
 
MEASUREMENT SCIENCE REVIEW, Volume 13, No. 6, 2013 

 
 

 286 

 

Neural Network Based Real-time Correction of Transducer 

Dynamic Errors 

J. Roj 

Institute of Measurement Science, Electronics and Control, Silesian University of Technology, Gliwice, Poland, 
jerzy.roj@polsl.pl 

 
In order to carry out real-time dynamic error correction of transducers described by a linear differential equation, a novel 

recurrent neural network was developed. The network structure is based on solving this equation with respect to the input 

quantity when using the state variables. It is shown that such a real-time correction can be carried out using simple linear 

perceptrons. Due to the use of a neural technique, knowledge of the dynamic parameters of the transducer is not necessary. 

Theoretical considerations are illustrated by the results of simulation studies performed for the modeled second order transducer. 

The most important properties of the neural dynamic error correction, when emphasizing the fundamental advantages and 

disadvantages, are discussed.  
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1.  INTRODUCTION 

HE PROCESSING taking place in transducers used for 
digital measurements of instantaneous values of time-
varying quantities generally consists of several phases 

[1, 2]. First, the measured input quantity is converted to an 
electrical signal (usually voltage or current). For this 
purpose appropriate sensors and signal conditioning circuits 
are used. Then, sampling and quantization are carried out to 
obtain digital values proportional to the instantaneous values 
of the output quantities of the analog measuring chain. In the 
last phase digital processing enabling obtaining sufficiently 
accurate measurement results of the input quantity at 
discrete moments of time is performed. 

Digital processing, usually carried out by a 
microprocessor, consists of performing the activities 
determined by appropriate static and dynamic error 
correction algorithms whose properties co-decide about the 
accuracy of the whole measuring chain. Implementation of 
this kind of operations assumes the knowledge of the inverse 
numerical model describing the measuring process from its 
input to the A/D converter output [3]. 

In many cases, sufficiently accurate identification of the 
inverse analog processing model is very complex or even 
impossible to be carried out. An alternative approach is to 
replace selected algorithms or algorithm chains by artificial 
neural networks (ANN) which, in the learning process, can 
"create" a right inverse model [4, 5, 6] due to their basic 
features: the ability to learn and to generalize [7, 8, 9]. The 
ANN properties of this type appear to be significant for the 
issues of correction of dynamic errors which are usually 
caused by the dynamic properties of sensors [10, 11]. 
Classical dynamic error correction algorithms are usually 
characterized by high complexity of numerical operations, 
in particular in the case of describing the transducer 
dynamics by means of higher order differential equations. 

ANN as "universal approximators" [12, 13, 14] have been 
widely used for transducer static error correction [15, 16, 17, 
18], in particular for transducer and measuring instrument 
calibration [19, 20, 21]. Nevertheless, in the field of real-

time dynamic error correction, solutions using DSP [22, 23, 
24], FPGA technique [25] and analog circuits [26, 27] are 
dominant. The typical use of ANN is presented, e.g., in [11, 
28, 29]. In these publications MLP with tapped delay lines 
and RBF networks have been used for the dynamic error 
correction. The network input data is usually from a few to 
hundreds of the time series samples of the sensor step 
response, while the predicted values in steady state are 
obtained at the network output. 

The author presents a different approach to such issues. It 
is based on using a relatively simple recurrent neural 
network for solving (with respect to the input quantity) the 
differential equation describing the dynamic properties of 
a transducer [5, 6]. This allows for a fast performance of the 
real-time dynamic error correction, described in this paper. 

 
2.  METHODOLOGY 

Dynamic properties of analog transducers are usually 
modeled by a linear differential equation of n-th order [30, 
31, 32]: 
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where: 001 ,...,, baan−  are constant coefficients, x  is the 

input quantity, y  is the transducer output quantity. 

Relationship (1) can be written in the form of n state 
equations [33, 34, 35]: 
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where nyy ...,,1  are state variables, and yy =1 . 

The set of equations (2) can be given in the matrix form: 
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The solution of (3) is the relation: 
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where kkd ttT −= +1  is the sampling period. Assuming that 

the values of y do not change between the sampling points 
(changes of y occur only at the moments of discretization), 
relationship (3) can be written as the discrete state equation: 
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Matrix equation (6) can be presented in the form of the 

following equations: 
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Taking into account that the state variable 1y  is directly 

measured (there is yy =1 ) and solving equations (10) with 

respect to the input quantity x , the following recurrent 
equations are obtained [6, 35]: 
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where )(ˆ kx  is the estimate of the input quantity x at  

moment k, obtained from measurement of the output 
quantity y  at moments k+1, k ( denoted as )1( +ky , )(ky ) 

and the estimates of the state variables )(ˆ,),(ˆ2 kyky nK  from 

the previous moment. Equations (11) and (12) represent the 
numerical solution (with respect to the input quantity) of the 
differential equation describing the transducer dynamic 
properties. Thus, they enable performing the real-time 
dynamic error correction. 
 

3.  NEURAL NETWORK TECHNIQUE FOR THE REAL-TIME 

DYNAMIC ERROR CORRECTION 

Equations (11) and (12) can be written as: 
 

)1()()(ˆ)(ˆ 10
2

111 +++=∑
=

=

kywkywkywkx
ni

i

ii         (13) 

 
and 

),(ˆ)()(ˆ)1(ˆ

),(ˆ)()(ˆ)1(ˆ

0
2

1

2021
2

22

kxwkywkywky

kxwkywkywky

n

ni

i

ninin

ni

i

ii

∑

∑

=

=

=

=

++=+

++=+

M        (14) 

 
where the coefficients ijw  have constant values and are 

functions of ijϕ  and iψ . The operations described by (13) 

and (14) can be carried out using simple linear perceptrons, 
connected recurrently in a network structure shown in Fig.1. 
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Fig.1.  Structure of the recurrent neural network performing real-
time dynamic error correction according to equations (13) and (14). 
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In this case, the real-time dynamic error correction can be 
illustrated by a sequence of operations shown in Fig.2. 
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Fig.2.  Illustration of dynamic error correction performance using 
neural network structure shown in Fig.1. 
 

In the first step of the dynamic error correction, knowledge 
of the initial values of state variables )0(ˆ,),0(ˆ2 nyy K  is 

required. These values can be estimated or assumed to be 
equal to zero. The use of initial values different from the 
actual values will result in a transient state, which 
disappears after a certain number of the correction steps [6]. 

In the case of the first-order transducer model: 
 

xbyay 00 =+& ,                              (15) 

 
equation (11) takes the non-recurrent form: 
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It means that for such a case the dynamic error correction 

is possible to be carried out with use of a simple, two-input 
linear perceptron, as shown in Fig.3. 
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Fig.3.  Linear perceptron performing dynamic error correction in 
the case of the sensor model described by a first order linear 
differential equation (15). 
 

If the dynamic model of a transducer is described by the 
second-order differential equation: 
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formulas (11) and (12) take the form: 
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where )(ˆ kx  is the estimate of the input quantity x at  

moment k, )(ˆ2 ky  is the estimate of the state variable 2y . 

Equations (18) and (19) can be written as: 
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where the coefficients 31...ww  and 31...vv  have constant 

values and are functions of 212211 ,,... ψψϕϕ . 

The operations described by (20) and (21) can be carried 
out using simple linear perceptrons with 3 inputs, connected 
as shown in Fig.4. 
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Fig.4.  Structure of the recurrent linear perceptron network 
performing dynamic error correction in the case of the sensor 
model described by a second order linear differential equation (17). 
 
 

There is also possible non-recurrent performing of the 
dynamic error correction by a single perceptron shown in 
Fig.5. and functioning in accordance with (20). 
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Fig.5.  Linear perceptron performing non-recurrent dynamic error 

correction. 
 
 

In this case, it is necessary to determine the values of state 
variable 2ŷ  by, e.g., using the so-called central difference: 
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where: kkd ttT −= +1  is the sampling period, 

)()1( dTtyky k +=+ , )()1( dTtyky k −=− .  

During the correction, the values of )(ˆ2 ky  are calculated 

online, at each step.  
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4.  SIMULATION RESULTS 

Investigations of possibilities of using an ANN for the 
real-time dynamic error correction were carried out with use 
of the MATLAB Neural Toolbox library [36]. The case of 
the first-order transducer is trivial, so the second-order 
transducer was the object of studies. Its dynamic properties 
are usually modeled by the linear differential equation [30, 
31]: 

 

xkyyy s
2
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2
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where: ξ  is the damping coefficient, 0ω  - natural 

frequency, sk - static gain.  

To perform preliminary investigations, the following 
values of the transducer parameters were assumed: the 
damping coefficient 5.0=ξ , the natural frequency 

s/rad100 =ω  and the static gain 1=sk . So the chosen 

parameter values characterized a second-order underdamped 
transducer. It was also assumed that the sampling period 

s02.0=dT .  

The ANN learning process requires a set of learning 
patterns [7, 8]. This set was generated using the dependence 
describing the transducer response for the step input 
quantity changing from the value 0x  to 1x  [30, 31]: 
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Each element of the first perceptron (performing equation 

(20)) learning pattern set should therefore consist of vector 
T

2 )](ˆ),(),([ jijjijdjij
a
ij tytyTty +=in  fed to the perceptron 

input and values i
a
i xout 1=  (for which there were 

determined a
ijin ) fed to its output. The index i represents a 

subsequent input step, j – a subsequent time moment. 
Similarly, for the second perceptron, performing (21) – the 
vector of the input values is given by 

T
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b
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b
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Preparation of this kind of learning sets requires, among 
other things, the knowledge of subsequent state variable 
values ijy2ˆ , that is, the determination of derivatives. For the 

purpose of simulations, the derivatives were determined 
using relationship (22).  

It was also assumed that the measured quantity )(tx  was 

changed stepwise as shown in Fig.6. (at first the step change 
from 0 to 0.8, and then from 0.8 to 0.2). 
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Fig.6.  The measured quantity )(tx . 

 
In the learning process the Levenberg-Marquardt 

algorithm [9, 37] and 200-element learning sets obtained 
from equations (22) and (24) were used. To verify the 
learning quality of both perceptrons, the testing procedure 
with the 200 000-element testing set whose values were 
generated in the same way as those of the learning set was 
carried out.  

It should be noted that during the recurrent implementation 
of the dynamic correction by the network from Fig.4., the 
initial value of state variable )0(ˆ2y  is not known. Fig.7. 

shows  the  correction  results in the case of  a) 0)0(ˆ2 =y , 

b) 5.0)0(ˆ2 =y . There can be seen the initial transient state 

(Fig.7b.) which disappears after a dozen or so steps of the 
algorithm realization. However, in the steady state a 
practically error free correction was achieved (errors at the 
level of 10-15). 
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Fig.7.  Results of the dynamic error correction performed by the 
recurrent neural network composed of two perceptrons (Fig.4.) for 
the initial value a) 0)0(ˆ2 =y , b) 5.0)0(ˆ2 =y . 



 
MEASUREMENT SCIENCE REVIEW, Volume 13, No. 6, 2013 

 
 

 290 

However, it should be mentioned that in both described 
cases, the ideal learning and testing sets obtained from (22) 
and (24) were used. Under real measurement conditions, the 
obtained data are burdened with various types of errors. 
Fig.8. shows the results of the dynamic error correction 
performed by the ideally learned network from Fig.4., to 
which inputs there is given the data quantized with a) 12-bit, 
b) 16-bit resolution.  
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Fig.8.  Results of the dynamic error correction in the case of the 
input data quantized with a) 12 bit b) 16 bit resolution. 
 

5.  CONCLUDING REMARKS 

The simple recurrent ANN presented here enables the 
performing of the real-time dynamic error correction of 
transducers described in the general case by a linear 
differential equation of n-th order (1). It should be noted that 
the calculation of a single value of the instantaneous 
measurand requires only two samples of the transducer 
output waveform in transient state and n-1 values of the 
state variables from the previous correction step.  

In the case of the second-order transducer, the real-time 
dynamic error correction can be performed in two ways. 
When using a recurrent chain of two linear perceptrons 
(Fig.4.) it is not necessary to know the subsequent values of  
state variable 2ŷ . In the first step it can be assumed that 

0)0(ˆ2 =y . Wrong estimation of the 2ŷ  initial value causes 

occurrence of a transient state of the algorithm whose 
exemplary waveform is shown in Fig.7b. This type of 
operation can be used in the online, continuous dynamic 
error correction.  

The second way is to use only one perceptron (Fig.5) and 
the online determination of the values of the state variable 
(derivative), which means non-recurrent operation. It should 
be noted that the use of the same method for determining  
state variable 2ŷ , both during perceptron learning and 

subsequent dynamic correction, allows avoiding the 
transient state. This solution, however, requires the use of an 
additional arithmetic circuit enabling current calculation of 
the value of state variable 2ŷ . 

Under real measurement conditions, in which the obtained 
data is burdened with various types of errors, there should 
be taken into account the fact of random error reinforcement 
by dynamic error correction algorithms. It also refers to the 
neural implementation of such procedures, as illustrated in 
Fig.8. The values of the random errors at the network output 
can be reduced in several ways, e.g., by increasing the 
resolution of the A/D, increasing the sampling period dT  

or/and use of various random error filtering algorithms.  
However, the use of ANN has other important advantages. 

For example, it is not necessary to identify transducer 
parameters and to determine dynamic correction algorithm 
coefficients. ANN performs these operations in the learning 
process. Parallel information processing by the ANN results 
in high speed of the correction performance. In addition, the 
described real-time neural dynamic error correction 
procedure can be used for the input signal of any course. 

In a further stage of the research the developed ANN 
structure is expected to be complemented with additional 
neural elements enabling random error filtration. 
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