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This paper focuses on the comparison of different interest point detectors and their utilization for measurements in ultrasound
(US) images. Certain medical examinations are based on speckle tracking which strongly relies on features that can be reliably
tracked frame to frame. Only significant features (interest points) resistant to noise and brightness changes within US images are
suitable for accurate long-lasting tracking. We compare three interest point detectors – Harris-Laplace, Difference of Gaussian
(DoG) and Fast Hessian – and identify the most suitable one for use in US images on the basis of an objective criterion. Repeata-
bility rate is assumed to be an objective quality measure for comparison. We have measured repeatability in images corrupted by
different types of noise (speckle noise, Gaussian noise) and for changes in brightness. The Harris-Laplace detector outperformed
its competitors and seems to be a sound option when choosing a suitable interest point detector for US images. However, it has to be
noted that Fast Hessian and DoG detectors achieved better results in terms of processing speed.
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1. INTRODUCTION

MEDICAL EXAMINATIONS have changed a lot over the
past years. Nowadays, a standard examination is often

accompanied by additional examinations that use some of the
modern medical imaging techniques [1]. These techniques
rely on signals that are beyond the perception of human be-
ings. An example of such a signal is ultrasound that lies above
the human hearing limits.

Medical sonography has recently become one of the most
important and most popular medical imaging techniques. It is
based on ultrasound wave pulses. These pulses are generated
by a transducer and travel through the human body reflecting
on the inhomogeneous interfaces of two tissues. The trans-
ducer receives the reflected pulses (echoes) and conveys them
to a sonographic system that displays an appropriate output
generated on the basis of parameters of the echoes.

Several different modes of ultrasound are used in medical
imaging such as A-mode (one-dimensional output), B-mode,
M-mode (visualization of motion of organ structures, video in
ultrasound), Doppler mode (blood flow visualization) or 3D
ultrasound. We will focus on B-mode ultrasound that gener-
ates 2D images in what follows.

The examination with ultrasound has many advantages in-
cluding a non-invasive principle, portability of a scanner, fast
scanning and low price in comparison to other methods. Con-
versely, there are certain drawbacks some of which are low
resolution of the images, speckle noise, scattering and pres-
ence of artifacts [2]. Especially the presence of speckle noise
[3] in images complicates their further processing.

This paper focuses on the analysis and performance com-
parison of interest point detectors for ultrasound images. De-
tection of interest points is a very important issue in many
examinations based on speckle tracking [4]. Speckle track-

ing is a technique that makes use of tracking of interest points
to measure velocities and deformation parameters of tissues.
These examinations are often performed on video-sequences
and the diagnosis is based on the movement of interest points
in time. Examples cover generally all dynamic processes that
can be examined with ultrasound. They include tracking of
movement of heart wall, arterial wall, emptying of bladder or
stomach to name a few. Not only movement, but also vol-
ume of organs can be measured and subsequently used for
various medical examinations. Jayasree et al. [5] studied cor-
relations between certain cardiovascular diseases and photo-
plethysmographic (PPG) waveform. Hlimonenko et al. [6]
employ the PPG waveform to find the correlation between the
elastic properties of vascular tree and age. Similar studies can
be performed with waveform obtained from large arteries us-
ing speckle tracking in US video sequences. The boundaries
of the examined object have to be described by a set of very
robust interest points that will be resistant to the level of noise
present in US images in order to obtain accurate results.

Many examples of medical examinations based on speckle
tracking are summarized in the related work chapter. One of
the simplest examples is the continual measurement of lumen
diameter. The lumen is represented as a set of interest points
on its wall. The interest points form a circle in the transversal
section and two parallel lines in the longitudinal sections. The
tracked interest points must be invariant to US noise as much
as possible for a long-lasting measurement with high accu-
racy. The aim of this paper is to verify capabilities of state-of-
the-art interest point detectors and assess their robustness with
respect to noise level and changes in brightness according to
an objective criterion.

The exact terminology as well as the definition of interest
point differs from author to author [7]. Some authors use the
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term interest points, other authors use terms like salient points
or local features but the meaning is the same. Generally, an
interest point is a location in an image with high informa-
tion content which is stable under varying viewing conditions
and/or image degradations. Typical examples of these fea-
tures are corners, junctions, dark blobs on light background,
etc.

As there are no comparisons of suitability of different in-
terest point detectors for ultrasound image processing avail-
able we implemented and tested three state-of-the-art detec-
tors. Specifically, we tested the Harris-Laplace detector, the
Fast Hessian detector and the Difference of Gaussian detector.
These detectors will be described in detail in section 2.

All detectors were tested on a database of ultrasound im-
ages of artery which contains 84 images acquired under vary-
ing conditions. Repeatability rate was used to evaluate the
performance of each detector. We evaluated repeatability rate
for images that were artificially corrupted by noise of different
types and with changing variance.

1.1. Related work

There are certain medical examinations that analyze either
movement or volume of organs in an ultrasound image se-
quence like estimation of ejection-fraction of heart or vol-
ume (area) of heart over time. Such examinations require
sequences of images acquired in time and localized bound-
aries in the first frame. These boundaries are represented by
a set of landmarks or visual features [8] in some approaches.
For instance, the approach used by McEachen and Duncan
[9] uses landmarks followed by a sequence of images. Some
methods are based on optical flow, for example by Mailloux
[10] and Friedland and Adams [11]. This method is also used
for the measurement of longitudinal motion of the vessel wall
[12, 13]. Giachetti used the best features of the active contour
and combined them with optical flow methods [14].

Similar principle can be used for continual measurement
of arterial diameter in transversal section [15, 16, 17]. This
examination is applicable to measurements of Endothelium-
dependent vasoreactivity (EDV) and arterial compliance.
Such measurements are important because abnormal EDV is
strongly linked to atherosclerosis [18].

Two-dimensional tracking of the vessel wall movement can
be also performed in the longitudinal section [12]. This exam-
ination might improve the ability to detect early abnormalities
in vessel wall properties. Increased knowledge of the longi-
tudinal movement in the arterial wall may provide new infor-
mation not only on the mechanical properties of arteries, but
also on the mechanical forces [19]. Similar measurement can
be performed with many other organs, for example for mea-
surement of gastric emptying [18], or bladder emptying [20].

Many interest point detectors have been proposed in litera-
ture over the last four decades. A thorough survey discussing
great majority of them was published in [7], we therefore
limited ourselves to highlighting few of them in this chapter.
Probably the largest group of methods for interest point detec-

tion is based on the differential approach. These algorithms
detect the interest points on the basis of first or second order
derivatives of the image function. Examples of algorithms be-
longing to this group are all the three algorithms described in
section 2.

There are also other methods that follow completely dif-
ferent approaches. The wavelet-based salient point detector
[21] that uses a multiresolution analysis can be mentioned
as one of them. Gaussian filters used in scale-space analy-
sis (described later on) smooth the image which results in loss
of details. The details in the image are crucial in all speckle
tracking methods. This suggests that the wavelet-based salient
point detector could prove useful in ultrasound image process-
ing. A completely different approach is adopted in [22] where
the authors consider the image as a realisation of a zero mean
Gaussian random process and the salient points are defined
as rare events that are sparsely distributed under a stochastic
model of the image. The local image structure is considered
as an interest point if the likelihood estimation under a Brown-
ian image model [23] is minimal. As the ultrasound images do
not contain extremely distinct structures, the suitability of this
approach is questionable, however, possible usefulness for ul-
trasound image processing of such a detector would have to
be verified experimentally.

The need to evaluate these algorithms objectively appeared
with the growing number of detectors. A methodology to
evaluate these algorithms was proposed by Schmid et al. in
[24]. They identified two crucial properties of interest point
detectors in their work. These are the information content of
the interest point and stability. The information content ex-
presses the variability of the neighborhood of a point and is
closely related to entropy. Stability describes the reliability of
the algorithm to reproduce the same point in a modified im-
age. Scale changes, rotations and changes of 3D viewpoint
can be found among common modifications. Stability of an
algorithm can be described by a measure called repeatabil-
ity rate [24]. A number of studies comparing different in-
terest point detectors have been published. Mikolajczyk and
Schmid compare scale and affine invariant interest point de-
tectors (including the Harris-Laplace and Hessian detector)
in [25]. They focus on evaluation of the detectors in terms of
scale change and change of viewpoint but they do not consider
brightness change. [24] is the only study that assesses the de-
pendence of repeatability rate on change of brightness. One
of the detectors that is evaluated in that study is the Harris de-
tector which is the basis of the Harris-Laplace detector used in
our work. As we deal with modifications that do not change
scale of the image it can be expected that the results of the
Harris and Harris-Laplace algorithm will be similar in terms
of change of brightness. An evaluation of the Harris-Laplace,
Fast Hessian and DoG detectors with respect to change of
brightness was performed in [26]. The performance of in-
terest point detectors for tracking purposes in image sequence
was evaluated in [27].
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2. INTEREST POINT DETECTORS

In this section, the three tested detectors are described in de-
tail. As we deal with scale-invariant interest point detectors,
it is necessary to make a preliminary note on the scale-space
representation of an image.

2.1. Scale-Space Representation

The scale-space representation [28] provides a way to de-
scribe the image on multiple scales (when taken to the limit
it considers all possible scales). It has been shown that the
Gaussian kernels and Gaussian derivatives can be effectively
used to build the scale-space.

The scale-space function in point x= (x,y) is a convolution
of the image function and a Gaussian kernel

L(x,σ) = G(x,σ)∗ I(x), (1)

where I(x) denotes the image function. G(x,σ) represents the
Gaussian kernel

G(x,σ) =
1

2πσ2 e−(x2+y2)/2σ2
(2)

with scale σ .
The partial derivative (in a direction) of the scale-space can

be computed either by differentiating directly the scale-space
function or as a convolution of the original image with the
derivative of Gaussian kernel

La(x,σ) =
∂
∂a

L(x,σ) =
∂
∂a

G(x,σ)∗ I(x). (3)

2.2. Harris-Laplace detector

The corner detector [29] proposed by C.Harris is not scale in-
variant and its use is therefore rather limited. Nevertheless,
a scale adapted modification of the Harris detector was pro-
posed [25] and named the Harris-Laplace detector. Both, the
Harris detector and the Harris-Laplace detector, detect inter-
est points using the second order matrix which describes the
structure of the local neighborhood of a point. The key dif-
ference is that the second order matrix is made invariant to
scale in the Harris-Laplace detector. The modified second or-
der matrix for point x = (x,y) is defined as

M(x,σI ,σD) = σ2
DG(x,σI)∗

[
L2

x(x,σD) LxLy(x,σD)
LxLy(x,σD) L2

y(x,σD)

]
.

(4)
The idea is to average the local derivatives computed with

Gaussian kernels of the scale σD (differentiation scale) in the
neighborhood of the point. The average can be effectively
computed by means of convolution with a Gaussian window
G of the scale σI (integration scale).

In the first step of the algorithm, candidate points are local-
ized as maxima of the so called cornerness H

H = detM(x,σI ,σD)− k(traceM(x,σI ,σD))
2, (5)

where detM(x,σI ,σD) = L2
xL2

y − (LxLy)
2,

traceM(x,σI ,σD) = L2
x +L2

y and k is a constant.
Only points for which the Laplacian-of-Gaussian

|LoG(x,σn)|= σ2
n |Lxx(x,σn)+Lyy(x,σn)|, (6)

reaches a maximum are selected as interest points in the sec-
ond step. Lxx(x,σ) denotes the second order derivative of the
scale-space function and it is computed as the convolution of
the image I in point x and the second order derivative of the
Gaussian kernel in x direction:

Lxx(x,σ) = I(x)∗ ∂ 2

∂x2 G(x,σ). (7)

Lyy(x,σ) is calculated in the same way but the second order

derivative of the Gaussian kernel in y direction ( ∂ 2

∂y2 G(x,σ))
is used. The detailed description of the algorithm is described
in [25].

2.3. Fast Hessian detector

The Fast Hessian detector [30] differs from the Harris detector
in the matrix used to detect the interest points. It is based on
the Hessian matrix which can be described in the following
way

H(x,σ) =

[
Lxx(x,σ) Lxy(x,σ)
Lxy(x,σ) Lyy(x,σ)

]
, (8)

where Lxx(x,σ) and Lyy(x,σ) again denote the second or-
der derivatives of the scale-space function as defined in 7.
Lxy(x,σ) is based on convolution with ∂ 2

∂y∂xG(x,σ) and com-
puted in accordance with 7.

The Gaussian derivative has to be cropped and discretized
in order to use it in calculations. The authors of the Fast Hes-
sian detector proposed the use of the so called box filters that
approximate the second order Gaussian derivatives. The ad-
vantage of the box filters is that they can be computed very
fast when the integral images [31] are used. Instead of down-
scaling the image during the process of detection, it is possible
to achieve the same effect by up-scaling the box filters. The
complexity of computation of the response of the box filter
is independent of its size [31] which results in even higher
processing speed.

The determinant of the Hessian matrix is computed for ev-
ery point in the image and the local maxima are detected sim-
ilarly to DoG detector described in the following section.

2.4. Difference of Gaussian detector

Unlike the Harris-Laplace detector, the Difference of Gaus-
sian (DoG) detector is a blob detector. Blobs are described
as regions in the image that are brighter or darker than their
surroundings.

DoG detector [32] cannot be described using the matrix
equations as the previous two detectors because the detection
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is based on direct subtraction of neighboring scale-space func-
tions. The DoG function is defined as

D(x,σ) = L(x,kσ)−L(x,σ) = (G(x,kσ)−G(x,σ))∗ I(x),
(9)

where k is a constant. D(x,σ)can be understood as an approx-
imation of the scale normalized Laplacian of Gaussian.

The interest points are selected as the extrema of the DoG.
The point is selected as an interest point only if it is larger or
smaller than all its neighbors. The point is compared to its
eight neighbors in the current scale and to nine neighbors in
the scale above and nine neighbors in the scale below. Under-
taking some additional steps is necessary in order to get the
final set of interest points but this exceeds the scope of this
paper. The whole process of detection is described in [32].

3. METHODOLOGY OF EVALUATION

As mentioned earlier, the aim of this paper is to evaluate the
suitability of selected interest point detectors for ultrasound
images. Robust interest points have to be independent of the
noise in ultrasound images and stable under brightness varia-
tion.

We chose three interest point detectors described in sec-
tion 2 for comparison. Firstly, the most appropriate setup of
parameters of the detectors was found so that they detect a
similar number of interest points in the images. This setup
was performed partly according to experience and partly with
the utilization of grid search. This process will be described
in detail in section 3.1.

After the initial setup of detectors is completed, it is pos-
sible to compare the performance of selected detectors. Re-
peatability rate was chosen as a measure for comparison of
the detectors. Repeatability rate is defined as the number of
points repeated between two images (one image is original,
the second one is modified) with respect to the total number of
detected points. The experiment is based on gradual degrada-
tion of image by noise and measurement of repeatability. The
better a detector performs the higher is the value of repeata-
bility. The experiment is further described in section 3.5.

3.1. Initial setup of interest point detectors

It was necessary to set parameters of the detectors to detect a
similar number of interest points before the comparison itself.
We combined two approaches to set the parameters. Firstly,
we identified parameters that affect and do not affect the num-
ber of detected points. From the ones that influence the num-
ber of detected points, we selected some of the parameters and
applied the grid search algorithm to find their suitable values.

The grid search represents one of the so called brute-force
search algorithms. These algorithms search the parameter
space by trying all possible combinations of the parameters.
A step has to be defined for each parameter. The step and the
number of parameters influence the computational demands

of this algorithm rapidly. The step is therefore a trade-off be-
tween speed and accuracy. Initially, we ran the algorithm with
large step and selected intervals which were searched exhaus-
tively in subsequent runs. The obtained results can be found
in section 5.2.

3.2. Repeatability rate

We used repeatability rate to evaluate the detectors. Repeata-
bility rate is described in [24] in detail. It is a measure that
directly evaluates the quality of detected points which is ap-
plicable to any type of scene. Let us assume that we have two
versions of the image acquired under different conditions. Re-
peatability rate compares the geometrical stability of the de-
tected interest points in these two images. Furthermore, no
specific high-level interpretation of the features is needed to
evaluate repeatability. Repeatability rate ri(ε) is defined as

ri(ε) =
∣∣∣∣ Ri(ε)
min(n1,ni)

∣∣∣∣ , (10)

where Ri(ε) equals to the number of point pairs (x1;xi) which
correspond within an ε-neighborhood and n1 = |{x̃1}| and
ni = |{x̃i}| are the number of points detected in the common
part of images I1 and Ii. It can be proved that the resulting
value ranges between zero and one and therefore is often ex-
pressed in percentage. We set ε to 0.5 in our experiment.

3.3. Noise models

We evaluated repeatability rate for images which were arti-
ficially corrupted by noise. Specifically, we used two types
of noise: the additive Gaussian noise and the speckle noise
which is specific for ultrasound images.

The noise model of the additive Gaussian noise is very sim-
ple and can be expressed as

I′(x) = I(x)+n, (11)

where I(x) refers to the original image, n represents the noise
and I′(x) is the image corrupted by noise. The values of I(x)
are expected to be floating point numbers in the range 〈0,1〉.
The values of the noise follow the normal distribution with
zero mean and variance (σ2) which is changed during the ex-
periment. Values of I′(x) were clipped to range 〈0,1〉 after the
noise was added.

The speckle noise description differs slightly. It can be de-
scribed by the following equation:

I′(x) = I(x)+u0I(x), (12)

where u0 is the noise. It can be directly seen that it is a mul-
tiplicative noise model. The noise in this case follows the
uniform distribution with zero mean and variance which was
adjusted during the experiment.
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Fig. 1: Sample image from the database.

3.4. Image database

The image database contains 84 B-mode ultrasound images of
common carotid artery (CCA) in longitudinal section (Fig. 1).
The database contains images of CCA of ten volunteers (mean
age 27.5 ± 3.5 years) with different weight (mean weight
76.5± 9.7 kg). Images were acquired with Sonix OP ultra-
sound scanner with different set-up of depth, gain, time gain
compensation (TGC) curve and different linear array trans-
ducers. The resolution of images is approximately 390 ×
330 px. The exact resolution depends on the set-up of the ul-
trasound scanner. Two different linear array transducers with
different frequencies (10 MHz and 14 MHz) were used. These
frequencies were chosen because of their suitability for su-
perficial organ imaging. All images were taken by specialists
with five year experience with scanning of arteries. Images
were captured in accordance to the standard protocol [33] with
patients lying in the supine position and with the neck rotated
to the left side while the right CCA was examined.

The database can be downloaded from the SPLab web
page1. As far as we know, this database is the only one freely
available database of ultrasound images of common carotid
artery.

3.5. Process of evaluation

The comparison of interest point detectors consists of three
experiments. First two experiments focus on the measure-
ment of repeatability in images corrupted by varying noise.
The third experiment measures repeatability in images with
changing brightness. The flowcharts describing all three pro-
cesses are depicted in Fig. 2. The only difference between the
three figures is in one block that performs the modification
which is specific to each experiment.

The speckle noise was added to the input image data set
during the first experiment. The experiment was conducted
according to the flow chart shown in Fig. 2a. The second ex-
periment differs only in the type of noise which was added
to the image. It was additive Gaussian noise in this case.
A flowchart describing the process can be found in Fig. 2b.
The variance of the noise was changed from 0.0 to 1.0 with

1http://splab.cz/en/download/databaze/ultrasound

quadratic scale during both experiments. The third experi-
ment examined the sensitivity of detectors to the change of
brightness in ultrasound images. The parameter k, which
transforms the gray scale according to I′(x) = kI(x), was
changed during this experiment. Steps performed in this ex-
periment are depicted in a flowchart in Fig. 2c.

4. IMPLEMENTATION

Using Matlab to implement the algorithms that are being pro-
posed in papers has become almost standard. We are fully
aware of many advantages that Matlab brings but unlike many
other research teams that use Matlab, we used a novel ap-
proach to implement the whole process of evaluation of the
detectors. We built the whole process on top of RapidMiner2

which is a popular tool meant for data mining. It is designed
to process numerical data that can be imported in a number of
different formats (xls, csv, etc.). RapidMiner offers more than
100 learning algorithms that can be applied to the data.

Thanks to the simple extension mechanism new plugins can
be added to RapidMiner. The plugins can either implement
new data mining algorithms or provide means to extract nu-
merical data from other media (like images). The wide range
of data mining methods available in RapidMiner can be then
used to analyze the extracted data.

The simplicity of the extension mechanism was fully ex-
ploited by members of SPLab at the Brno University of Tech-
nology who have recently developed an extension, called
IMMI (IMage MIning) [34]. The extension offers over 140
algorithms that cover the basic as well as some advanced im-
age processing techniques.

Nonetheless, methods for corrupting the image by noise,
change of brightness of the image, interest point detection and
evaluation of interest point detectors had to be added.

The Harris-Laplace detector was implemented according to
the paper by K. Mikolajczyk and C. Schmid [25]. The DoG
detector was also implemented according to the original pa-
per by D.G.Lowe [32]. The method is protected under US
patent,3 but it is free for individual research use. The origi-
nal implementation of the Fast Hessian detector (used in the
SURF (Speeded Up Robust Features) detector and descrip-
tor) is closed-source and it is not suitable for research. How-
ever, there is a number of open-source implementations of
the SURF algorithm but they differ from the original one.
An evaluation of some of the open-source implementations is
available in [35]. Our implementation is based on the Open-
SURF library [36] which was ported to Java programming
language.

One of the main contributions of this paper is the imple-
mentation of these functions into the IMMI extension. The

2http://rapid-i.com
3Method and apparatus for identifying scale invariant features in an image

and use of same for locating an object in an image David G. Lowe, US Patent
6,711,293 (March 23, 2004). Provisional application filed March 8, 1999.
Asignee: The University of British Columbia.
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Fig. 2: Flow charts for three experiments.

IMMI extension is freely available for non-commercial pur-
poses and can be downloaded from the project home page4.

5. RESULTS

5.1. Selected setup of interest point detectors

As mentioned above, certain parameters were chosen accord-
ing to recommended settings and experience. The rest of the
parameters was set using the grid search method. The grid
search method gradually adjusts the setup of the parameters
of detectors and measures the number of detected points. The
dependences of the number of detected points with changing
setup of parameters for different detectors are shown in Fig. 3,
Fig. 4 and Fig. 5. The main presumption when choosing the
most suitable setup of parameters was based on the fact, that
detectors are comparable, if they detect similar count of inter-
est points (in our case, approximately 23 000 interest points
in 84 ultrasound images). The final parameter setup for each
detector is summarized in Tab. 1 and the number of detected
points is in Tab. 2.

The octave parameter defines the number of steps in each
octave (doubling of σ = downscaling the image). The scale
parameter determines the maximum number of scales that will
be searched for interest points. It influences the width and σ
of the Gaussian kernel which is used to downscale the image.
The threshold parameter serves to reject points with weak re-
sponse. The initial sigma parameter (as the name implies) is
used as the initial σ of the Gaussian kernel.

4http://splab.cz/en/research/data-mining/articles

Table 1: The final parameter setup for each interest point detectors.

Parameter Type of choice Value

Fast Hessian
Octaves GS (Grid search) 1
Threshold GS 6.3

Harris-Laplace
Threshold Manual 0
Octaves GS 5
Scales GS 16

Difference of Gaussian
Octaves GS 3
Initial sigma GS 1.6

Table 2: Number of points detected by each detector.

Detector Number of points

Fast Hessian 22750
Harris-Laplace 20309
Difference of Gaussian detector 23764

Examples of points detected by the detectors (with setup
that was described above) in a sample image from the
database are presented in Fig. 6. The size of the circles cor-
responds to the strength of the response of the algorithm to
the interest point. Points detected in an unmodified image are
depicted in the first row. The second row shows the same im-
age corrupted with additive noise of variance equal to 0.12
and points detected by the detectors in this image. It can be
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(a) Difference of Gaussian detector (b) Harris-Laplace detector (c) Fast Hessian detector

(d) Difference of Gaussian detector (e) Harris-Laplace detector (f) Fast Hessian detector

Fig. 6: First row: Sample image with detected interest points. Second row: Sample image corrupted with additive noise (σ = 0.12) with
detected interest points
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Fig. 3: Number of points detected by Harris-Laplace detector for
different parameter setups.

observed that in noised image the number of detected inter-
est points increases because the previously uniform areas now
contain more details that are considered as interest points by
the detectors.

5.2. Dependence of repeatability rate on image modification

The dependence of repeatability on the amount of speckle
noise for tested detectors is depicted in Fig. 7. The results in
Fig. 7 show that most resistant to speckle noise is the Harris-
Laplace detector, which achieves good level of repeatability
even if the level of added noise is significant.

Figure 8 shows the results of the second experiment dur-
ing which the Gaussian noise was added to the images. The
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Fig. 4: Number of points detected by Fast Hessian detector for dif-
ferent parameter setups.

Harris-Laplace detector achieves best results also in this ex-
periment.

The results obtained in the experiment that changed the
brightness of the image can be found in Fig. 9. The
best detector for slightly brightened images (k ∈ 〈1,1.5〉) is
again Harris-Laplace. However, the Harris-Laplace detector
achieves worse results for more brightened images (k > 1.5)
and darkened images (k < 1)

6. DISCUSSION

The results suggest that the most suitable interest point de-
tector for US images is the Harris-Laplace detector. It out-
performs the other detectors even in cases when the images

335



MEASUREMENT SCIENCE REVIEW, Volume 13, No. 6, 2013

1

1.5

2

2.5

3

2

3

4

5

6

7
0

2

4

6

8

10

12

14

16

18

x 10
4

Initial sigmaOctaves

N
um

be
r 

of
 d

et
ec

te
d 

po
in

ts

Fig. 5: Number of points detected by Difference of Gaussian detector
for different parameter setups.
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Fig. 7: Repeatability of detectors for different level of speckle noise.

are significantly corrupted by noise. Nonetheless, the Harris-
Laplace detector has considerably higher computational com-
plexity than the DoG and the Fast Hessian detector. The rea-
son for this is that the matrix M contains only the first order
derivatives of the scale-space function Lx(x,σn) and Ly(x,σn)
and not the second order derivatives (see equation 4 and com-
pare it with equations 8 and 9). The second order derivatives
Lxx(x,σn) and Lyy(x,σn), which are needed for selecting the
scale-invariant points, have to be therefore computed in a sep-
arate step which results in a lower processing speed. A com-
parison of the Harris-Laplace and DoG detectors in terms of
computational complexity can be found in [25]. From this pa-
per follows that the run time of the Harris-Laplace detector is
ten times higher than in case of the DoG detector which corre-
sponds with our results. The computational complexity of the
Harris-Laplace detector can be further reduced as proposed
by Mikolajczyk and Schmid in the same work [25] which
shortens the run time to approximately a double of the value
achieved by the DoG detector. The authors of the Fast Hes-
sian detector claim that their detector outperforms the DoG
detector in terms of the run time more than three times [30].
We can conclude that the Fast Hessian detector has lowest
complexity, the DoG is in the middle and the Harris-Laplace
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Fig. 8: Repeatability of detectors for different level of Gaussian
noise.
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Fig. 9: Repeatability of detectors for different changes of brightness.
If factor k > 1 the image is brightened, if factor k < 1 the image is
darkened.

detector has the highest complexity.
We can compare the results from [25] and [26] with the

experiment where the brightness of the image was changed
and the repeatability of detectors was measured. Different
datasets are used for evaluation in the aforementioned pa-
pers. In the former study the authors use their own dataset
while two databases popular in the image processing commu-
nity are used in the latter one. It is also important to men-
tion that the former study does not evaluate the same three
detectors as we used and only the results of the Harris detec-
tor can be indirectly compared with the results of the Harris-
Laplace detector which is a scale-invariant version of the Har-
ris detector. The Harris detector achieved better results than
its scale-invariant counterpart which means that the Harris-
Laplace detector tends to favor points that are scale invari-
ant over the ones that are stable under change of brightness.
In [26], the Fast Hessian and DoG detectors notably outper-
formed the Harris-Laplace detector especially when the im-
age was darkened. These results were more or less confirmed
also in our study. Overall results of the detectors were bet-
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ter when tested on standard (meaning not ultrasound) images.
This may be explained by the fact that the US images contain
higher level of specific noise which is in some cases falsely
detected as interest point. The authors in [27] do not use the
repeatability rate as the measure, therefore, it is not possible
to directly compare their results with ours.

7. CONCLUSION

This paper compares suitability of three interest point detec-
tors for use in US images. Interest point detection is a nec-
essary step preceding medical examinations that are based on
speckle tracking such as continual measurement of lumen di-
ameter, arterial stiffness and arterial compliance. The tracked
interest points have to be invariant to noise as much as possi-
ble for high accuracy of long-lasting measurement. We per-
formed three experiments that measure repeatability of detec-
tors in varying noise (Gaussian and speckle) and changes in
brightness.

• The first two experiments examined the stability of the
detectors under changing variance of noise of different
types. The results show that the most robust is the Harris-
Laplace detector whose repeatability does not drop so
steeply when compared to the other ones.

• The third experiment focuses on change of brightness in
the images. The Harris-Laplace detector did well also
in this experiment. It achieved best results for values
of k in range 〈1,1.5〉. Nevertheless, DoG and Fast Hes-
sian outperformed Harris-Laplace when the images were
darkened and also for values of k larger than 1.5.

All the experiments were conducted with utilization of the
IMMI extension of RapidMiner [34]. New processes for find-
ing the optimal setup of parameters and evaluation of the qual-
ity of the interest point detectors were designed and published
in this paper.

Additional contributions of this paper reside in acquisition
and publishing of a new ultrasound image database and in the
implementation of all necessary operators into the IMMI ex-
tension of RapidMiner. As the IMMI extension and the image
database are freely available, all tested interest point detectors,
as well as other operators, can be utilized by other research
teams.

A possible direction for future work is to test other interest
point detectors such as the Harris corner detector [29] or the
salient point detectors described in [21, 22].
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