenient actual use and ambiguous physical 

meaning of the parameters will affect the accuracy of the 

measurement results. In this paper, the accuracy of the 

proposed method and the polynomial fitting method will be 

compared in the same situation. 

In order to improve the measurement accuracy and 

adaptability, this paper develops a new method based on the 

multi-view reconstruction and the bundle adjustment to 

measure the 3D coordinates of fiber tips, in which the 

bundle adjustment is the most critical step. The bundle 

adjustment is the choice for many photogrammetry 

applications [16]-[18]. It has also come to take a prominent 

role in computer vision applications as the last step of many 

feature-based 3D reconstruction algorithms [19]-[21]. BA 

refines a visual reconstruction to produce jointly optimal 3D 

structure and viewing parameter (camera pose and intrinsic 

camera parameters) estimates. BA boils down to minimizing 

the re-projection error between the observed and predicted 

image points, which is expressed as the sum of squares of all 

the residual feature projection errors [16]. Thus, the 

minimization is achieved by using non-linear least squares 

algorithms, of which most of these articles apply the 

Levenberg–Marquardt (LM) algorithm [22]. 

Based on the special structure (as shown in Fig.1.) of the 

LAMOST telescope and the composition of the initial 

position error, this paper analyzes a novel bundle adjustment 

model with additional constraints of abundant measuring 

points and only one high-precision control point. The 

method of reducing the systematic error and the zero-mean 

Gaussian random error is presented, and the theoretical and 

actual experiment accuracy of this method is assessed. This 

paper is organized as follows: The mathematical models of 

camera and bundle adjustment are presented in Section 2. 

This section also describes the composition of the initial 

position error and comes up with the methods to reduce the 

error. Section 3 provides experimental results with both 

simulated and real data. Finally, Section 4 presents the 

conclusions. 

 

 
 

Fig.1.  The special structure of the LAMOST focal plane. 

 

2.  MEASUREMENT PRINCIPLE & MATHEMATICAL MODELING 

The camera model is the core part to the new method. The 

camera should be accurately calibrated to obtain consistent 

intrinsic and relative orientation parameters. A network of 

images is taken from successive locations as the camera is 

moved around an object. Corresponding image feature 

points extracted from these images and the initial estimate of 

3D object coordinates are used to measure the position of 

fiber tips, which are inserted into bundle adjustment with 

control points being geometric constraints. We will now 

briefly discuss the measurement process over multiple views 

and the proposed method. This section firstly introduces 

some basic theories, including camera calibration, bundle 

adjustment, initial estimates, and the iteration theory with 

control points. The last part of this section introduces the 

polynomial fitting method currently employed in the 

measurement. 

 

A.  Camera model and camera calibration. 

The common mathematical model of camera and the 

notation used in this paper are presented firstly. A camera is 

modeled by the pinhole: the relationship between a 3D point 

[X, Y, Z] and its image projection [u, v] is approximated by 

means of the rotation matrix and transformation matrix, as 

shown in (1):  
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Where, (X, Y, Z) are the object world coordinates of a 

measured point and (u, v) are its pixel image coordinates, 

and (Xc, Yc, Zc) are its camera coordinates. Zc is a nonzero 

scale factor. (u0, v0) denote the principal point in the imaging 

plane with the unit of pixel. fu and fv represent the focal 

length in pixels along the image axes u and v, while λ is the 

skew coefficient defining the angle between the u and v 

pixel axes. A is the intrinsic camera parameter. R and T, 

called the extrinsic parameters, are the rotation matrix and 

the translation vector from world coordinate frame to 

camera coordinate frame, respectively. The initial estimate 

of camera parameters can be calculated by the direct linear 

transformation (DLT) method directly. 

Actually, the real camera imaging is not ideal, particularly 

when a commercial Single Lens Reflex (SLR) camera is 

used. Therefore, the lens distortion on the imaging has to 

been taken into account. Commonly, only first-order or 

second-order distortion model is adopted to correct the 

radial distortion [23]-[25]. More rigorously, the radial 

distortion and tangential distortion should be adopted to 

correct the lens distortion [26], [27]. After considering the 

lens distortion, the new normalized point coordinates (xd, yd) 

are defined as follows. 

Let (x, y)
T
 and (xd, yd)

T
 be the distortion-free and the 

distorted normalized image coordinates, respectively. 
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where, 
2 2 2r x y= + .

2 4 6

1 2 51 k r k r k r+ + +  is radial 

distortion coefficient and dx is the tangential distortion. 
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k1, k2, k5 are the coefficients of radial distortion, and k3, k4 

are the coefficients of tangential distortion. (ud, vd) are the 

distorted pixel image coordinates. It requires an initial guess 

of intrinsic and extrinsic camera parameters, which can be 

obtained using the DLT method described by Hartley [28]. 

Then, the best estimate for the camera parameters can be 

obtained by nonlinear refinement based on the maximum 

likelihood criterion, such as the LM algorithm. In the 

simulation of the computational methods, inter-image 

homographies are computed with normalized DLT from 

perturbed image points. The initial value of the intrinsic 

parameters has also been determined with the assumption 

that the images are without distortion [29]. 

B.  Bundle adjustment. 

A new bundle adjustment problem with control point is 

described in this paper. The direct application of a 

traditional bundle adjustment which is influenced by various 

errors fails to get the accurate 3D coordinates. However, if 

the control point constraints are applied to the traditional 

bundle adjustment, BA will get better camera parameters 

and 3D point coordinates. BA utilizing the control point 

constraints can reduce the matrix dimension of the 

covariance matrix so that the total computation time is 

decreased. Experiment results indicate that the new method 

is better than the traditional bundle adjustment algorithm in 

the 3D accuracy and the convergence rate. 

Let f be an assumed functional relation of the camera, and 

we can get the reprojection error of an image feature point 

eij = ( ), , ,ij ijx f R T K X− , which is used to evaluate 3D 

reconstruction quality. xij is the actual image point 

coordinate of point i on image j; R, T are the extrinsic 

camera parameters; K presents the intrinsic camera 

parameters  and distortion coefficients in (2), (4);  Xij is the 

initial estimate of a fiber tip’s position; and f(R,T,K,Xij) is 

the predicted image coordinate according to (6).  

Further refinement can be conducted with bundle 

adjustment. It can be defined as the problem of 

simultaneously refining the 3D structure and viewing 

parameters (i.e., camera pose, intrinsic parameters, and 

distortion) of the cameras employed to acquire the images. 

And, BA in general is based on a non-linear iterative 

minimization algorithm (e.g., Levenberg-Marquardt 

method) and is used as the final step of the reconstruction 

process. In order to get precise results, it requires an initial 

solution that can arise from the steps described above. 

Moreover, it is possible to provide the algorithm with the 

covariance of each measuring point so as to minimize the 

Mahalanobis distance of the reprojection error [30] ： 
 

 ( )
2

, , ,
n m

ij ij

i j

E x f R T K X= −∑∑   (7) 

 

Where, it is assumed that n 3D points are seen in m views. 

In this paper, the nonlinear minimization problem is solved 

with the LM algorithm [22]. 

 

C.  Estimating initial camera parameters and 3D object 

coordinates. 

Initial estimates include the 3D coordinates of the object 

point, intrinsic and extrinsic camera parameters, and camera 

lens distortion. Better initial values of the bundle adjustment 

can avoid the solution falling into local optimization. The 

improvement of the initial solution accuracy of the camera 

parameters and the coordinates of 3D points is an essential 

step in the bundle adjustment optimization, which calls for 

the application of nonlinear optimization after the DLT 

method in camera calibration. 

The camera intrinsic parameters and lens distortion can be 

obtained by the aforementioned camera calibration method, 

and the designed 3D coordinates of the measuring points can 

be used as the initial coordinates. In actual measurement, 
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extrinsic camera parameters are calculated by the DLT 

method with the designed 3D coordinates of the measuring 

points and the corresponding image coordinates. And the 

relatively accurate extrinsic camera parameters can also be 

determined by some control points in the field of view. The 

initial position of a specific fiber tip can be easily obtained 

by its corresponding revolving angles of the central 

revolving axle and the bias revolving axle in the double 

parallel controllable structure. The initial fiber positions of 

the test plane are the designed 3D coordinates. 

 

D.  Bundle adjustment with control points and its iterative 

process. 

With the absence of additional constraints, the traditional 

bundle adjustment cannot meet the precision request. All the 

3D points are divided into control points and measuring 

points, while most of them are measuring points and only a 

few are control points (as shown in Fig.1.). Half of the 

measuring points are treated as a large number of low 

precision control points. Assuming that the difference 

between the initial coordinates and the actual coordinates of 

3D points is non-zero mean Gaussian, the difference of half 

points is also non-zero mean Gaussian. The calculation 

process is as follows: (1) First, half of all points are used as 

low precision control points, and the other half are 

measuring points, then the position errors are reduced and 

the average of these errors would converge to the mean 

value of the control point errors after carrying out the  

bundle adjustment. (2) Then, the roles of control points and 

measuring points are reversed and the position of 3D points 

is iteratively calculated and analyzed by bundle adjustment. 

When the error is no longer reduced, the process stops and it 

can be regarded as the coarse solution. (3) Finally, if there is 

any position error that cannot meet the requirement, this 

point acts as a measuring point and the other points act as 

control points, then BA will be carried out. This step can be 

regarded as the finishing solution. 

 

 
 

Fig.2.  The flowchart of the measurement process. 

 

E.  The influence of the systematic error and its elimination 

method. 

The actual initial position error of 3D points is non-zero 

mean Gaussian. The position error consists of the systematic 

error and the zero-mean Gaussian random error. The above 

method can greatly reduce the zero-mean Gaussian random 

error and the error of measuring points converges to the 

mean of the position errors of control points. But this 

method is incapable of reducing the systematic error and the 

systematic error will be brought into the final results. In 

order to eliminate the systematic error, a high-precision 

control point measured by high-precision CMM is set up in 

the measurement area. The BA results and the accurately 

measured results of this point are applied to calculate the 

systematic error, which is used for compensation of all 

measuring points so as to improve the accuracy of the 

results. The flowchart of the measurement process is shown 

in Fig.2. 

The actual coordinates of 3D points are simulated by 

adding the zero-mean Gaussian random error and the 

systematic error into the theoretical coordinates. The 

calculation results show that the systematic error is brought 

into the BA results. The control point coordinates are 

determined in advance by CMM. The BA results and the 

previous measured coordinates of the control point are used 

to get the systematic error which is available for 

compensation of the other points coordinate. A large number 

of measuring points with zero-mean Gaussian random error 

determine the scale and direction of all points, while the 

high-precision control point determines the systematic error 

of all points. 

 

F.  Fourth-order polynomial model. 

Due to the advantages of real-time calculation and high 

precision, the polynomial fitting method is employed in the 

LAMOST project to measure the coordinates of fiber tips, 

but it also has the disadvantage of weak adaptability. As a 

comparison object, this section simply introduces the 

realization of the polynomial fitting method. The fourth-

order polynomial model is defined as (8). X and Y are the 

center coordinates of the fiber tip on the focal plane while u 

and v are the center coordinates of the fiber tip on the image. 

The least square method is employed to calculate the 

coefficients a1 to a15 and b1 to b15 with at least 15 high-

precision known 3D points. Then, we can convert the image 

coordinate (unit: pixel) to the focal plane coordinate (unit: 

millimeter) based on the 30 coefficients. The least square 

criterion is adopted to solve the linear equation. By this 

method, less computing time is needed and real-time 

calculation can be carried out. Therefore, the measuring 

region of the focal plane is with enough accuracy. 
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3.  EXPERIMENT 

A.  Experiment setup and camera calibration. 

Based on the measurement method and analysis, the vision 

measurement system is set up, as shown in Fig. 3, which 

consists of a CMOS camera (NIKON D800) with the 

resolution of 7360 pixels×4912 pixels, a test board (small 

focal plane), a calibration board and a translation stage. The 

22×22 circles array is distributed uniformly on the surface of 
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calibration board. The distance between adjacent circles is 

3 mm. The positioning accuracy of the calibration points is 

2.5 µm. The shooting distance is set to 3 m, and the 

calibration volume is 500 mm×500 mm×500 mm. The angle 

between the camera and the calibration board is random. 

Then the calibration board is located and translated by the 

translation stage, and thirty-one images of the calibration 

board under different orientations are captured by the 

camera. The center of the circles is determined by a sub-

pixel edge extraction and ellipse fitting method. With the 

images of the circles array, the camera is calibrated with the 

DLT and nonlinear optimization method. Subsequently, 

another thirty images are taken and different errors are 

added to the theoretical coordinates of the calibration board 

to simulate the initial value of the actual situation. Finally, 

the camera parameters and the coordinates of 3D points are 

jointly optimized with bundle adjustment which optimizes 

the camera parameters while adjusting the coordinates of 3D 

points in a global optimization. 

The LAMOST pays more attention to the positioning 

accuracy of planar XY direction on the focal plane. The 

positioning accuracy of axial direction on the focal plane has 

no influence on observation, so experiments will only 

validate the positioning accuracy of XY direction. The 

robustness and accuracy of the algorithm presented 

throughout this paper are checked based on the experiment 

results. Results of the simulated data are firstly performed. 

Then, we present some results from real data experiments 

using a commercial camera. The experiments of real data 

apply the small focal plane which is shown in Fig.3. 

 

 
 

Fig.3.  The vision measurement system. 

 

B.  Simulated data. 

In order to verify the reliability and accuracy of the new 

algorithm, the initial position errors of all measuring points 

are Gaussian distribution with the mean being 500 µm and 

the variance being 200 µm, as shown in Fig.4.a. The 

representative pinhole camera model is adopted in this 

paper, but the actual camera does not strictly comply with 

this model. If the traditional bundle adjustment without 

dimension constraints is applied to calculate the coordinates 

of the measuring points, it is impossible to meet the 

accuracy requirement. For the purpose of improving the 

accuracy of position measurement, the dimension 

constraints, such as predetermined fiber control points, scale  

and points measured by the laser tracker [31], can be preset. 

When four accurate control points are employed, it can be 

observed from Fig.4.b. that the position errors of calculation 

results are very small, but another thing to note is that the 

accurate control points are difficult to obtain in practice. 

When the temperature is constant of （25.5 ~ 26.5 oC）, the 
eight fixed optical fibers (its structure is shown in Fig.1.) are 

measured by the CMM as control points. The measurement 

error of CMM is 3 µm and the expanded uncertainty is 

5.9 µm with a confidence level of approximately 95 %. 

When there are not enough control points for constraints, the 

traditional bundle adjustment is incapable to effectively 

improve the measurement precision. However, a mass of 

control points would reduce the number of observation 

fibers and influence the results of astronomical observation. 

The bundle adjustment with a mass of low precision control 

points (measuring points) can reduce zero-mean Gaussian 

random error but has no effect on the systematic error (as 

shown in Fig.4.c), while the proposed algorithm with 

multiple iterations can reduce the zero-mean Gaussian 

random error and a control point can eliminate the 

systematic error at the same time. Because each region 

needs only one high precision control point, it effectively 

reduces the number of the control points. The proposed 

algorithm not only improves the measurement precision, but 

also reduces the influence of control points on astronomical 

observation. The result is shown in Fig.4.d. The maximum 

position error is 65.3 µm, and most of the position errors 

conform to the accuracy requirement (40 µm). 

The current measurement method of fiber position in 

LAMOST is the polynomial fitting method, which requires 

the image plane being roughly parallel to the object plane. 

The 3D coordinates of known points and the image feature 

points are applied to calculate polynomial coefficients based 

on (8). Then, the XY coordinates of measuring points will 

be determined by the coordinates of the image feature points 

and the polynomial coefficients. The polynomial fitting 

method is suitable for measurement of planar XY 

coordinates and impracticable to work on Z direction. In the 

practical measurement, optical fiber unit has a small 

displacement (-0.7~0.7 mm) in Z direction. The calibration 

board is employed to simulate the actual situation. The 

polynomial coefficients are firstly solved by the calibration 

board, then the calibration board is moved back 0.5 mm and 

the XY coordinates of the corresponding 3D point are 

calculated based on the polynomial coefficients. The result 

is shown in Fig.5. The comparison between the proposed 

bundle adjustment and the polynomial fitting results shows 

that the bundle adjustment with a mass of low precision 

control points (measuring points) is more reliable and more 

accurate. The linear computation and high computation 

speed are the chief advantages of the polynomial fitting 

method.  

From the measurement results of simulated data listed in 

Table 1., the experimental results show that the new method 

and the polynomial fitting method converge reliably. The 

results with the new method are more accurate than the 

results with the polynomial fitting method. 
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(a)  Initial position error. 

 
 

(b)  Four high-precision control points. 

 
 

(c)  Results before reducing systematic error. 

 
(d)  Results after reducing systematic error. 

 
Fig.4.  Results of the new bundle adjustment algorithm with 

simulated data. 

C.  Real data. 

The test board processed by high-precision numerical 

control machine is applied in the actual experiment. The 

area of this steel plate is roughly equal to the actual 

measurement area. A series of holes for installing optical 

fibers  are  distributed  on  the steel plate, as shown in  Fig.3.  

 

 

 
 

Fig.5.  Results of the polynomial fitting method with simulated 

data. 

 

 

 
 

(a) Initial position error. 

 

 

 
 

(b) Results with real data. 

 

 
Fig.6.  Result of the new bundle adjustment algorithm with real 

data. 
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The positions of holes have been measured by high-

precision CMM. The outer sheath of fiber tip is closely 

installed in the hole, so the position of the hole is the 

position of the fiber. By comparison with the results of the 

present algorithm (as shown in Fig.6.) and CMM, it shows 

that the maximum position error is 34.1 µm, and all position 

errors conform to the accuracy requirement (40 µm). 

Table 2. shows that the new method converges reliably with 

real data. But this result is less obvious than the simulated 

data experiment. It is because the initial position errors of 

measuring points are relatively small. 

 
Table 1.  Measurement results of simulated data (unit: µm). 

 

 Initial 

error 

BA 

results 

polynomial 

fitting 

X 1050.3 53.1 176.1 Maximum 

Abs value Y 1038.3 65.3 263.2 

X 494.3 11.6 9.7 Mean 

value Y 495.6 -6.2 48.0 

X 199.6 12.3 53.0 Standard 

deviation Y 198.2 15.6 44.7 

 
Table 2.  Measurement results of real data (unit: µm). 

 

 Initial 

error 

BA 

results 

X 62.4 29.7 Maximum 

Abs value Y 48.0 34.1 

X 16.4 0.1 Mean 

value Y 22.5 -0.1 

X 18.9 11.3 Standard 

deviation Y 16.6 13.0 

 

4.  CONCLUSIONS 

The actual initial position errors of 3D points are 

composed of the systematic error and the zero-mean 

Gaussian random error relative to the theoretical 

coordinates. This paper introduces an accurate and robust 

position measurement method for the fiber tips based on 

iterative bundle adjustment and additional constraints which 

includes a large number of low-precision control points 

(measuring points) and only one high-precision control 

point. The mathematical models of camera and bundle 

adjustment are established with introduction of various lens 

distortion correction models. Then the DLT method is used 

to obtain the initial estimate of the camera. And, the most 

rigorous bundle adjustment method is applied to calibrate 

the camera, while the camera parameters are revised 

simultaneously to estimate the measuring points more 

accurately and reliably. The polynomial fitting method is 

also introduced as a reference method. 

Experiments with both simulated and real data indicate 

that the new method can converge reliably and the new 

method can provide more accurate coordinates of the 

measuring points than the polynomial fitting method. 

Compared with the measurement result of CMM or 

theoretical value, the maximum position error of the novel 

measurement algorithm of fiber tips with simulated data is 

65.3 µm, and most of the position errors conform to the 

accuracy requirement (40 µm). The maximum position error 

with real data is 34.1 µm, and all the position errors conform 

to the accuracy requirement. The new method is more 

accurate and more reliable than the polynomial fitting 

method in the same situation, and the measuring precision 

can meet the requirement for fiber positioning. Compared 

with the polynomial fitting method, the new method has 

additional advantages. First, less high precision control 

points are required; second, this method can measure all 

kinds of surfaces; and third, the changes of temperature and 

distance have little influence on the measurement accuracy. 
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