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Error models of the Analog to Digital Converters describe metrological properties of the signal conversion from analog to digital 

domain in a concise form using few dominant error parameters. Knowledge of the error models allows the end user to provide fast 

testing in the crucial points of the full input signal range and to use identified error models for post correction in the digital 

domain. The imperfections of the internal ADC structure determine the error characteristics represented by the nonlinearities as a 

function of the output code. Progress in the microelectronics and missing information about circuital details together with the lack 

of knowledge about interfering effects caused by ADC installation prefers another modeling approach based on the input-output 

behavioral characterization by the input-output error box. Internal links in the ADC structure cause that the input-output error 

function could be described in a concise form by suitable function. Modeled functional parameters allow determining the integral 

error parameters of ADC. Paper is a survey of error models starting from the structural models for the most common 

architectures and their linkage with the behavioral models represented by the simple look up table or the functional description of 

nonlinear errors for the output codes.    
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1.  INTRODUCTION 

NALOG TO Digital Converters (ADC) or Digital to 
Analog Converters (DAC) are the key components 
performing interrelation and conversion between the 

analog and digital worlds. Quality of analog quantity 
conversion into its digital representation is characterized by 
the error parameters of ADC. These parameters are in the 
form of either functional error parameters such as integral 
nonlinearity (INL(k)) and differential nonlinearity (DNL(k)) 
or integral errors such as signal to noise and distortion ratio 
(SINAD), total harmonic distortion (THD), effective 
number of bits (ENOB), etc. The functional error parameters 
describe deviations between ideal and real transfer 
characteristics as functions of the output code k. The 
integral error parameters describe conversion quality using 
simple numbers, and some of them can be mathematically 
derived from ADC transfer functions. Error parameters are 
the necessary basis for designing any proper error model. 
Their deeper description and definition is beyond the scope 
of this article, however, and can be found in the relevant 
standards [1], [2]. 

Error models of ADC represent a comprehensive tool 
presenting the impact of the real converter on the 
metrological quality of the analog to digital conversion. The 
error models describe nonlinearities in the crucial points 
within the converter’s range. The measured errors in the 
selected points allow estimating the error parameters, 
functional and integral, over the full range. 

Identified error models of ADCs are suitable for: 
• sub-circuit description in CAD simulators for the 

assessment of uncertainty and for evaluation of the 
implemented post-correction procedure [50]. 

• estimation of other integral error parameters of ADC, 
such as THD and SINAD, by simulation for any stimulus 
signal [30], [46]. 

• implementation of the fast ADC testing which is focused 
on the identification of the dominant error sources 

exceeding accessible testing uncertainty. Because of 
increasing resolution and quality of ADCs, end-users prefer 
to focus on the dominant error sources and their 
extrapolation by the error models. The fast ADC testing 
procedures allow reaching this objective faster than it is 
possible by the standardized testing procedures [5], [41-42].  

In the following article, a brief classification of ADC 
models is given in Section 2. Structural error models for the 
most popular ADC architectures are derived and 
experimentally verified in Section 3. Based on the study 
provided in the previous section, behavioral models are 
presented in Section 4.   

 
2.  CLASSIFICATION OF THE ADC ERROR MODELS 

Error models of ADC can be classified as architecture-
dependent models or as behavioral models (generic black 
box models) identified by the input- output characteristics.  

The most precise description is the one at the lowest level 
covering all circuit components, the interconnections among 
them, and the stray parasitic capacities determined by the 
position of circuits on the chip and printed board. This 
description is represented in the circuit-level electrical 
models. These models comprise the utilized technology with 
its impact on the component parameters and are included in 
the Computer Aided Design (CAD) systems. Circuit-level 
models are the most precise tool for the limited group of 
component and system designers.  

Electrical structural models describe ADC error 
characteristics through simplified equivalent circuits or 
functional blocks performing the conversion. They represent 
a compromise between accuracy resulting from the circuit 
level description and simplicity coming from knowledge of 
the internal architecture together with the dominant error 
sources.  

The most general description of the ADC error properties 
is presented in the behavioral error model, which does not 
take into account the physical realization of ADC at all.   
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The device is characterized by the input- output analytical or 
numerical relation, without going deep into the internal 
structure. The advantage of any behavioral model is the 
description of random errors like noise, jitter or glitches, as 
additional information to the systematic errors (INL(k), 
DNL(k)). 

 

 
 

Fig.1.  Classification of the ADC error models. 

 
Error modeling is generally approached with an “à-priori” 

or “à-posteriori” strategy [27]. The first strategy exploits 
available information on error source influences inside the 
conversion mechanism and/or architecture. The “à-
posteriori” strategy utilizes only the data from experimental 
tests. They serve for the identification of the appropriate 
mathematical description.  

Furthermore, a different model classification can be 
carried out according to the static or dynamic nature of the 
errors. Static models characterize the converter based on a 
constant input signal, whereas dynamic models consider a 
variable input signal. Time variation in the input signal is 
often suppressed by the sample and hold circuit at the input 
of ADC. The static model best describes this situation.  

Besides Analog to Digital and Digital to Analog 
Converters, the Data Acquisition Systems (DAQ) may 
employ one or more of the following circuit blocks: 
buffering amplifier, filters, nonlinear analog blocks, sample 
and hold circuit and analog switches. All those analog 
blocks are critical components. The analog input signal is 
influenced by a wide range of external and internal error 
effects which have an impact on the transfer function error. 
Weak possibility to reduce parasitic effects in the 
conditioning blocks is the main motivation for the system 
designers to reduce analog processing blocks to a minimum. 
Modeling of analog conditioning blocks is out of scope of 
this chapter. Proposals for the structural modeling of basic 
analog blocks are analyzed in [18-21],[23-27]. 

 
3.  ADC STRUCTURAL ERROR MODELS 

The most suitable ADC architectures for the structural 
error modeling are integrating ADC (I ADC), successive-
approximation ADC (SAR ADC) and cyclic ADC (C ADC). 

Their error models are strongly influenced by the conversion 
mechanism taking into account the dominant error sources 
inside their architecture. Sigma delta ADC (Σ∆ ADC) can 
be modeled similarly by the structure consisting of hardware 
and signal processing blocks. 

 
3.1.  THE INTEGRATING ADC. 

The integrating ADCs represent a wide range of 
conversion architectures, where the analog input signal x is 
transformed in the Analog Processing Section (APS) on the 
selected parameter of the intermediate pulse train 
represented by the pulse width Tx or frequency fx (Fig.2.). 
The averaged value of the frequency of the digital pulses fx 
or the averaged pulse width Tx in the conversion time 
interval T are measured in the Quantizing Section (QS) and 
converted to output code k. 

 

 
Fig.2.  Basic structure of integrating ADC. 

 
The structural error model of the integrating ADC is 

derived for the most popular architecture represented by the 
Dual Slope ADC (DS ADC) (Fig.2.). The conversion is 
performed in two phases. The input signal x amplified in the 
buffering amplifier (OA) is connected through the analog 
switch (SW) to the input of the integrator (INT) and 
integrated in the constant interval T from the zero level on 
the voltage in the first phase. During the second phase the 
integrator is discharged by the current generated by the 
reference voltage. Discharging time interval Tx is terminated 
in the instant when the output voltage of integrator achieves 
the zero voltage level. End of interval is determined by the 
same comparator (COM). The time interval Tx is equal to 
the first formula in (1). Finally, the actual time interval Tx is 
converted into a digital code k in the Quantizing Section 
(QS) [3], [47]. The time measurement implements the 
classical approach based on the counting of the clock 
periods T0 during time interval Tx by the digital counter. It 
represents the rounding operation expressed by angular 
brackets. Removed part after decimal point represents the 
quantization noise. 
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value x when the first time interval T is integer multiple of 
the period of the parasitic interfering signal. Elimination of 
the errors caused by the integrating components R, C and 
the switch resistance is another advantage of this principle. 
Synchronization of the interval T with the clock interval T0 
allows suppressing errors caused by the long term frequency 
instability. 

The nonlinear property of the input buffering amplifier OA 
and analog switch can be modeled by a polynomial 
approximation [3]. 
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The distorted signal xact is ideally integrated in the time 

interval T with the time constant of integrator τ. Nonlinear 
errors of the integrator including the dielectric absorption of 
the integrating capacitor C influence the polynomial 

constants of the integrator’s output actx , which is at the end 

of the first phase equal to:   
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The dependence of output signal on the input value x 

remains polynomial. The time duration Tx(x) of the second 
phase is expressed by the formula: 
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Constants Ai are dependent on the coefficients αi from (2), 

integration parameters and nonlinearities of integrator. The 
offset of the comparator and the error of the reference 
voltage VREF influence polynomial constants in (4), too.  

Integral nonlinearity (INL(k)) according standards is 
defined by the difference between the actual ADC transition 
level x(k), and the ideal one xid(k) for the edge between 
codes k, k+1 codes relative to the average code bin width Q. 
The actual transition code level x(k) is expressed easier in 
terms of the actual interval Tx(k) at the output of the Analog 
Processing Section. Replacing of the input x(k) by the output 
time interval Tx(x(k)) is possible due to the continuous linear 
relation (1) around the working point in the transfer 
characteristic. Given the k-th output code bin, the INL(k) 
points out the difference 
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Where a is the transfer constant of the idealized APS in 
(Fig.2.). Substituting (4) and (6) into (5), the integral 
nonlinearity is expressed by the polynomial: 
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The slope of the INL(k) is the function of the clock 

frequency instability and the total offset voltage at the input 
of the integrator. Terminal definition defines the integral 
nonlinearity in both ends of the signal full scale equal to 
zero INL(k=0)=INL(2N-1)=0 [1], [2]. As a consequence the 
constant A0 is equal to zero (INL(k=0)=0). Moreover, the 
averaged code bin width Q in (7) secures that nonlinearity 
INL(2N-1)=0 for any coefficients A1,A2,..Ap . 

A dynamic error model has been developed for time-
varying input signals during the conversion procedure. Let 
us consider that the input signal x(t) is changing with the 
constant slope s and is described by the time function x(t) = 
x+st. Here, x is the signal value at the start of the conversion. 
In the ideal case, the continuous quantity Tid(x) is obtained 
by the ideal amplification, integration and conversion in the 
time interval T. The ideal interval (6), analogously to static 
conditions is equal to: 
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In the real case, analogously to the static case for  

x(t)=x+st  in the equation (2) the value Tx(x,s) is: 
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The dynamic error function INL(k,s), after the substitution 

x=kQ is: 
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The INL(k) function contains the components of the first 

and higher order in both axes k and s of the phase-plane, 
respectively. Generally, the final error function INL(k,s) is 
described by the two-dimensional polynomial: 
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Here, the coefficients related only to k (e.g., B0, B1, B2) 
represent the error behavior in the static case and they are 
proportional to A0, A1, A2, from (11). Vice versa, the 
coefficients related also to s (e.g., B3, B4, B5) extrapolate the 
dynamic effects due to the signal slope. Therefore, the error 
surface in the phase-plane k-s is modeled by a two 
dimensional polynomial (11), whose degree is generally low 
(2 or 3) [18]. The dynamic model of I ADC allows the error 
function to be divided in static INL1(k) and dynamic 
component INL2(k,s) 
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A.  Extending the structural model for other ADC with 

integration principle. 

The common feature of all integrating ADCs is the 
intermediate linear conversion of the input signal x on the 
pulse width Tx or frequency fx. While the input APS 
performs conversion of the continuous input signal x into a 
selected parameter (frequency fx or pulse width Tx) of the 
intermediate binary train, the cascaded QS performs 
discretization of this parameter. Since the digital output data 
k from the QS represents the averaged value of the 
intermediate parameter, the output value k of the all 
integrating ADCs is proportional to the averaged value of 
input signal x (Fig.2.). Various I ADCs (single slope and 
multi slope ADCs, ADC with voltage to frequency 
converter, etc.) differ by the APS structure [31], [35]. 
Objective of these modifications is the suppression of a 
variety of the external error sources. The nonlinearity of 
operational amplifier, error parameters of the analog 
switches, imperfections of the integrator caused by its 
limited bandwidth and dielectric absorption of the feedback 
capacitor, offset of the comparator, etc. are the main error 
sources in the APS transfer function. The analog part 
remains always the main contributor to the whole 
conversion error. 

 
B.  Sigma delta ADC. 

The structural model of a sigma-delta ADC (Σ∆ ADC) 
consists of the differential amplifier, cascaded integrator and 
the comparator, which detects polarity of the voltage at the 
output of the integrator. The output signal from the 
comparator compensates the input voltage x through one bit 
DAC in the instances given by clock CLK. The feedback 
keeps the output voltage of the integrator around zero level. 
This APS is Σ∆ modulator which converts input value x into 
the pulse train px. The mean value of the pulse density px is 
proportional to x in time interval T [33], [42].  

The digital value k is obtained at the output of the digital 
LP filter which follows the Σ∆ modulator. The simplest 
digital LP filter is the pulse counter and represents the 
Quantizing Section. Resolution of the Σ∆ ADC can be 
controlled by setting of time interval T.  

There is a variety of the modifications in Σ∆ feedback 
according to its order and parallelism which results in the 
differently effective suppression of the quantization noise at 
low frequencies. Offset and drift of the comparator are 
compensated by the feedback and they have no influence on 

the final conversion error. Offset of the input amplifier and 
integrator cause the zero error at the beginning of the 
transfer characteristics. The DAC output voltage and 
subtracting circuit influence the error of the ADC transfer 
characteristic. The minimal number of analog components 
and the compensation of the error of the comparator is the 
reason why the Σ∆ ADC are able to achieve the highest 
accuracy. The only sources of the nonlinearities in the 
middle of FSR are the residual nonlinearities of the analog 
blocks. The relation between pulse density px and input 
voltage x is continuous. Therefore, the error function is 
continuous [35], [38]. The digital LP filter of QS, besides 
quantization error, does not contribute error to the final 
ADC nonlinearity. Error function of Σ∆ ADC can be 
expressed by the generalized polynomial error function (7). 
Digital low pass filter of Σ∆ ADC transforms polynomial 
function INL(k) into phase plain k,s similarly as it was for I 
ADC expressed in (11), (12).  
 

 
Fig.3.  Structural model of  Σ∆ ADC. 

 
C.  Experimental verification. 

The verification of structural error model of ADC with 
integration principle was performed in [4]. The polynomial 
order P is defined as the maximum value which, when 
overrun, does not significantly improve the model accuracy. 
Modeling accuracy is assessed by the least mean squared 
differences ∆INL between measured and modeled 
nonlinearities in nk measured codes k.  

Integral nonlinearity INL(k) of integrating ADC 
ICL7109PL measured and modeled by polynomial of the 
second order and the third order is shown in Fig.4. The 
polynomial coefficients A0, A1., AP were calculated by the 
Least Squared approximation in the static case. The integral 
nonlinearity was tested by the standardized static ADC 
method [1],[2]. The measured ADC represents a 12 bit dual 
slope integration principle of analog to digital conversion. 
The experimental results show that even polynomials with 
low order P (P=2 and P=3) are able to model INL(k) 
nonlinearities of I ADCs with sufficient accuracy. 

The experimental tests aiming at the dynamic model 
validation of Integrating ADC were carried out on the same 
converter ICL7109CPL with the full-scale FSR=+2.048 V, 
and the maximum conversion time TM=33.3 ms. The 
INL(k,s) were measured in the selected points (ki, sj) using 
the histogram test with the triangular stimulus with reduced 
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amplitude [19]. The resulting experimental values INL(ki,sj) 
in the grid of 10x20 points of the phase plane are shown in 
Fig.5.a). The corresponding modeled INLm(k, s) values are 
shown in Fig.5.b). The differences between the measured 
and modeled ADC nonlinearities are caused by the 
negligible error sources without clear relation to the ADC 
structure. Another reason for this difference is the testing 
uncertainty. Anyhow, the trend of parabolic shape of the 
smoothed testing results is obvious. The difference between 
both functions is in the grid 10x20 points of the phase plain 
(k,s) assessed by the mean squared error equal to 
∆INL=0.196 LSB. The results show good match of the 
dynamic structural ADC model with the experimental 
results. 

 

 
 

Fig.4.  Integral nonlinearity INL(k) of integrating ADC ICL7109PL 
a) measured and modeled by polynomial of b) second order c) third 
order. 

 
3.2.  THE SUCCESSIVE APPROXIMATION ADC 

The successive approximation conversion principle 
(Fig.6.) is based on comparison of internally generated 
voltage with unknown input value x. The internal voltage is 
generated by binary weighted digital to analog converter (B 
DAC) in a feedback loop. The B DAC is controlled by a 
digital value k generated in the successive approximation 
register.  

Main error sources of transition code levels T(k) are the 
comparator and the binary weighted DAC (B DAC). The 
comparator is affected mostly by the constant error x0 due to 
its offset. The DAC output voltage xDAC is given by (13). At 
the end of conversion, the input x will be allocated between 
the two successive actual transition levels 

 

00 )1()( xkxxxkx DACDAC ++<≤+           (13) 
 

A.  Binary weighted DAC. 

The B DACs utilize the summing of the binary weighted 
analog signals (current or voltage). The signals are 
controlled (switched) by single bits ki of the input code k.  

There are two main structures utilized for binary weighted 
DA conversion. First group utilizes direct connection into 
summing node of the weighting components where values 

of each component are proportional to the signal value of 
the corresponding bit. Second main group generates binary 
weighted signals from corresponding nodes of the R-2R 
ladder network [26]. The weakness of the first group is the 
problem with matching of the weighting components, 
however, switched capacitor technology reduces this 
drawback because of higher accuracy of the weighting 
capacitors [36], [37]. The main advantage of binary 
weighted DACs using current summing from the R-2R 
ladder network nodes in the virtual ground of summing 
amplifier is a simpler technological realization of the precise 
R, 2R resistors on a chip.  

 

 
Fig.5.  Measured a) and modeled b) INLm(k,s) of I ADC 

ICL7109CPL. 
 

 
Fig.6.  Macromodel of successive approximation ADC. 

 
The errors of the direct weighting circuits can be 

transformed on the circuit in Fig.7. consisting of two types 
of the current sources. The first one represents the ideal 
value of the current given by exact value of weighting 
resistance. The second type of the current source ki∆I(i) 
represents the error of total current in the branch, which is 
added to the ideal value of current in the branch. When 
network of weighting capacitors is used, the OA acts as 
integrator. 

Branches with the low resistance have increasing relative 
error contribution. This is the main disadvantage of DAC 
structures with direct current weighting.  
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The ratio of attenuations in neighboring branches of R-2R 
ladder network is equal to 2 for any circuit modifications. 
The only differences are types of binary controlled analog 
switches connecting binary graded currents from 
longitudinal branches in the buffering OA.  
 

 
Fig.7.  Simplified DAC with direct weighted components. 

 
The resistors RT(i), RL(i) in the transversal and longitudinal 

branches represent the error deviation to its ideal R,2R 
values. The error of i-th analog switch is modeled by 
nonzero resistance RS(i) and voltage offset US(i). According 
to the compensation principle the effect of the weighting 
errors RT(i), RL(i) can be transformed on the error voltage 
sources ∆UT(i),∆UL(i) connected to the ideal voltage value 

in each longitudinal node UREF/2(N-i). The values of error 

voltages remain constant for any position of switches 
because the ladder network currents are constant for any 
code value k. The error voltage sources ∆UT(i),∆UL(i) for 
any node can be transposed beyond the nodes i. Together 
with superimposed errors caused by analog switches a 
common error voltage ki∆U(i) is added to the ideal value 

ki
UREF/2(N-i)  in the i-th node. 

The next transformation of voltage sources with constant 
internal resistance into current sources leads to the final 
structural DAC error model as shown in Fig.7. [3], [10], 
[26]. Internal resistance connected to the virtual zero of 
operational amplifier (OA) does not contribute to the error 
behaviors. 

Taking into account all possible error sources, output 
voltage xDAC(k) of buffering OA consists of the ideal value 
given by the code k multiplied by averaged code bin width 
Q and superimposed errors weighted by the single code bits.  
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Errors involved by the OA are represented by the output 

offset ∆U0 and the gain error caused by feedback resistor RF 
is eliminated by terminal definition of INL(k) [1-3]. The real 
gain and offset errors influence, according to this definition, 
the averaged code bin width Q. Voltage ∆U(i) is the total 
error voltage contribution given by the i-th branch of the 

circuit in Fig.7. The DAC error function is a linear 
combination of the N distinct reference inaccuracies 
multiplied by binary values "0" or "1" of single bits ki.  

The voltage width between two voltage borders from 
inequality (13) is crucial for differential nonlinearity 
estimation. The differential nonlinearity DNL(k) represents 
deviation of voltage code bin width (x(k+1)-x(k)) from 
averaged code bin width Q normalized to Q. Terminal 
definition of ADC nonlinearities [1], [2] allows to eliminate 
the output offset ∆U0 and the gain error of OA by the 
averaged code bin width Q. Taking into account that 
voltages at both code borders are represented by (14) the 
final value DNL(k) is: 
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Here (k+1)i, ki are bits on i-th position of code bins (k+1) 

and k, respectively. The nominator can achieve only N 
distinct values of the differences between adjacent code bins 
k+1 and k ([3], [26], [11]). The increment of k causes that 
only one bit in position ki changes from “0” to “1” and all 
other lower bits (ki-1, k1) change from “1” to “0”. One of N 
possible ∆U(i) differences in (15) occurs in the bit position i 
with the positive bit change. Therefore, the differential 
nonlinearity DNL(k) at the code bin k is equal to one of the 
N possible characteristic values DNL0(i). 

These independent periodical effects can be modeled by a 
periodical differential nonlinearity DNLm(k). A 
characteristic value of DNL0(i) is bounded with the binary 
code k according to the bit position i where the ki is 
changing from “0” to “1” for incrementing k. The positive 
changes of ki (from “0” to “1”) occur always in only one bit 
position i. The code period of a DNL0(i) is equal to 2i 
(Table 1.). The periodicity of modeled DNLm(k) is 
analytically expressed for binary code k by the sum of the N 
characteristic values DNL0(i) multiplied by the difference of 
the Rademacher function ∆RAD(L,k) between code bins 
(k+1) and k. 
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(16) 
 
Modeled DNLm(k) has the periodicity 2i along the code 

axis as shown in Table 1. 
The minimum number of values of DNL0(i) (Table 1.) to 

be measured for the model identification is N. In this way, 
all the DNLm(k) values can be estimated with only N 
measurements of the DNL0(i) values (i.e., 2N measurements 
of code transition levels). The averaging of measured values 
DNL0(i) for homologous code bins from the second column 
of Table 1. increases the model accuracy. The values of 
DNL0(i) that are below the testing uncertainty can be 
omitted.  

IREF=UREF/R      
                                RF      
 k1

IREF/2N-1    k2
IREF/2N-2          kNIREF   

k1∆I(1)             k2∆I(2)         kN∆I(N)  

xDAC(k)  
R  
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Table 1.  Periodical occurrence of modeled DNLm(i) values in 
SAR ADC. 

 
DNLm(i) Code Bins k Code Occurrence Period 

DNL0(1) 1,3,5,...,2N-1 2j+1,   (j=0,1,..., 2N-1-1) 21 
DNL0 (2) 2,6,10,...,2N-2-1 22

j+2,   (j=0,1,..., 2N-2-1) 22 
M  M  M  M  

DNL0(i) 2i-1,2i+2i-1,..., 
2i(2N-i-1)+2i-1 

2i
j+2i-1,   (j=0,1,..., 2N-i-1) 2i 

M  M  M  M  
DNL0(N) 2N-1 2N

j+2N-1,   (j=0) 2N 
 

The modeled integral nonlinearity INLm(k) is expressed by 
the sum of the DNLm(k) values: 
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According to the terminal based definition of INL(k), the 

sum of differential nonlinearities along the code axis k 

should be equal to zero 0)(
12

0
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−

=

N

k

kDNL . The bias of 

DNLm(k) estimates the testing offset, and must be taken into 

account. The modeled DNLm(k) has to be filtered to obtain 

the unbiased differential nonlinearity DNL
*

m(k) 
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By generalizing the above examples in an analytical way, 
in the following paragraph the dynamic transfer 
characteristics and the related differential nonlinearity are 
derived in the phase-plane k, s. An ideal SAR ADC with a 
nominal resolution of N bits is examined. The time varying 
input signal x(t)=x+st is considered. Let us suppose the 
highest absolute value of the input signal slope to be 
restricted to the value smax so that during the conversion time 
Tcon=NT0 input signal does not exceed code bin width Q. 

 

|x(NT0)-x(0) | < Q        | s |  < smax = 
0N 

 Q

T
          (19) 

 
The time interval T0 represents one clock period.  

Let us consider the positive slope of the input signal and 

even code value k represented by the number Lmk of the least 

significant bits equal to "0". In that case only the LSB bit 

will change its value from "0" to "1" for the successive odd 

code bin (k+1). The dynamic code bin width Wdyn in this 

case is narrowed (Fig.8.a)). In the case when k is odd, the 

number of the least significant bits with value equal to "1" is 

Hmk. At the successive code bin (k+1), the code bit on the 

position (Hmk+1) will change from "0" to “1”. All other 

lower bits will change to value "0". The dynamic code bin 

width Wdyn in this case is expanded (Fig.8.b)).  

Now let us consider the negative slope of the input signal. 

The case shown in Fig.8.c). is represented by the even code 

k with the number Lmk of the least significant bits equal to 

"0". Here again only the LSB bit will change its value from 

"0" to "1" for the successive odd code bin (k+1). The 

dynamic code bin width Wdyn in this case is expanded. If k is 

odd number, the number of the least significant bits with 

value equal to "1" is equal to Hmk. The code bit on the 

position (Hmk+1) will change from "0" to "1" at the 

successive code bin (k+1). All other lower bits will change 

to value "0". The dynamic code bin width Wdyn in this case is 

narrowed (Fig.8.d)). The corresponding values of dynamic 

code bin width are shown in Table 2. 
 
 

Table 2.  Changes of code bin width Wdyn(k,s) according to signal 
slope and k values. 

 

Code 
bin 
width  

Positive signal slope Negative signal slope 

k even 
value 

sTmQskW kdyn 0),( −=
 

sTmQskW kdyn 0),( +=
 

k odd 
value 

sTmQskW kdyn 0),( +=

 

sTmQskW kdyn 0),( −=
 

 
 

Table 2. models the code bin widths of the SAR ADC 

characteristics in the case of the saw-tooth input signal with 

slope s for even and odd code bins [49]. As equations show, 

the code bin width is narrowed and extended proportionally 

to the signal slope s, where the proportionality coefficient mk 

is: 

• equal to the number of the least significant bits equal to 

"0" for the even value of the code bin k. 

• equal to the number of the least significant bits equal to 

"1" for the odd value of the code bin k. 

In the real case the ideal value Q is replaced by the real 

value W(k) for the static case. Using the static value of 

DNLstat(k) the real code bin width is: 

 
( ) ( )[ ] QkDNLkW statstat 1+=                                 (20) 

 
 
The dynamic differential nonlinearity is: 
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Fig.8.  Influence of signal slope on the code bin width for SAR 
ADC.  

 
The equation (21) represents the ADC analytical model of 

the dynamic DNLm,dyn(k,s). Consequently, also the dynamic 
differential nonlinearity trend in the two dimensional 
domain of slope s and code k is related to the code 
composition. DNLm,dyn(k,s) is represented for even codes k 
by the extension of the static one by the product of signal 
slope and number mk of the least code bits with the value 
equal to "0". In contrary to the odd codes k, the static 
differential nonlinearity is extended by the product of slope 
s and number mk of the least bits with the value equal to "1". 
The proportionality coefficient for all those examples is 
T0/Q. The acquired DNLdyn(k,s) characteristic for 12 bit SAR 

ADC Maxim574AJN in the phase plain (k,s) is shown in 
Fig.10. Measured characteristic is similar to the simulated 
function DNLm,dyn(k,s) (21) under the assumption of  
DNLstat(k)=0 for the same values (k,s).  

B.  Experimental verification. 

The structural model of SAR ADC was experimentally 
verified in [18]. The validation example of the 
multiperiodical INL(k) occurrence is shown for an actual 12 
bit ADC implemented on the ATMEL ADuC 812 
microcontroller in the bipolar mode (Fig.9.). The modeled 
values of differential nonlinearities DNLm(k) were obtained 
by the averaging of measured values of DNL from the 
histogram test. The code bins were chosen according to the 
periodical model (Table 2.). Only three dominant 
differential nonlinearities were taken for the model. The 
crucial nonlinearities are typical for the structural ADC 
model and they were taken in the middle of FSR (DNL0(N)), 
quarters of FSR (DNL0(N-1)) and eights of FSR (DNL0(N-
2)). The periodical error effects connected with bits of lower 
significance are hidden in the superimposed random effects 
caused by error sources not involved in the structural model 
and by the testing uncertainty.  

Different shape of the nonlinearity model for the other 
sample of 12 bit SAR DAC in unipolar mode (LAB-PC-
1200 by NI) is shown in Fig.14. Presented experimental 
results show the practical objective of the error model 
presented in the previous part. Although the shapes of the 
integral nonlinearities are different inherent to the particular 
ADC chip, their periodical character remains the same. 
Moreover, the experimental results allow to select code bins 
with significantly large DNLm(k). Differential nonlinearities 
can be measured by the fast testing procedure based on the 
testing signal with reduced amplitude [4], [12], [13]. 

 

 
 

Fig.9.  INL(k) characteristics acquired from 12 bit ADC 
implemented on ATMEL ADuC 812 microcontroller and a.) 
modeled by Rademacher function (16).  

 
 

Simulation and experimental tests of differential 
nonlinearities under dynamic conditions were carried out on 
an actual 12 bit SAR ADC Maxim MX574AJN with full 
scale ±5.0 V, and the maximum conversion time 25 µs. 
Firstly, the average quantization step Q equal to 2.44 mV 
was obtained from standardized test results using terminal 
definition. The differential dynamic nonlinearity was 
measured by the histogram test with the saw-tooth stimulus 
signal with peak-to-peak voltage 10.5 V [27]. Testing slope 
values were set in the equidistant steps 0.2.smax within 
interval  (-smax,+smax).  Approximately  82,106  samples were 
acquired for each slope value. The experimental results are 
shown in Fig.10. The performed tests show that with 
increasing slope of input signal, the differential nonlinearity 
increases, too. Experimental results of DNL(k,s) of SAR 
ADC match well with the modeled DNLm(k,s). 
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Fig.10.  Experimentally acquired characteristic of DNLdyn(k,s) in 
the phase plane (k,s) for 12 bit SAR ADC Maxim MX574AJN. 

 
3.3.  THE CYCLIC ADC  

Cyclic (algorithmic) ADCs represent architecture, where 
the output value is achieved by several cycles of flash 
conversion with the increasing resolution from coarse to fine 
digital values [16], [21]. Let us consider N-bit ADC 
operating in L cycles. In the first cycle the input voltage x is 

coarsely converted into 2
N

/L levels. The binary output value 
1
k is memorized in the output register and converted by 

DAC in its analog equivalent. The difference between 
analog voltage at the ADC input and recovered voltage from 
DAC output is subtracted, registered in sample and hold 

circuit and amplified by 2N

/L. The output signal from the 

amplifier is connected to the ADC in the successive cycle 
through the input switch and converted into value 2

k. 
Similarly to the previous tact, DAC in the feedback 
generates analog equivalent of 2

k, which is successively 
subtracted and memorized in sample and hold circuit 
(S&H). The output signal from S&H circuit is amplified by 
2N

/L for the next cycle by amplifier (A). Working procedure 

is characterized by the refining of the estimation of digital 
equivalent of the input voltage in each conversion cycle. 

Code segments lk of length N/L from the most significant bit 

positions to the least significant are memorized in the digital 
output register.  

The number of conversion cycles L depends on the 
architecture variants. In the extreme case, the number of 
cycles L is equal to the number of bits N. This variant is 
suitable for ADCs using switched capacitor technology 
where a potential high operating frequency allows using 
simple comparators as the binary ADC. One bit DA 
conversion is performed by connecting the output node 
either to the ground or reference voltage according to the 
input bit ki. The great advantage of the switched capacitor 
technology is the possibility to implement the autozeroing 
procedure, which efficiently suppresses offset and gain 
errors of the analog blocks in the ADC structure.  

 

A.  Generalized cyclic ADC. 

Let us consider a generalized cyclic ADC from Fig.11. 
with the resolution of the flash ADC and DAC in the 

feedback equal to 2N

/L and unipolar input voltage 

xADC∈〈0,FSR〉. The number of the code bits l
k in the l-th 

cycle is N/L. The estimation of code segment of output code 
(l+1)

k in (l+1)-th cycle is performed by the rounding 
operation of the amplified difference between ADC input 
voltage from the previous l-th cycle and voltage recovered 
using code window l

k. The rounding operation corresponds 
mathematically to AD conversion. The overall nonlinearity 
in the direct branch INLADC(k) consists of switch error and 
nonlinearity of flash ADC. The integral nonlinearity 
INLDAC(k) of the converting DAC causes an additional error 
of subtraction of both voltages in the feedback branch. S&H 
circuit together with the amplifier A are characterized by the 
resulting offset UOFF and gain error δ. Those errors are 
included into the nonlinearity INLDAC(k) of the DAC in the 
feedback.  

 

 
 

Fig.11.  Structural model of cyclic ADC. 
 

The code segment 1
k obtained from the ADC output in 

direct branch for xADC is: 
 

DACDAC

ADC

ADC QkU
Q

x
k .; 11 =








=                  (22) 

 
Angular brackets represent rounding operation as 

mathematical description of analog to digital conversion. 
The quantization steps Q of ADC and DAC in the ideal case 
are  
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In the first cycle the integral nonlinearity is determined by  
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In the second cycle the input voltage xIN of ADC is 
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here id
xIN represents ideally amplified difference voltage 

from subtracting circuit ready for conversion in the second 
cycle. The difference between the real quantization levels of 
ADC and DAC is included in the INLDAC(k). 

The code segment 2
k is obtained in the second conversion 

cycle. The error voltage e on ADC input is:  
 

( ) ( )( ) ( )δUQkINLQkINLe L
N

OFFDACADC +−−= 1212  

 (26) 
 
The ADC input voltage in the third conversion cycle is  
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Where the input voltage idxIN for the ideal case is: 
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The total error voltage e on the ADC input in the third 

cycle is:  
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The ADC input voltage in the l-th conversion cycle is:  
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In addition to the ideal input voltage id

xIN the second part 
represents input error voltage. 

Integral nonlinearity of the whole cyclic ADC is:  
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It allows simplifying the formula of the final modeled 
integral nonlinearity for low gain error of the S&H with the 
amplifier A. 
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Taking into account δ〈〈1 the expression (32) could be 

simplified 
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The formula (33) shows the basic pattern of the error 

function INL(k) of a cyclic ADC. It is based on repetition of 

the segment of the INL with the length 2
N

/L over the FSR. 

Shape of this segment depends on the N/L low significant 

bits of the output digital value. By increasing the number of 
the conversion cycles the number of the repetitions of the 
basic error segment of the INL(k) is increasing. 
 

B.  Experimental verification 

INL(k) of the cyclic ADC was measured in [16]. 
Experimental results show conformity with the structural 
model covering the dominant error sources. The tested 12-
bit cyclic ADC was AD 9430 operating up to a 210 MSPS 
and optimized for extreme dynamic performance in 
broadband systems (Fig.12.). The final conversion result is 
achieved after four cycles using 3-bit flash ADC. Measured 
INL(k) shows repetition of 16=24 similar segments with the 
length of 8=23 codes. Each segment is bordered by the local 
peaks in the INL(k) function. The deviations of the 
smoothed INL shape at both ends of FSR are caused by the 
error sources not involved in the error model (33). Table 3. 
shows prevalent characteristics of structural error models. 

 

 
 

Fig.12.  INL(k) of 12-bit cyclic ADC (AD9430). 

 
Table 3.  Prevalent functional characteristic of the structural error 

models for basic ADC architectures. 
 
Architecture Prevalent functional 

characteristic  

Full-Flash ADCs 
(one step conversion cycle) 

Random function 

Integrating ADCs,  
(one, dual slope),  
Σ∆ ADCs, Voltage to 
Frequency Converters  

Polynomial function 

N-bit Successive 
approximation ADCs  

Rademacher function with 
N code frequencies 

Pipeline ADCs, Cyclic 
Flash ADCs, with L-cycles  

Periodical function with L 
code frequencies.  
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4.  BEHAVIORAL ERROR MODELS 

Parallel (Flash) ADC is an example of the principle where 
each code level is determined by different component. The 
error sources in the ADC structure are not apparent with the 
regular causalities in the error functions. In other cases, 
when the information about internal architecture of the 
utilized ADC is missing, a more suitable way of the error 
modeling is utilization of the behavioral error model 
[14], [23], [30]. Moreover, the regularly demonstrated error 
sources are suppressed by the permanent progress in 
microelectronics. The errors caused by EMC interferences 
and improper operational conditions become prevalent and 
are demonstrated without any regular relation. The universal 
method for the error modeling in this case is the generic 
ADC error model represented by the black boxes. Input of 
these boxes are code levels k and output are the values of 
INL(k) or DNL(k) described by the mathematical formulae 
that match better with measured results, or by the 
memorized values. 

 
4.1.  LOOK UP TABLE ERROR MODELS 

The simplest way how to model functional errors of an 
ADC is the look up table with the memorized integral 
nonlinearities of ADC. In general, the input of the tables are 
codes k or/and slope s of digital signal. In the case of ADC 
error models the look up table block is in the feedback. This 
model represents the simplest generic behavioral error 
model [21]. The main disadvantage of this model is low 
reduction of information about the error function INL(k) or 
DNL(k). The absence of information on regular 
dependencies in the error model does not allow utilizing the 
modeling advantages described in the introduction. It is just 
another form of presentation of the testing results. Examples 
of such models are shown in Fig.15.  

 
4.2.  UNIFIED ERROR MODEL 

Previously analyzed error models showed the relation 
between the ADC structures and their mathematical 
description. Two basic types of the ADC nonlinearities were 
obtained for the studied structural error models. The integral 
nonlinearity caused by ADCs with intermediate 
transformation of the input signal x in the selected analog 
parameter in APS and quantization in QS (Fig.2.) could be 
modeled by a polynomial function (7) of the code bin k with 
the order P.  On the other hand, the error function INL(k) 
with discontinuities is typical for the ADCs using the 
feedback compensation of the input signal x by the DAC 
controlled by the various algorithms. The nonlinearity of 
some ADC representatives is described by the formula (16) 
for SAR ADC and formula (33) for cyclic ADC, 
respectively. The progress in the ADC technology is aimed 
at suppression of error sources causing the discontinuities in 
the INL(k) function. The influence of the analog 
preprocessing blocks becomes dominant because of the 
limited possibility to reduce parasitic influence of 
temperature and operational conditions on the analog 
circuits. 

Because of this fact, the optimal way how to describe both 
parts of any ADC model is the unified error model 
expressed as one dimensional image in the code k domain 
consisting of two components [18], [49]. 
a. The low code frequency component (LCF), which is 

represented by the polynomial approximation 
LCF

INLm(k) of P-th order. The approximation of the 
polynomial function is obtained from the measured 
INL(k) values in the L nodal points k∈<k1, k2,.., kL>. 
The most suitable approximation uses the Least 
Squared approximation. 

b. The high code frequency component (HCF) HCF
INLm(k) 

caused by significant deviations from the mean value of 
the differential nonlinearities DNLm(k). The code bins 
with significantly different nonlinearities have both the 
regular occurrence of the modeled values of DNLm(k), 
and a random appearance. The periodical occurrence of 
various types of DNL according to the Rademacher 
function in SAR ADC (16) or periodical repetition of 
two nonlinear functions (33) for cyclic ADC is the most 
frequent situation. The progress in the ADC technology 
suppressed the main regularity in the DNL(k) behavior. 
The HCF component is able to cover nonlinearities out 
of the regular occurrence. Characteristic values of 
DNLm(i) for the periodic model are estimated using a 
narrow band histogram for the binary codes ki where at 
the bit position i is changing from "0" to "1", for 
increment of k.  

The modeled shape of the integral nonlinearity using both 
components is as follows: 

 

( ) ( ) ( ) ( ) ( )∑
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+=+=
k

i

m

HCF

m

LCF

m

HCF

m

LCF

m kDNLkINLkINLkINLkINL
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(34) 

 
While the component LCF

INLm(k) represents the averaged 
nonlinearity of the ADC, the superimposed HCF

INLm(k) 
component describes major discontinuities in the INL shape. 
The easiest description of the HCF component rises from the 
measured significant values of the modeled values DNLm(k). 
The experimental results (Fig.13. and Fig.14.) show both 
components of the unified error models with the nodal 
points for estimation of the LCF component [29]. High code 
frequency components were calculated using (34) where 
modeled values DNLm(k) were achieved from the narrow 
band histogram test in significant code bins (Table 1.). The 
LCF component was approximated by the polynomial 
function using measured values INL(k) in few nodal points. 
 

 
 

Fig.13.  INL of ADuC 812, HCFINLm(k) from 7 points histogram, 5 
node points for approximation of LCFINLm(k) by the polynomial of 
second order. 
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Fig.14.  Modeled INLm(k) of LAB-PC-1200 where HCFINLm(k) is 
determined by narrow band histogram in 7 points, and LCFINLm(k) 
approximated by third order polynomial from 9 nodes. 

 
The measuring chain consists usually of a sensor of 

measured physical quantity and Data Acquisition Board. 
Here the input quantity is represented by the measured 
analog physical quantity and the output values are digital 
time samples. The transfer function has similar step-like 
form as any ADC. Dominant error effects are involved by 
the analog processing part - mainly sensors. Because of this 
reason the LCF component LCF

INLm(k) in the unified error 
model is dominant. The ADC data sheet comparison shows 
continual improvement of metrological parameters caused 
by the progress in electronic technology. Improper ADC 
implementation and unstable working conditions become 
dominant error contributors with the continuous LCF 
characteristic.    

The authors in [17], [49] showed that the unified error 
model can be generalized even with its dynamic component 
(Fig.15.). The signal slope s(iT0) is calculated from the data 
flow. For the actual value of code k(iT0) and slope s(iT0), 
low and high code frequencies are taken from the look up 
table. According to the INL(k,s) definition [1], [2] both 
nonlinearity components are subtracted from the analog 
input of an ideal ADC. The implementation of the unified 
dynamic model considers limited signal variation (x(t)-x(t-
TS) << Q.  

 

 
Fig.15.  Unified ADC dynamic model. 

 
4.3.  BEHAVIORAL ERROR MODELS DESCRIBED BY 

ANALYTICAL FORMS  

The possibility to implement Chebyshev’s series for ADC 
modeling was studied in [7], [8]. The proposed model has a 
concise mathematical form with the sum of Chebyshev’s 
functions covering all details in the ADC characteristics. Let 
us consider the results of FFT testing by the harmonic 
stimulus signal ( ) CωiTViTx SS += )cos( . If a purely static 

model of the systematic error is assumed, the output signal 
is determined by 

( ) ( ) ( ) ( )S
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The output may be represented as a series of in-phase 

cosine harmonics caused by the nonlinearity of the transfer 
characteristics. The error component e(iTs) is transformed in 
a spectral domain E(nω) and it takes into account all the 
random errors. The error component E(nω) as the spectral 
noise floor could be suppressed by the FFT calculation using 
the averaged output record for the same harmonic stimulus 
signal. The output signal impacted by the systematic 
contribution of ADC nonlinearities is  
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2 1
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where Cn(ζ) represents the first kind Chebyshev 
polynomials of the order n. 

 
( ) ( )( )ζnζC n arccos.cos=                (37) 

 
Obviously, if one wants the model given by (36) to be 

appropriate to describe the behavior of a real ADC, the test 
must be performed at a sufficiently low frequency ω. The 
signal at the ADC output with a high resolution includes the 
effect of integral nonlinearity. The final value of the INL(k) 
is obtained by the subtraction of the distorted output signal 
from the ideal one. 

 

( ) ( ) ( );
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nn kC
Q

V
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The authors of the article [8] proposed the implementation 

of spectral analysis even for the estimation of the hysteresis 
error as dynamic superimposed signal h(k) to the distorted 
one. 

 

 
a.)                                            b.) 

 
Fig.16.  Comparison between the measured INL(k) (thin line) and 
the modeled INLm(k) obtained by a 100-harmonic a) and by 30-
harmonic b) Chebyshev test (thick line). The harmonics were 
obtained from harmonic tests of 8-bit Flash ADC using 
incoherently sampled sine wave. 

 
Another model proposed in [6] considers the 

approximation of INL(k) by the series of harmonic functions 
associated with code k. The fundamental code frequency of 

ADC nonlinearity is Ω=2π/2N. The details in INL(k) shape 
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are described by the multiples mΩ=m2π/2N of the 

fundamental code frequency. The integral nonlinearity 
INL(k) is determined by the Fourier series in the code 
domain   

 

( ) ( )( );sincos
2

)(
max

1

0 ∑
=

Ω+Ω+≈
M

m

mm kmbkma
a

kINL      (39) 

 
The number of code harmonics in the model is restricted to 

Mmax.  
The stimulus signal is represented by the ideal harmonic 

function x(iTS) with the frequency f0 sampled by the 
frequency fs. 
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Let us consider the ratio 

M
J

f
f

S

=0 where J and M are 

relatively prime numbers. Under these circumstances the 
calculated frequency spectrum will be without leakage error. 
For M>J22N quantization error is lower than code bin width 
Q and all codes k(iTS) occur in the recorded ADC output 
signal. The quantization noise e(iTS) is negligible. All 
harmonic components in the output spectra for harmonic 
stimulus will be a product of nonlinear distortion caused by 
INL(k). Under this consideration the output signal k(iTS) is 
expressed by the series of harmonics in the time domain 
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where Sl represents the amplitude of the l-th harmonic, and 
the constant. Function Jn(α) in the expression for Sl is the 
Bessel function of the first kind with order n. 

Let us consider the number of the FFT harmonics in the 
spectral domain to be Lmax for the signal k(iTS). The 
maximal number of the harmonics describing INL(k) in the 
code frequency domain is Mmax Due to dimension matching 
the optimal relation between values Lmax and Mmax is 
Lmax=2Mmax. As a consequence, the relation between the 
amplitudes Sl of the l-th harmonic of the testing signal k(iTS) 

and Fourier expansion of the INL(k) in the code domain 
(a0,..aMmax, b0,..bMmax) is estimated by means of the matrix 
product.  
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The harmonic components {S0,S1,..SLmax} are calculated 
from the registered ADC output flow k(iTS) for sine wave 
stimulus by FFT without leakage. The modeled INL(k) can 
be estimated by the inverse matrix relation 
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Fig.17.  Measured and modeled INL(k) of 12-bit ADC TDA 8769 
using transformation of the FFT spectrum [7]. The maximal 
number of code frequency components is Mmax=100 calculated 
from Lmax=200 spectral components. 

 
Integral nonlinearity calculated by this method is 

implemented in the look up table block (Fig.15.) where just 
one type of INL(k) is memorized. Model description by a 
mathematically concise formula is the main advantage of the 
last two models. The disadvantage is a high number of 
harmonics, which have to be taken into account. On the 
contrary, the unified model with few parameters has the 
highest redundancy for INL(k) description. It requires a few 
polynomial coefficients for LCF

INL(k) and a few significant 
DNL(k) values for the description of HCF

INL(k).  
 

5.  CONCLUSIONS 

The performed study shows that the ADC hardware 
structure determines continuous or periodic shape of the 
nonlinearity function. Continuous INL(k) shape is typical for 
ADCs, where input signal is converted to frequency or time 
using various circuits. Periodical nonlinearity related to 
particular code bins of the output binary code is typical for 
SAR ADC; while periodical repetition of the similar 
nonlinearity segment over the FSR is typical for cyclic 
ADC. Another type of the periodic regularity of error 
function represents cyclic ADCs. 

The limits of the structural models are given by the various 
reasons. The first limitation occurs when the modeled 
internal structure of the ADC does not have key circuit 
block with dominant error. Parallel ADCs are an example 
where each code level is determined by a different 
component. The second limitation is caused by the progress 
in technology where the dominant error sources are getting 
better suppressed. It restricts influence of the dominant 
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structural blocks on the final error function. Prevailing error 
sources are becoming errors caused by the charge injection, 
galvanic coupling, etc. Their final error function depends on 
the ADC chip and printed board layout. Moreover, glitches 
of various sources have weak regularity. 

The behavioral error model allows to describe main ADC 
and DAC imperfections by the generic structure with the 
values of systematic errors like INL(k) and DNL(k). ADC 
nonlinearities are initial information for the estimation of 
other systematic error parameters like THD, offset and gain 
errors. The description of the converter error functions by 
their error models neglects redundant information and the 
error models highlight the peculiar error sources in the 
structural models or on the main nonlinearity pattern 
characteristics by behavioral error models. Various 
techniques for the patter recognitions could be utilized for 
the simplification of error models. Error pattern parameters 
are constants memorized in the black boxes. The unified 
error models describe nonlinearity functions as a one-
dimensional image which consists of the sum of a smoothed 
sub-image described by the low code frequencies and a 
wave component described by the high code frequency. 
While the first one describes errors of the continuous signal 
processing in the conversion procedure, the second one 
describes periodical manifestation of the weighting 
component mismatch. The structural model of the converter 
facilitates the choice of the optimal function for description 
of both components. À-posteriori transformation of testing 
results with the suitable mathematical method allows 
recovering the redundant error parameters together with 
mathematical formula, which corresponds to the used 
behavioral error model. 
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