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The surface roughness is a very significant indicator of surface quality. It represents an essential exploitation requirement and 

influences technological time and costs, i.e. productivity. For that reason, the main objective of this paper is to analyse the 
influence of face milling cutting parameters (number of revolution, feed rate and depth of cut) on the surface roughness of 
aluminium alloy. Hence, a statistical (regression) model has been developed to predict the surface roughness by using the 
methodology of experimental design. Central composite design is chosen for fitting response surface. Also, numerical optimization 
considering two goals simultaneously (minimum propagation of error and minimum roughness) was performed throughout the 
experimental region. In this way, the settings of cutting parameters causing the minimum variability in response were determined 
for the estimated variations of the significant regression factors.  
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1.  INTRODUCTION 
URFACE QUALITY is mostly dependent on the type of 
manufacturing process and is determined by the function 
of the given product. Therefore, the required surface 

quality must already be defined in the design phase of 
product development, taking into consideration a number of 
criteria (functionality, costs, aesthetics, etc.). Consequently, 
many scientific-research projects and scientific papers deal 
with the modelling of roughness and optimization of the 
cutting process so that the desired level of surface quality is 
obtained. The proper selection of cutting parameters is very 
important to obtain the minimum value of surface roughness 
and to extend tool life [1], [2]. In this sense, many models 
have been developed to predict the surface roughness, such 
as statistical (regression) models and those based on the 
application of artificial intelligence. 

Designed experiments are widely used for the prediction 
and optimization of the cutting process, with the aim of 
obtaining a given surface roughness. Rashid et al. [3] 
developed a mathematical model to predict the surface 
roughness in face milling. Ozcelik and Bayramoglu [4] 
developed a statistical model of surface roughness in high 
speed face milling with cooling, by changing the number of 
revolutions, feed rate and depth of cut, similar models were 
developed by the authors Hayajneh [5] and Barkallah [6].  
Wang et al. [7] investigated the influence of cutting 
parameters on the surface roughness of brass using the face 
milling on a small milling machine. Azuddin and Abdullah 
[8] also used designed experiments to optimize the surface 
roughness by varying the cutting parameters and tool 
diameter in face milling of aluminium. The Taguchi method 
is a frequently used technique for the process robustness 
study; it was used by Asilturk and Neseli [9], Yang and 
Chen [10], Zhang et al. [11] and many other researchers. 
Many investigators have used the response surface 
methodology (RSM) for the development of mathematical 
models of surface roughness and optimization of the cutting 
process. RSM methodology and face centred central 

composite design of experiment were used by Lalwani et al. 
[12] for the optimization of surface roughness. Soleymani 
and Khorram [13] investigated the optimal cutting 
parameters in order to reduce the surface roughness and 
increase the amount of material removed, using RSM 
methodology and artificial neural networks.  

In the paper [14], a model of surface roughness using 
neural networks and regression modelling is developed. The 
paper [15] analyses the influence of the depth of cut, feed 
rate, and number of revolutions on the surface roughness. 
Dweiri et al. [16] and Palani and Natarajan [17] applied 
neural networks to model the surface roughness of face 
CNC milled aluminium. The paper [18] presents a new 
approach to determine the optimal cutting parameters 
leading to the minimum surface roughness in face milling of 
X20Cr13 stainless steel, by integrating artificial neural 
network (ANN) and harmony search algorithm (HS). The 
authors [19] describe the application of neural network for 
the prediction of surface roughness after the roller 
burnishing. Because of the direct impact on the cost of 
production and on productivity, the surface roughness 
investigations are the subject of research in many other 
papers [20]-[24]. 

From the previously discussed papers, the following 
conclusions can be drawn: 
-  There are some variables of primary interest that can be 

controlled (feed rate, number of revolutions, depth of cut) 
and several other factors that cannot be easily controlled 
(wear of tool, loads, vibrations, properties of material, tool 
and workpiece, respectively…). 

-  The researchers are mainly interested in varying the 
controlled factors by using the designed experiments. 

-  Central composite designs in the framework of response 
surface methodology, and independent, as well as Taguchi 
designed experiments, are widely used.  

- The main goals of experimental investigations are 
modelling, actual prediction of response (by regression 
models), as well as optimizing a process (by response 
surface methodology and Taguchi designed experiments). 
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-  In recent time, the methods of artificial intelligence have 
been applied (for example neural networks and genetic 
algorithms) and integrated into or compared with the 
regression models.  
The objective of this paper is to derive a regression model 

on the basis of measured surface roughness of face milled 
aluminium alloy, by varying the levels of cutting parameters 
(number of revolutions of spindle n, feed rate f and depth of 
cut a) using the designed experiment. An experimental 
investigation has been performed using a low power CNC 
milling machine. Since the low power milling machines are 
not often represented in the manufacturing companies, due 
to reduced productivity, experimental work using them is 
not common. Consequently, achieving the satisfactory 
roughness on low power machines is mostly dependent on 
rich experience of the machine operator.  

Therefore, this study should primarily assist in the 
modelling of surface roughness of aluminium alloy, 
machined on low power milling machines. Since the small 
aluminium parts have been widely used in the automotive 
industry, the results of this paper (i.e. the regression model 
and added numerical optimization) can be used by the 
engineers in the automotive industry. 
 

2.  SUBJECT & METHODS 
The surface roughness is a very important property and, 

consequently, there are so many methods and equipment to 
measure it (mechanical, optical, pneumatic, hydraulic and 
also contact and non-contact [25]). Accordingly, we have 
stylus profilers, optical profilers, and more sophisticated 
scanning tunnelling and atomic force microscopes to 
measure surface roughness. For this investigation a contact 
stylus profiler is used. Apart from the measuring device, this 
section is about the material of investigation, equipment for 
machining and experimental design.  

The material of the specimens is the aluminium alloy 
Al6061 (AlMg1SiCu); the chemical composition is given in 
Table 1. The dimensions of aluminium alloy specimens are 
70×30×30 mm (presented in Fig.1.). 
 

Table 1.  Chemical composition of aluminium alloy. 
 

Element Al Cr Cu Fe Mg Mn Si Ti Zn 
wt, % 97.4 0.3 0.2 0.1 1.0 0.1 0.6 0.1 0.2 

 

 
 

Fig.1.  The aluminium alloy specimens. 

Machining was performed on a vertical CNC milling 
machine (characteristics are given in Table 2.), using a high 
speed steel tool with six cutting edges (given in Fig.2.). The 
tool is preset and measured before use, on a measuring 
machine (Fig.3.) so that all the cutting edges are the same 
height.  
 

Table 2.  The characteristics of milling machine. 
 

Slideway longitudinal (X axis) 190 mm 
Slideway cross (Y axis)  125 mm 
Slideway vertical (Z axis)   190 mm 
Maximal power  750 W 
Maximal spindle speed  3500 rev/min 
Maximal feed rate  2000 mm/min 

 

 
 

Fig.2.  Tool HSS Mayestag ∅40×32×16 N3074-Q45. 
 

 
 

Fig.3.  Tool presetter and measuring machine. 
 

The output variable, i.e. surface roughness Ra, was 
measured using a device presented in Fig.4. (on the left) 
whose characteristics are given in Table 3. This is a contact 
diamond stylus profiler. For this kind of device, a diamond 
stylus is moved across the peaks and valleys of the surface 
to be measured. The main principle is the transformation of 
mechanical movement of the stylus into an electrical signal 
which is digitized and processed so the average value of 
surface roughness Ra can be obtained. This equipment is 
calibrated before use (see the roughness etalon next to the 
measurement device, Fig.4.). During the measurement, room 
temperature was 20 oC.  
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Table 3.  The characteristics of the measuring device. 
 
Gauge range 200 µm 
Gauge force 200 mg 
Diamond stylus radius 5 µm 
Cut off value 0.8 mm ± 15% 
Traverse length 5 mm 
Traverse speed 2 mm/sec 
Parameters range/resolution:  
Ra 40 µm/0.01 µm 

 

 
 

Fig.4.  Measuring device and etalon. 
 

The following paragraphs of this chapter are related to the 
methodology of experimental design. Prior to the main 
experiment, two pre-experiments were conducted to test the 
experimental and measurement technique, as well as to 
define the levels of three quantitative factors. It was 
concluded that three factors would be varied over the 
following ranges: 
-  depth of cut – from 0.3 to 0.8 mm 
-  feed rate – from 50 to 100 mm/min 
-  number of revolutions (spindle speed) – from 500 to 

1000 rev/min.  
The experimental region, estimated by the conducted pre-

experiments, is actually the real working region. During the 
pre-experiments, some of the levels of parameters outside 
the experimental region caused the effect of the surface 
pulling, that is, the surface roughness was very high. 

The next step was to choose the experimental design. The 
central composite design (CCD) was chosen. These designs 
are often used for fitting the second-order model (with 
quadratic term) in the frame of response surface 
methodology, but they can be used independently, too. They 
consist of 2k factorial (k – number of factors) with nf = 2k 
number of factorial runs, 2k axial runs and nc centre runs. 
For this study, the number of factors k is 3, so the number of 
factorial runs nf is 8, the number of replications in the centre 
is 6, and there are 6 axial runs. Therefore, the total number 
of runs is 20. The parameter α, the position of the axial runs 
from the centre of the experiment is 1.68179 (according to 
the nf

1/4) [26], and this design is called rotatable CCD. 
Some other designs were also considered, such as three-

level factorial 3k, which is also appropriate for fitting the 
second-order regression model. However, the 
implementation of such a design, with at least three 
replicates, would require a total of 33*3 = 81 specimens, 
which would cause great expenses and can be time 

consuming. In addition, 3k factorial designs are not the most 
effective way to get quadratic effects; the designs in 
response surface methodology are a better choice [26]. 
Furthermore, to estimate the curvature, addition of centre 
points to a 2k factorial design can be a good choice, but 
sometimes there are not enough runs to estimate the model’s 
regression coefficients. The final decision on the choice of 
experiment, taking into account all the above mentioned 
claims, was to conduct the factorial design 23 with added 
centre points and to expand the existing design with six 
axial runs in case the quadratic term is needed (after the 
analysis of variance of so obtained model). But, due to the 
sufficient amount of experimental material and the savings 
when measuring the output variable or response (roughness) 
at the remote location, a decision was made to perform the 
central composite design. It was also decided to implement 
this design for the safety of a sufficient number of equations 
to estimate the regression coefficients of the model. This 
design has a larger number of runs, because of six axial 
runs. 

Table 4. presents five levels of the three factors A, B and 
C (factor A: depth of cut a, factor B: feed rate f and factor C: 
number of revolutions n). 

 
Table 4.  The levels of the factors. 

 
Factor Levels - coded and (actual) 
A (a), 
mm 

-1.68179 
(0.13) 

-1 
(0.3) 

0 
(0.55) 

1  
(0.8) 

1.68179 
(0.97) 

B (f), 
mm/min 

-1.68179 
(32.96) 

-1 
(50) 

0 
 (75) 

1 
(100) 

1.68179 
(117.04) 

C (n), 
rev/min 

-1.68179 
(329.55) 

-1 
(500) 

0 
(750) 

1 
(1000) 

1.68179 
(1170.45) 

 
The experiment is performed taking into account the basic 

principles of experimental design. One of the principles is 
randomization, i.e. runs and allocation of the experimental 
material are both randomly determined. In this way, the 
observations (or errors) are independently distributed 
random variables and some impact of undesirable factors is 
reduced to a minimum [26]. Another basic principle of the 
experimental design is performing the experiment in blocks 
which are used to reduce or eliminate the variability caused 
by the nuisance factors that can affect the response, but do 
not concern us directly, as the design factors. For the 
investigation in this paper, blocking was not used because 
the machining of the specimens was conducted on a single 
machine, it was the same operator, measuring the response 
was carried out by one person, the experiment was 
performed on the same day and material of specimens was 
taken from the same batch.  

 
3.  RESULTS 

Table 5. shows the results of the experiment (the last 
column presents mean or average response of three repeated 
measurements). The specimens are marked from 1 to 20 
according to the standard run order, i.e. conventional 
schedule for CCD. It means the specimens numbered from 1 
to 8 are the points of factorial design, the specimens 
numbered from 9 to 14 are the axial points and finally, the 
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specimens numbered from 15 to 20 are the points at the 
centre of design (6 replicates). It can be seen that the 
specimen number 8 (factorial point) was machined first and 
the specimen number 4 (also factorial point) was the last. 
So, the randomization principle is fulfilled because the 
specimens are selected at random.  

 
Table 5.  The results of the experiment. 

 
Standard 
Order or 
Mark of 
specimen 

Run 

Factor 1 
A: Depth 
of cut, 
mm 

Factor 2 
B: Feed 
rate, 
mm/min 

Factor 3 
C: Number 
of 
revolutions, 
rev/min 

Response-  
Roughness 
Ra,  
μm 

8 1 0.80 100 1000 5.82 
20 2 0.55 75 750 5.21 
11 3 0.55 32.96 750 0.52 

9 4 0.13 75 750 5.86 
3 5 0.30 100 500 7.11 

13 6 0.55 75 329.55 6.11 
2 7 0.80 50 500 5.14 
6 8 0.80 50 1000 0.83 

12 9 0.55 117.04 750 6.97 
10 10 0.97 75 750 5.76 
18 11 0.55 75 750 5.85 

5 12 0.30 50 1000 1.15 
15 13 0.55 75 750 6.21 

1 14 0.30 50 500 6.25 
14 15 0.55 75 1170.45 2.75 
19 16 0.55 75 750 6.18 

7 17 0.30 100 1000 6.19 
17 18 0.55 75 750 5.81 
16 19 0.55 75 750 5.76 

4 20 0.80 100 500 6.70 
 

4.  ANALYSIS OF RESULTS 
Table 6. presents the Analysis of variance for the reduced 

model. The sum of squares due to the model (regression) 
equals 76.605 and represents the sum of squared deviations 
between the predicted values of the regression model and 
the overall mean of 5.1 μm. The number of degrees of 
freedom df of the regression is 5 (the number of regression 
terms minus 1). The mean square for the regression is 
15.321 and F ratio amounts to 76.457 (15.321 divided by 
0.2) which is higher than the critical F ratio (2.96). Thus, the 
null hypothesis can be rejected and the alternative one can 
be accepted. It means that at least one of the regression 
variables contributes significantly to the model. The model 
terms B, C, BC, B2 and C2 are significant; p values for the F 
statistics (198.185; 104.005; 36.220; 33.594 and 13.816) are 
much smaller than the probability of type I error 0.05, i.e. 
the significance level. In other words, F statistics (in 
brackets above) are greater than the critical one which 
amounts to 4.6. As previously mentioned, the terms A, AB, 
AC and A2 are not significant (p values for the F statistics 
(1.87; 0.24; 0.37 and 0.20) were higher than the probability 
of type I error 0.05). It is not shown in Table 6.; it is 
concluded from the analysis of variance for the full model. 
The testing of Lack of fit is also conducted. The sum of 
squares of the lack of fit is the weighted sum of squared 
deviations between the mean response at each level of factor 
and the corresponding predicted value [26]. For our 
experiment, this value is not significant, because the F 
statistic (0.238/0.132=1.805) is smaller than the critical one 
of 4.77. This is good. 

Table 6.  Analysis of variance for the reduced model. 
 

Source 

Sum of 
Squares, 
SS df 

Mean 
Square, 
MS 

F 
Value 

p-value 
Prob > F 

Model 76.605 5 15.321 76.457 < 0.0001 

  B-Feed rate 39.713 1 39.713 198.185 < 0.0001 
  C-Number 
of revolutions 20.841 1 20.841 104.005 < 0.0001 

  BC 7.258 1 7.258 36.220 < 0.0001 

  B2 6.732 1 6.732 33.594 < 0.0001 

  C2 2.768 1 2.768 13.816 0.0023 

Residual 2.805 14 0.200   

Lack of Fit 2.145 9 0.238 1.805 0.2671 

Pure Error 0.660 5 0.132   

Cor Total 79.410 19    

 
Finally, the addition of centre points to our design allowed 

us to estimate the pure error because of the replications. The 
number of degrees of freedom of the pure error is 5 (the 
number of replicates minus 1), and the sum of squares of the 
pure error amounts to 0.66. This is the sum of squared 
deviations between the replicated data at the centre point 
and the mean value.  The sum of squares of the pure error 
and the sum of squares of the lack of fit are both parts of the 
sum of squares for residuals. The coefficient of multiple 
determination R2 amounts to 0.965 and presents the portion 
of explained variability in total variability; it is calculated 
from (1); SS means Sum of Squares.  

 

total

residual

total

model

SS
SS

SS
SSR −== 12                         (1) 

 
Adjusted coefficient of determination R2

adj is equal to 
0.952 and we can use it because it is not dependent on the 
number of variables added to the regression model (R2

adj is 
calculated from (2); m is the number of runs and r is the 
number of regression model terms).  
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Since the ordinary and adjusted coefficients of 

determination do not differ significantly, we can conclude 
that probably non-significant terms are not included in the 
model. The prediction error sum of squares PRESS is 8.35, 
and consequently R2 for prediction in our experiment 
amounts to 0.89. These two values are the measures of 
predicting the response in a new experiment [26]. The 
coefficient of variation C.V. % is the portion of error (i.e. 
standard deviation) in the mean and is equal to 8.76%. The 
reduced model in terms of coded factors is presented by (3) 
(see the coded scale of factors in Table 4.). 
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The reduced model in terms of natural (actual) factors is 
presented by (4) (see the actual levels of factors in Table 4.). 

 

22 00000697.00011.0

00015.00059.0117.0987.2

nf

nfnfRa

⋅−⋅−

−⋅⋅+⋅−⋅+=
   (4) 

 
Fig.5. presents the response surface, where roughness is 

plotted versus the levels of feed rate and the number of 
revolutions, with a constant value of depth of cut (0.55 mm). 
It can be seen that with higher values of the number of 
revolutions and lower values of feed rate, the values of 
roughness are lower, i.e. better. Minimum roughness of 
0.86 μm is achieved at the high level of number of 
revolutions and at the low level of feed rate.   
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Fig.5.  Response surface plot for the regression model. 
 
 

Model adequacy check is also performed. Normality 
assumption (the residuals can be described by a normal 
distribution, that is, the residuals are normally and 
independently distributed random variables with the mean 
zero) is checked using the normal probability plot.  

From the visual examination of the normal probability plot 
(Fig.6.), we can see that the cumulative frequency or 
probability of internally studentized residuals falls 
approximately along a straight line. There is only one 
moderate violation which does not affect the analysis of 
variance. Internally studentized residual is a transformed 
residual, i.e. the residual divided by the estimated standard 
deviation of the residual. Internally studentized residuals are 
normally distributed with the mean zero and unit variance.  

Other diagnostics to check independence assumption (plot 
of residuals in time sequence (run order); plot of residuals 
versus fitted values and the residuals plotted against input 
factors) is also done. It indicates that the residuals are 
structureless; that is, they are unrelated to previously 
mentioned variables. One of these plots for checking the 
independence assumption is shown in Fig.7. There is no 
pattern and there are no residuals greater than 3 standard 
deviations from zero, so there are no dependency and 
outliers. 
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Fig.6.  Normal probability plot of residuals. 
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Fig.7.  Residuals versus feed rate. 
 

Fig.8. shows the relationship between the predicted values 
calculated by the model (by using (3) and (4)) and those 
obtained by the experiment (actual). It can be seen that those 
values have a very good correlation. 
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Fig.8.  Predicted response (roughness) related  
to the measured response. 

 
From the perturbation plot of the generated model, shown 

in Fig.9., we can compare the effect of model factors (B and 
C) on the response, at the centre point of design space. The 
coded values of all factor levels at the centre point are 0 (see 
Table 4.). But it should be mentioned that the effect is 
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calculated only for one factor at a time, while all the others 
are held constant. For example, when the levels of factor B 
are changing, the level of factor C is held constant, i.e. 750 
rev/min (or coded value 0). On the contrary, by changing the 
levels of factor C, the level of factor B is held constant (75 
mm/min; coded value 0). For example, the model values of 
roughness Ra for B=0 (coded value) and C=-1; -0.5; 0; 0.5 
and 1 (coded values) are 6.67, 6.38, 5.87, 5.14 and 4.19 μm, 
respectively. Having examined the curvatures (of both 
factors) on the perturbation plot (Fig.9.), a conclusion that 
the roughness is dependent on the feed rate and number of 
revolutions can be made. The value of roughness at the 
centre point calculated by the models in (3) and (4) equals 
5.87 μm, while the average experimental value of five runs 
at the centre point (runs no. 2, 11, 13, 18 and 19; Table 5.) 
amounts to 5.84 μm. There is no significant difference 
between the model and the experiment. 
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Fig.9.  Perturbation plot of the regression model. 
 

Finally, a confirmation run is carried out to test the 
regression model, that is, to predict new response 
observation at the point x0. A confirmation run is performed 
with the following levels of factors:  
-  factor A – coded value of 1.68 or actual value of 0.97 mm 
-  factor B – coded value of 1 or actual value of 

100 mm/min 
-  factor C – coded value of -1 or actual value of 

500 rev/min. 
The predicted value of the response at that point is 6.74 

μm; it is calculated from the regression model using (3) or 
(4). According to (5) [26], a 100(1-α) % prediction interval 
for a new observation y0 can be calculated.  
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where: 

)(ˆ 0xy  - the value of response predicted by the regression 
model at new observation point x0  

rmt −,2/α  - the value of variable of t distribution with m-r 

degrees of freedom, for defined probability α of the type I 
error  
m - the number of runs   
 r - the number of regression model terms 

2σ̂ - unbiased estimator of variance 
X  - the matrix of the levels of the independent variables 

'X - the transpose of the matrix X . 
The interval within which the new observation would be 

expected to lie is from 5.63 to 7.85 μm. The actual measured 
value of surface roughness in confirmation experiment was 
6.85 μm. It lies within the calculated interval. 

 
5.  NUMERICAL OPTIMIZATION 

This section deals with the numerical multiple 
optimization in the experimental region, i.e. process 
robustness study is performed. The main aim of this study is 
to find the values of significant factors, providing the 
variability in response as small as possible. Two goals are 
considered simultaneously: 
-  minimum propagation of error (POE) 
-  minimum roughness. 

Propagation of error is actually the standard deviation of 
the variability in response transmitted from the factors [26]. 
Propagation of error is a function of significant factors. 
Using the methodology of propagation of error, a new 
variance model can be obtained for the given standard 
deviations of significant factors. Consequently, propagation 
of error plot is constructed as the square root of variance 
(Fig.10.) according to the following estimated and expected 
standard deviations of significant model factors: 
-  factor B, feed rate, 0.5 mm/min  
-  factor C, number of revolutions, 2.5 rev/min. 

An assumption on deviations of the above mentioned 
factors is made on the basis of pre-experimental research 
and practical operator’s experience and knowledge in the 
area of machining. 

As seen in Fig.10. (constant value of depth of cut is 0.55 
mm), variability in response is in the range from 0.448 to 
0.454 μm.   
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Fig.10.  Contour plot of propagation of error as  
a function of significant factors. 

 
After the calculation of response deviations, a numerical 

optimization is made for the purpose of searching for the 
factor values that simultaneously achieve minimum 
roughness, while minimizing the propagation of error (i.e. 
variability in response). The best solution is: 
-  value of propagation of error is 0.45 μm 
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-  value of roughness is 4 μm 
-  feed rate is 73.11 mm/min 
-  number of revolutions is 1000 rev/min. 

Fig.11. shows the contour plot of the regression model 
(constant value of depth of cut is 0.55 mm) with the 
predicted roughness of 4 μm with minimal transmitted 
variation of 0.45 μm (which is slightly high). 
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Fig.11.  Contour plot of regression model  
(with marked response of minimum deviation). 

 
6.  CONCLUSIONS 

On the basis of the results of designed CCD experiment 
conducted to investigate the process of face milling of 
aluminium alloy, a regression model is obtained. The 
significant terms in the regression model are as follows: 
factors B (feed rate f) and C (number of revolutions n), as 
well as the interaction between the feed rate f and number of 
revolutions n. Also, the quadratic terms B2 and C2 are 
significant. By increasing the values of factor B (feed rate), 
the roughness increases. On the other hand, by increasing 
the values of factor C (number of revolutions), the 
roughness decreases. The cutting parameter a – depth of cut 
is not significant in the model, as well as the interaction 
between the depth of cut a and feed rate f, and the depth of 
cut a and number of revolutions n (the terms AB and AC in 
the model). Also, the quadratic term A2 is not significant.  

The coefficient of determination of so obtained model is 
high (0.965 or 0.952 adjusted) which is very good, as well 
as the insignificant lack of fit. Therefore, a conclusion can 
be drawn that the regression model provides a very good fit 
and can be used to predict roughness throughout the region 
of experimentation. By the application of the obtained 
regression model, requirements placed by technical 
documentation will be more easily and reliably fulfilled. 
Also, use of the model can affect the reduction in the surface 
roughness. 

The authors also performed numerical optimization 
throughout the experimental region. Although the minimum 
calculated roughness amounts to 0.86 μm, when considering 
the variability in response at the same time, the roughness 
which is least sensitive to variability in parameters amounts 
to 4 μm. 

Further investigation will include more workpiece 
materials and cutting tools to be compared, as well as use of 
the techniques of artificial intelligence.  
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