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High-accuracy motion modeling in three dimensions via digital images has been increasingly the matter of interest in 

photogrammetry and computer vision communities. Although accurate sub-pixel image registration techniques are the key 

elements of measurement, they still demand enhanced intelligence, autonomy, and robustness. In this paper, a new correlation-

based technique of stereovision is proposed to perform inter-frame feature tracking, inter-camera image registration, and to 

measure the 3D state vector of features simultaneously. The developed algorithm is founded on population-based intelligence 

(particle swarm optimization) and photogrammetric modeling. The proposed technique is mainly aimed at reducing the 

computational complexities of non-linear optimization methods of digital image registration for deformation measurement, and 

passing through 2D image correlation to 3D motion modeling. The preliminary results have illustrated the feasibility of this 

technique to detect and measure sub-millimeter deformations by performing accurate, sub-pixel image registration. 
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1.  INTRODUCTION 

PTICAL METHODS for 3D deformation measurement 

are emerging significantly in various fields of science, 

military services, and entertainment industry, e.g., 

mechanical, material, and structural engineering, remote 

sensing and telemetry, reconnaissance and surveillance, as 

well as animation generation. These methods are mainly 

divided into two categories: interferometric and non-

interferometric optical techniques.  

Interferometric techniques measure the displacements by 

fringe projection and phase-shifting methods. Therefore, a 

source of light projection is required, which makes these 

techniques more cumbersome regarding the experimental 

conditions. Non-interferometric techniques use the gray-

level variations of images to detect the deformations. The 

principal process of such workflows is to match, namely to 

track, the same objects in multiple images, whether on frame 

sequences and/or stereo views. While applying digital image 

correlation (DIC) on frame sequences of a single camera 

results in limited in-plane movements, stereovision 

techniques provide a facility for three-dimensional change 

measurement.  

Many studies have been dedicated to these fields, a review 

of which can be found in the literature [1], [2]. As the most 

general and popular matching practice, a matching objective 

function, such as a zero-mean normalized cross-correlation 

(ZNCC), is optimized on image subsets by different 

algorithms like iterative Newton–Raphson (NR) algorithm 

or least squares (LS) adjustment. A sub-pixel interpolation 

algorithm, such as bilinear or bicubic interpolation scheme, 

should also be considered for determining the intensity and 

gradient values.  

As non-linear optimization techniques, NR, LS and similar 

algorithms require initial approximation with accuracy of a 

few pixels to converge rapidly and correctly [3]-[5]. The 

conventional technique for estimating the initial position of 

a corresponding feature is to perform an exhaustive coarse-

matching by displacing the matching kernel by integer 

increments over a predefined area. Several techniques are 

proposed to improve the initial guess, for example by image 

rectification [6], by reliability-guided displacement scanning 

strategy [3] and by nested searching [7]. Although effective, 

these techniques are time consuming and/or only applicable 

to deal with small inter-image deformations; besides, they 

may require manual interactions as well [3], [8]. 

In this paper, a new correlation-based stereovision 

technique is proposed. The whole workflow is adapted to 

track features in sequential frames of one camera and 

register them to the equivalent frames of the stereo pair. The 

proposed technique assumes that the cameras are fixed and 

the objects are moving dynamically.  

Feature displacements are modeled by separate shape 

functions for each feature subset. The parameters of the 

shape functions are determined by optimizing a correlation 

criterion via particle swarm optimization (PSO). 

Photogrammetric space intersection is applied to extract the 

three-dimensional state vector of each feature. Concisely, 

the salient points worked on are: 

- accurate and careful lens and sensor calibration of the 

cameras, 

- precise calibration of the stereo setup, 

- avoiding the drawbacks of non-linear adjustments for 

digital image correlation by the automatic search algorithm 

of PSO, 

- confining and accelerating the search flow by object-

based constraints, 

- reducing interpolation time, 

- simultaneous 3D deformation measurement, and 

- relative accuracy evaluation by means of check marks.  

The paper structure is organized as follows. In the next 

section, the proposed methodology of this study is discussed 

in detail. The experimental aspects are presented thereafter. 

The results of the experiments and, finally, the conclusion 

are discussed in sections 3 and 4. 

O 

10.2478/msr-2013-0044 



 
MEASUREMENT SCIENCE REVIEW, Volume 13, No. 6, 2013 

 

 

 299 

2.  METHODOLOGICAL WORKFLOW 

The main workflow of this study is illustrated in Fig.1. 

The following five subsections are dedicated to explaining 

the principal procedures.   

 

 
 

Fig.1.  Methodological diagram of the correlation-based 

stereovision measurement system. 

 

A.  Camera calibration 

Interior orientations are the terms applied to 

mathematically describe the parameters involved in 

modeling the geometry of light rays passing through the lens 

and hitting the image plane. The principal distance and the 

coordinates of the principal point
1
 are the main interior 

orientation parameters, which should be measured when any 

camera is used for high-accuracy modeling. While a metric 

digital camera is characterized by stable, known and 

repeatable interior orientation parameters, those of non-

metric cameras, as within this study, are unstable and 

undefined [8]. 

Such lenses suffer from aberrations, some of which can be 

minimized by adjusting the image acquisition and aperture 

parameters. In more professional camera systems, lens 

aberration correction functions are provided too. They are 

mostly capable of modifying lens issues, such as peripheral 

illumination (vignetting), chromatic aberration like coma, 

color blur, and astigmatism. Some of these aberrations may 

also be correctable by post image-processing techniques.  

Although all the aberrations affect image quality, the 

aberrations known as radial and decentering distortions, 

which affect the geometry (location) of image elements [9], 

are the only ones considered in this work. Their impacts 

cannot be alleviated by aperture setting, and they need to be 

modeled accurately.  

In-plane sensor distortions, which are caused by electronic 

deficiencies of sensor manufacturing, should also be 

considered as factors affecting the modeling accuracy; the 

most concerning in-plane distortion parameters are known 

as shear and scale of sensor elements. 

The task of measuring interior orientation parameters and 

modeling lens and sensor distortions is called camera 

calibration. Calibration of the digital cameras, in this study, 

                                                 
1 The principal distance is the perpendicular distance from the 

perspective center to the image plane and the principal point is 

where the optical axis, passing through the lens center, hits the 

focal plane. 

is performed by the standard photogrammetric self-

calibration method, by which calibration parameters are 

estimated through a bundle adjustment [8]. 

A stereo setup, for 3D photogrammetric measurements, 

urges the input of camera exterior orientation parameters in 

order to reconstruct the 3D information involved. As such, 

the platform calibration for determining the relative 

orientation parameters between two cameras is mandatory 

[6], [9]. These parameters include three translation and three 

rotation parameters defining the imaging coordinate system 

of one camera with regard to the other one. In this study, a 

true-scale test-field is applied for calibration purposes. 

 

B.  Feature tracking and image registration 

Once the features are defined on the first frame, the task is 

to track them from the first to the next one. Briefly, the 

problem is to track each feature located at the known 

position 0 0( , )t tx y  on the t
th
 frame, and to find its 

correspondence located at an unknown position 1 1

0 0( , )t tx y+ +   

on the t+1
th
 frame. Assuming a sub-window of 

N N× pixels, for the pixels 
1 1

( , )
t t

i jx y
+ +

 belonging to this 

window, a first-order displacement mapping function can be 

written as follows [3]. 
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The matching criterion applied in this study is a 

correlation function called zero-normalized sum of squared 

difference (CZNSSD). This correlation function is highly 

recommended by the literature, as it is capable of 

compensating unexpected intensity changes [2], [10], [11]. 

Assuming that I
t
 is the intensity image of frame t and I

t+1
 

is that of frame t+1, then, the correlation of two image 

windows can be formulated as: 
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Therefore, the tracking problem can be re-formatted to an 

optimization problem, where the objective function is (2), 

and the variables are six deformation parameters 

( , , , , , )x x y yα β α β α β . 

To solve this problem, standard particle swarm 

optimization is applied [12]. PSO is originally inspired by 

the concerted behavior of swarms of birds or insects. In 

standard PSO, a swarm of particles flying through D-
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dimensional parameter space of solutions (here six-

dimensional) are considered. The particles move to get to 

the best destination, which is the solution for the parameters 

and maximizes the objective function. PSO begins by 

generating a set of random particles to form the initial 

population. While flying, each particle adjusts its trajectory 

(velocity and position) towards its own best solution (the 

cognitive component) and the global best solution (the 

social component). The velocity and position of particle i in 

dimension j at iteration k are represented as ,

k

i jV  and ,

k

i jP ; 

they get updated by the following equation. 

             
1 1

, , ,

1

, , 1 1 , , 2 2 ,( ) ( ),

k k k

i j i j i j

k k k k

i j i j i j i j j i j

P P V

V w V c r pbest P c r gbest P

+ +

+

= +

= × + × − + × −
   (3) 

 
In (3), w controls acceleration or changing rate of velocity, 

which is known as inertia weight; it decides how much the 

previous flight direction of a particle might influence its new 

direction. The larger w is, the more diversity will be 

achieved among solutions. In this study, w is set to 0.9, and 

is decreased linearly to 0.4 at the end [13]. Since the search 

space (variation of shape parameters from one pair of frames 

to another) is not large, setting inertia weight to a very high 

or a very low value can cause rapid acceleration or 

deceleration [14].  

Accordingly, c1 and c2 are two weight factors, which 

determine the proportions of cognitive and social 

components correspondingly; and, r1 and r2 are random 

numbers uniformly distributed in the range of [0,1]. pbesti,j  

is the best solution of particle i in dimension j; and gbesti,j  is 

the best solution of all particles in dimension j (up to 

iteration k). Using c1 and c2, one can decide how much a 

particle relies on its own direction and how much 

confidence it has in other individuals. As other PSO 

parameters, there have been various schemes in the literature 

to determine c1 and c2. To guarantee the convergence of the 

swarm to an equilibrium state, the method of [15] is used 

here, which keeps a balance between the social component, 

cognitive component, and inertia weight [16]. By this 

method, value of c1 is decreased and value of c2 is increased 

linearly between 0.5 and 1; i.e., more exploration is applied 

initially, and more attraction to the best global solution is 

directed at the end [16]. 

The fitness or goodness of each particle i is determined by 

the correlation function (2). The update process is iteratively 

continued until the maximum number of iterations is 

reached or the maximum correlation is achieved. In this 

experiment, the maximum number of iterations is set to 50. 

However, the quality of a solution when reaching the 

maximum number of iterations can be tested by the fitness 

achieved. If the best global fitness had been relatively 

constant for the last generations, then the solution could not 

have been further improved. This can be statistically 

expressed as the standard deviation of the fitness values of 

gbests from last generations.  

Having been tracked to the next frame of the reference 

camera, the features should be registered to their 

corresponding ones on the target image by stereo 

registration. Assuming that the reference feature is located at 

0 0( , )ref refx y  on the reference image, then its corresponding 

coordinate on the target image is 0 0( , )tar tarx y . We can define 

a shape function between reference sub-window, centered at 

the feature, and the unknown target sub-window [17]. The 

same correlation function and PSO algorithm of inter-frame 

feature tracking is applied to register the stereo images by 

the shape function of (4). 
 

2 31

5 64
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                       (4) 

 

C.  Gray value interpolation 

Regarding (2), the gray values, I(xi,yj), at sub-pixel 

locations are required to calculate the correlation function. 

The traditional method is to perform sup-pixel interpolation 

at each position, when necessary. However, this apparently 

straightforward approach is extremely time-consuming with 

high computational expense. Following the idea developed 

by [3], a pre-computed global look-up table of interpolation 

coefficients is formed for each sub-image to eliminate 

repetitive interpolation calculations at sub-pixel locations 

and to speed up the optimization process. Applying such 

look-up table does not affect the accuracy of interpolation, 

as it does not propose an approximate alternative. Instead, it 

avoids numerous passages of the original image as callee to 

an external interpolation function for every feature.  

The interpolation function applied in this study is a 

bilinear one. For each pixel location (P,Q) four interpolation 

coefficients (A,B,C,D) are calculated by (5) to fill the look-

up table. Given a sub-pixel location (P'+p,Q'+q), where P' 

and Q' are the integer parts, and p and q are the fractional 

parts, the gray value is computed by searching for the 

coefficients A',B',C',D' corresponding to P',Q' at the look-up 

table as (6). 

   
( , );  ( , 1) ( , );  ( 1, ) ( , )

( 1, 1) ( , ) ( 1, ) ( , 1)

A I P Q B I P Q I P Q C I P Q I P Q

D I P Q I P Q I P Q I P Q

= = + − = + −

= + + + − + − +
(5) 

 

( ' , ' ) ' ' ' 'I P p Q q A B q C p D p q+ + = + × + × + × ×             (6) 

 

D.  3D State vector measurement 

When the features of an epoch are detected on the 

reference frame and co-registered to the target frame, their 

object-space coordinates can be computed from the 

collinearity equations [8]. If ( , )ref ref

n nx y  and ( , )tar tar

n nx y  are 

the coordinates of feature n on reference and target images, 

respectively, then the following four observation equations 

are solved by least squares adjustment to extract the 3D 

object-space coordinates of the feature, ( , , )n n nX Y Z : 

 

( ) 0;  0

( ) 0;  0

tar ref

n x n z n ntar ref

tar ref

n y n z n ntar ref

U U
X T Z T X Z

W W

V V
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− − − = − =

− − − = − =

          (7) 

 

where, 
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In the above equations, ( , , )ω ϕ κ are the rotation angles of 

the imaging coordinate system of the target camera relative 

to the reference imaging coordinate system, and ( , , )
x y z
T T T  

are the coordinates of the target camera perspective center 

relative to the reference camera. The parameters f, xp and yp 
are the interior orientation parameters of the cameras, which 

are accurately determined in the calibration process; 

R1,R2,R3 are the fundamental rotation matrices, and ( , )x y∆ ∆  

are systematic errors due to lens and sensor distortions, 

which are calculated using camera calibration parameters by 

(9). 
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        (9) 

 

The radial and decentering lens distortion coefficients are 

1 2 3( , , )K K K and 1 2( , )P P , respectively. A1 and B1 are sensor 

distortion coefficients, and r is the radial distance from the 

principal point. 

The other elements of the 3D state vector are the feature 

velocity and acceleration ( , )n nV a
r r

, which are calculated as 

the first- and second-order derivatives of position over the 

frame rate ( t∆ ): 

 
1 1 1 1
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        (10) 

 

E.  PSO confinement 

Assuming a short frame interval and constant motion at 

this interval, the approximate object-space coordinates of 

feature n at epoch t+1 can be calculated by its position, 

velocity and acceleration at previous epochs using the 

following kinematic approximation. 
 

1
1 2 1

2

t
t t tn
n n n

a
X X t V t

−
+ −= + ∆ + ∆

r
r r r

                         (11) 

 

Using 1t

nX
+

r
, the collinearity equations (7) are applied in 

inverse way to calculate the approximate value of feature 

position on frame t+1, 
1 1

0 0( , )t tx y+ +
. Considering the frame 

rate, this approximation is accurate enough to set the initial 

values of ( , )α β equal to 
1 1

0 0 0 0( , )t t t tx x y y+ +− − and the affinity 

parameters to zero. The search range (limits for particle 

velocity on each dimension) is assigned accordingly as the 

maximum and minimum of the values of each displacement 

model parameter from frame t-10 to frame t. In basic PSO, 

this is called velocity clamping [16]. 

 
3.  EXPERIMENTS AND RESULTS 

This study can be considered more as a preliminary 

proposal of a new methodology, which is put into a simple 

experiment herein. Two digital cameras are applied, which 

are both calibrated using the multi-resolution, multi-depth 

test-field of Fig.2. (left). The cameras are Canon camcorders 

with 3.28 megapixels resolution and 1/4.85" CMOS sensors 

[18]. The 32x zoom lenses of the cameras are fixed to wide 

angles, resulting in the exact focal lengths of 4.821 mm and 

4.830 mm. 

Once the cameras are fixed at their stereo locations, the 

external orientation parameters of both cameras can be 

calculated by taking videos from the non-moving board of 

calibration targets. These exterior orientation parameters can 

be used as they are for further calculations. However, as 

explained in section 2.D, measurements are more 

straightforward if the imaging coordinate system of the 

reference camera is set as the zero reference. Therefore, 

relative orientation is applied, where the horizontal base is 

set to its real value calculated from exterior orientation 

parameters, for keeping the real-world scale. The orientation 

parameters ( , , , , , )
x y z
T T T ω ϕ κ  are 1430.401 mm, 

196.708 mm, -552.034 mm, -2.217°, -43.443°, and 2.461°, 
respectively. 

An experimental object is created by printing the pattern 

of rusty metal, plus evaluation marks, on paper and pasting 

it on a piece of wooden board (Fig.2. (right)). The pattern 

size is approximately 50x30 cm. The features are selected 

by the Harris corner detector from the first image and 

matched manually to the target image. The centers of the 

circular targets (1.5 cm diameter) are also precisely 

determined and added to the list of features to be tracked. In 

order to evaluate the accuracy of the matching process, the 

circular targets are used as check marks; i.e., they are both 

tracked along with other features and measured separately 

by a circular target detection algorithm as described by 

author's previous work [18]. 

The object board is moved and rotated in various 

directions in the view field of the cameras. The average 

distance of the object from the cameras is less than two 

meters. The video frame rate is 1/60 second; however, the 

algorithm is performed by rate of 1/30. The following 

paragraphs discuss the results obtained from this 

experiment. 

Fig.3. illustrates the amount of the systematic error due to 

lens and sensor distortions, and offset of principal point, as 

in (10), for the reference camera. It can be noticed that these 

distortions are large enough to leave noticeable impacts on 

measurement accuracy, a comprehensive study of which is 

reviewed by [9]. For example, consider a feature located at 

pixel (1500, 800); then, the systematic error at two 

directions is (11.50, -4.47) pixels. This means that the 

straight ray from this object should have hit the sensor at 

position (1511.50, 795.53); however, this feature is seen at 

(1500, 800) because of an ensemble of lens and sensor 
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distortions. Assuming a distance of 2 meters from the 

camera parallel to the object-space coordinate system, the 

imaging scale is 0.0024. In this case, ignoring the systematic 

error would cause an average object measurement error of 

12.17 mm; which is an important error in close-range 

applications. 

 

 
 

Fig.2.  The multi-resolution, multi-depth test-field for camera 

calibration test-field (left) and the object pattern designed from 

rusted metal texture and circular evaluation marks (right). 

 

 
 

Fig.3.  Lens and sensor distortions modeled at horizontal (left)  

and vertical directions (right). 

 
The matching error is defined as the difference of tracked 

and registered check marks from their positions determined 

by the circle detection algorithm. The average error of check 

marks is plotted against the frame number (successively) for 

reference and target cameras, namely tracking and 

registration errors (Fig.4.). The root mean square error 

(RMSE) of tracking through 1270 frames (with 30 Hz rate) 

is 0.1550 and 0.1273 pixel in horizontal and vertical 

directions, respectively; and the RMSE of stereo image 

registration is 0.0948 and 0.1874 pixel in horizontal and 

vertical direction, respectively.  

 

 
 

Fig.4.  Average inter-frame feature tracking error (left)  

and stereo image registration error (right). 

To assess the relative accuracy of 3D dynamic 

measurements, the 3D distances between independent pairs 

of evaluation marks are calculated from the results of the 

stereovision technique. Since the circles are originally 

plotted at pre-determined locations and are relatively fixed 

on the flat board, their true distances are known. Thus, the 

residuals remaining by subtracting the calculated distances 

from the pre-specified distances reveal the accuracy of 

displacement measurement in terms of magnitude. The 

average magnitude error of displacement measurement is 

represented in Fig.5. (left). The same method is applied to 

assess the relative accuracy of orientation. The 3D angles 

between check marks are calculated from their position 

vectors, and they are compared with the true, pre-defined 

angles. Fig.5. (right) illustrates the average orientation error 

of motion measurement versus the frame number. In 

summary, displacement measurement is performed in 3D by 

RMS magnitude error of 0.3568 millimeter and orientation 

error of 0.3298 degree.  

 

 
 

Fig.5.  Deformation measurement error versus successive frame 

numbers. Magnitude error in millimeters (left) and orientation error 

in degrees (right). 

 
There are several important factors that affect the tracking 

and registration accuracy, such as radiometric distortions 

and robustness of shape functions. Efficiency of shape 

functions can be remarked when the object status is changed 

significantly and quickly, during a very short period of the 

video. Under this condition, the first-order displacement 

mapping function is not efficient in modeling the real 

movement of the features. Besides, the assumption of 

constant acceleration between adjacent frames is not valid 

any more. Furthermore, the motion blur, caused by changes 

faster than video frame rate, affects the visibility of features. 

Therefore, tracking and registration would result in lower 

accuracy. This effect can be observed in Fig.4. and Fig.5., 

where measurement accuracy is changed considerably for 

several frames around frame 400. Fig.6. shows the status of 

the object in four different close frames (from left to right: 

frames 371, 381, 436, and 449). It can be observed that 

inter-frame tracking has lower accuracy during this period 

of video, since estimating the shape function is more 

difficult when the initial assumptions of the algorithm are 

not completely true. However, this error is not equally 

revealed in inter-camera registration, because it is a relative 

matching, and the check marks are imposed to similar 

distortions in both cameras’ videos. Accordingly, the 

registration error affects the 3D measurements, especially 
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orientation accuracy. This can be explained by the fact that 

quick movements of the object are more rotational rather 

than translational. As a conclusion, this drawback of the 

algorithm should be considered in future investigations by 

applying more robust modeling functions and radiometric 

techniques of motion compensation. 
 

 
 

Fig.6.  Object status in four close frames. 

 

4.  CONCLUSIONS AND FUTURE WORK 

In this paper, a new correlation-based stereovision 

technique is proposed to perform inter-frame feature 

tracking and stereo image registration, and to measure the 

3D state vectors of features. The proposed algorithm is 

based on particle swarm optimization aided by object-based 

initialization. This technique eliminates the drawback of 

non-linear numerical optimization techniques that require 

very accurate initial approximations, since PSO is not trying 

to solve any non-linear functions mathematically, and its 

search space can be adaptively extended to ensure 

convergence. Furthermore, it eliminates the necessity of 

computing sub-pixel intensity gradients at each pixel, which 

reduces the processing time significantly. 

Resulting in relative 3D measurement accuracy of 0.4 

millimeters, the proposed methodology of this study can be 

considered as an effective method for monitoring very 

small-range motions of different structures. The size of the 

studied object in this experiment is several centimeters; 

however, depending on the spatial resolution and ground 

coverage of cameras, larger objects of several meters can be 

modeled as well. Moreover, this algorithm can be extended 

to perform stereo-registration between a reference camera 

and several target cameras. This would increase the 

robustness of measurements as the geometric configuration 

for photogrammetric intersection would be enhanced. 

Besides, the coverage area extended by several cameras 

increases the chance of modeling larger objects. 

As mentioned before, this study is a preliminary proposal, 

which is still under development. Therefore, in the future, 

the system needs to be tested on more complex study objects 

involving more complicated deformations and displacement, 

and during a longer video period. Its performance should 

also be compared with other similar methods. It is also 

considered to improve the selection of PSO parameters 

using more sophisticated methods, as proposed by [19]. 

Currently, they are determined empirically and based on 

simple selection theories in this paper. As another point of 

concern, PSO can be replaced with other heuristic search 

algorithms and their performance can be compared.  

The author is also interested in reducing the stereovision 

system to a monocular one as suggested by [20], where the 

images are recorded using a single camera and a series of 

mirrors playing the role of virtual cameras. 
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