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This paper presents an application of artificial neural network for the classification of single channel EMG signal in the context 
of hand motion detection. Seven statistical input features that are extracted from the preprocessed single channel EMG signals 
recorded for four predefined hand motions have been used for neural network classifier. Different structures of neural network, 
based on the number of hidden neurons and two prominent training algorithms, have been considered in the research to find out 
their applicability for EMG signal classification. The classification performances are analyzed for different architectures of neural 
network by considering the number of input features, number of hidden neurons, learning algorithms, correlation between 
network outputs and targets, and mean square error. Between the Levenberg-Marquardt and scaled conjugate gradient learning 
algorithms, the aforesaid algorithm shows better classification performance. The outcomes of the research show that the optimal 
design of Levenberg-Marquardt based neural network classifier can perform well with an average classification success rate of 
88.4%. A comparison of results has also been presented to validate the effectiveness of the designed neural network classifier to 
discriminate EMG signals. 
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1.  INTRODUCTION 
ITH THE advancement of computer centered 
technology, electromyography (EMG) signal finds its 
utilization in a variety of application areas. These 

may include analyzing of neuromuscular difficulties, 
controlling prosthetic/orthotic limbs, I/O for virtual-reality 
games, manipulation of physical exercise equipment, or 
development and controlling of human-computer interfaces 
(HCI) [1]. Over the span of the last 40 years, an extensive 
effort was put in by many researchers, and as a result 
improvement was observed in various directions of EMG 
signal monitoring, processing and controlling. However, in 
developing the EMG signal based controller, most of the 
researchers find the signal classification task the most 
challenging since it relies on certain functional 
requirements. It may be due to the enormous variations of 
EMG signal properties and morphology with differences in 
the signature characteristics subjected to age, muscle 
activity, motor unit pattern, skin-fat layer and gesture style. 
Furthermore, due to very sensitive nature of the EMG 
signal, it can easily exhibit interference by different types of 
noises. These noises may include inherent equipment and 
ambient noises, electromagnetic emissions, motion artifacts 
and cross-talk between nearby tissues [2]. In some cases, it 
is problematic to acquire the informative signal pattern from 
the residual weak muscle group of a disabled or amputee 
person. Even more complications may arise while dealing 
with the solution of multiclass classification problems [3]. 

EMG signals can be employed as an alternative input 
mechanism to control an external peripheral or device by 
identifying the motion commands. This is done by 
interpreting the signals originating from the body muscle 
and transforming it into desired control operations. To do so, 
some of the significant features are extracted out of the 

EMG signals for each movement of hand muscles and then 
the EMG signal is classified by applying a proper 
discrimination technique based on extracted feature 
parameters. However, due to the intense complication, 
properties associated with the EMG signals result in getting 
a precise formulation for structural or mathematical model 
which can relate the signal to corresponding motion 
command. Artificial Neural Networks (ANN) have emerged 
as a significant and efficient tool for analyzing complex data 
and pattern classification. The ANNs are formed by 
mimicking the low-level tasks of biological neurons which 
make them particularly useful for recognizing and 
classifying complex patterns [4]. Some of the pioneer 
research work for EMG signal classification task can be 
mentioned herewith: integral absolute value (IAV) feature 
based feed-forward ANN [5], AR parameter based ANN [6], 
independent component analysis (ICA) based ANN [7], 
different multi-layer perceptron (MLP) based neural 
network [8]-[10], Hopfield and adaptive resonance theory 
(ART) based neural network, and later finite impulse 
response neural network (FIRNN) [11], and linear vector 
quantization (LVQ) type ANN [12]. It should be noted that 
different types of ANNs are available depending on their 
structure and training model. Hence, selection of proper 
ANN structure and training method is essential to perform a 
certain type of tasks efficiently. The review process found 
that most of the ANN based EMG signal classifiers suffer 
from a lack of information regarding network optimization. 
Moreover, insufficient articles have been found to discuss 
more precisely the improvement of the classification success 
by utilizing single channel EMG signals.   

This research work mainly focused on designing an ANN 
classifier based back-propagation training algorithm and 
optimizing its structural design for the classification of 
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EMG signals to gain acceptable accuracy by comparing with 
other related works. The Levenberg-Marquardt and scaled 
conjugate gradient based back-propagation training 
algorithms are used to train the network. These two training 
algorithms have been chosen since they provide faster 
training for solving pattern recognition problems using the 
numerical optimization technique [13]. Their classification 
performances with different network architecture are 
reported in the result section. 
 

2.  SUBJECT & METHODS 
ANN models are basically structured with many 

interconnected network elements which can develop pattern 
classification strategies based on a set of input/training data. 
The ANN models working in parallel provide higher 
computational performance than traditional classifiers which 

function sequentially. The EMG signals are obtained for 
different kinds of hand motions, which are further denoised 
and processed to extract the features. Extracted time and 
time-frequency based feature sets are used to train the neural 
network [14]. The block diagram of ANN based EMG 
signal classification is shown in Fig.1. The EMG signals for 
different hand motions are recorded and processed further 
for reducing the associated noise. Seven statistical time and 
time-frequency based features, namely Moving Average 
(MAV), RMS (Root Mean Square), VAR (Variance), SD 
(Standard Deviation), ZC (Zero-crossing), SSC (Slope Sign 
Change) and WL (Waveform Length) [15]-[18], are 
extracted from the EMG signals and used as inputs to the 
neural network. The subsequent sections explain the details 
of the design architecture and training of the ANN. 

 

 
 

Fig.1.  Block diagram for ANN based EMG signal classification 
 

A.  Acquisition of EMG Signals 
Most of the previous research works utilized multichannel 

EMG signals to achieve better classification. Some of the 
previous studies [15], [19]-[21] present that it is beneficial 
to use EMG signals of multiple channels. However, though 
the use of increased numbers of channels will increase the 
average classification accuracy, a reduced efficiency may be 
observed for the numbers of channels greater than four [17]. 
On the other hand, some researchers are interested in 
considering the best and significant features other than using 
multichannel EMG signals or a combination of these 
approaches [22]. Placement of electrodes in different 
locations of muscle sites may help to achieve an improved 
classification rate despite the utilization of increased 
numbers of features. 

For this work, the Surface EMG signals were acquired 
from 3 able-bodied persons aged 25-32. Before the signal 
acquisition process, each subject’s consent has been taken 
by giving them the outline of the research work. The device 
used for the acquisition of single channel EMG signals was 
BIOPAC-MP100C data acquisition system (shown in Fig.2.) 
manufactured by BIOPAC Systems Inc. USA. It was 
equipped with data acquisition unit MP100A-CE, universal 
interface module UIM100C, electromyogram amplifier 
module EMG100C and acquisition software 
AcqKnowledge. v 3.1.9  [23].   The sampling frequency was  

1000 Hz and gain set to 1000. The optimal position of the 
electrode placement has been determined by performing 
several trials of the acquisition experiment. As the hand 
movements are generated by the muscle contractions in 
forearm section, EMG signals are collected from the 
brachioradialis position and flexor carpi ulnaris muscle sites 
using differential electrodes [24]. Fig.3. shows the possible 
location of muscle site and placement of electrodes with the 
reference electrode near the wrist position. The muscle sites 
are selected carefully by properly placing the electrodes so 
that they provide strong activation pattern for EMG signals 
with minimal cross-talk [25]. A judicious placement of 
surface electrodes for different subjects is considered and 
a generous selection of the channel with more informative 
raw EMG signals is ensured. The EMG signals were 
collected for different voluntary movements of the subject’s 
hand in four directions (Left, Right, Up and Down). From 
any reference point, movement of hand in a horizontal left 
direction is considered as Left, and Right is hand movement 
in horizontal right direction. Up is the upward movement of 
hand from the reference point and Down is downward 
movement. The average time required to perform each 
movement was around 500 ms. Each EMG signal set has 
been collected for 70 seconds including 5 seconds rest at 
start and end of signal acquisition. It is considered to record 
around 50 to 55 actions in the time period  of 60 seconds  by 
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practicing the speed of hand movement before starting the 
signal acquisition. The EMG signals are stored on a 
Windows XP based personal computer for post analysis and 
processing. MATLAB programming platform is used for 
coding the necessary modules and subroutines for EMG 
signal processing and ANN based classification. 
 

 
 

Fig.2.  BIOPAC-MP100 data acquisition system  
(Biopac Systems Inc., USA) 

 

 
 

Fig.3.  Muscle site and possible placement of electrodes 
 

B.  Preprocessing and Feature Extraction 
Since the EMG signal is sensitive to external noise sources 

and artifacts, most noise sources can be classified as 
electrode noise, motion artifacts, power line noise, ambient 
noise, and inherent noise in electrical and electronic 
equipment. If these contaminated signals are used, it will 
yield undesirable, very poor classification. The first three 
types of noise can be removed by applying some typical 
filtering techniques like band-pass filter, band-stop filter or 
using good quality equipment with properly placed 
electrodes. However, sometimes it is difficult to eliminate 
the effect of other types of noises/artifacts if their 
frequencies overlap with the dominant frequency range of 
EMG signal [2]. A 6-th order Butterworth band-pass filter 
and cut-off frequency of 20-500 Hz is used to remove the 
first 3 types of noise. Since the dominant frequency range of 
the recorded signal is 70-300 Hz, a notch filter with 3db 
gain and cut-off 49-51 Hz is applied to remove 50 Hz power 

line noise. Afterwards, the wavelet transform method is 
applied to EMG signal for denoising since it has various 
scales and resolutions to process signals and it can 
successfully localize both time and frequency components. 
Additionally, the wavelet technique provides good 
frequency resolution at high frequencies. So the noise 
components in the desired signal can be isolated while 
important high-frequency transients are preserved [17]. The 
collected EMG signal for 4 different hand movements (left, 
right, up, down) are segmented of 500 data points for each 
type of motion. A 4-level discrete wavelet transform (DWT) 
is used for the decompositions of EMG signal with 
Daubechies (db2) mother wavelet function according to the 
previous research [26]. Later on, the features were extracted 
for each type of hand movement from the denoised EMG 
signals [23]. 

Because of complex signal pattern of EMG signals, it is 
essential to select significant features for efficient 
classification since it determines the success of the pattern 
classification system [11]. However, it is quite problematic 
to extract the best feature parameters from the EMG signals 
that can reflect the unique feature of the signal to the motion 
command perfectly. Hence, multiple feature sets are used as 
input to the EMG signal classification process. Some of the 
features are classified as the time domain, frequency 
domain, time-frequency domain, and time-scale domain; 
these feature types are successfully employed for EMG 
signal classification. In this research work, seven statistical 
property based time and time-frequency features, namely 
MAV, RMS, VAR, SD, ZC, SSC and WL, are used. For 
each type of hand motion, the above mentioned features are 
extracted from the segmented and denoised EMG signal and 
fed as input to the neural network based classifier. A total 
number of 204 sets of input vectors and target vectors are 
fed to the network for training purpose. The input feature 
vectors are normalized in the range of [-1, +1] for the 
efficient and faster training of neural network. A sample 
input vector and its corresponding target vector are shown in 
Table.1. 
 

Table 1.  Sample Feature set as input and output vector for 
Artificial Neural Network 

 
Movement type Features Left Right Up Down 

MAV 0.11862 0.10395 0.10554 0.07303 
RMS 0.16918 0.14866 0.14803 0.09834 
VAR 0.02862 0.02210 0.02191 0.00967 
SD 0.16910 0.14861 0.14811 0.09841 
WL 72.66327 65.94147 62.51984 45.28778 
SSC 234 214 220 230 E

xt
ra

ct
ed

 fr
om

 
E

M
G

 si
gn

al
 

ZC 207 204 191 219 
 After normalization in the range [-1 1] 

MAV 0.62547 0.36995 0.39767 -0.16858 
RMS 0.57261 0.33743 0.33016 -0.23938 
VAR 0.32669 0.01320 0.00415 -0.58431 
SD 0.57222 0.33665 0.33096 -0.24050 
WL 0.55323 0.37111 0.27841 -0.18846 
SSC 0.10811 -0.43243 -0.27027 0.00000 In

pu
t V

ec
to

rs
 

ZC -0.03226 -0.12903 -0.54839 0.35484 
Set Target Vector 
Left 1 0 0 0 

Right 0 1 0 0 
Up 0 0 1 0 T
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ge

t 
V
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to

rs
 

Down 0 0 0 1 
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C.  Architectural Design of ANN 
The basic architecture of feed-forward back-propagation 

based network is shown in Fig.4. The designed ANN is of 
MLP type consisting of 3 layers: input layer, tan-sigmoid 
hidden layer, and linear output layer. Other than input layer, 
each of the layers has a weight matrix W, a bias vector b and 
an output vector a. The weight matrices connected to inputs 
are called input weights (IW) and weight matrices connected 
to the hidden layer outputs are called layer weights (LW). 
Additionally, superscripts are used to denote the source 
(second index) and the destination (first index) for the 
various weights, biases, and other elements of the network. 
P is the input vector, n is the layer output before transfer 
function and a is the actual output vector of a layer. 

For optimized condition, the ANN was found to perform 
well if it was designed with 7 inputs, 10 tan-sigmoid 
neurons in hidden layer and 4 linear neurons in the output 
layer. The Detail structural design for feed-forward 
condition is depicted in Fig.5. It is still under challenging 
task when it comes to decide and select a number of neurons 
in the hidden layer. A large number of hidden neurons may 
deteriorate the performance of the network. It essentially 
requires huge memory to store huge numbers of network 
variables and hence training becomes complicated. 
However, if a too small number of neurons is used in the 
hidden layer, the network cannot adjust the weights and 
biases properly during training, which results in overfitting. 
Overfitting makes the network excessively complex, thus 
the non-generalized network generates random error and 
provides very poor classification. Due to the lack of specific 
rule in finding the numbers of hidden neurons to obtain 
optimized performance of the network, the performance 
criteria for different ANN architecture have been analyzed 
to identify the numbers of neurons. 

After designing the ANN with specified architecture and 
different hidden neurons, a suitable and efficient back-
propagation training algorithm is required for the adjustment 
of synaptic weights and biases at different layers. The back-

propagation training algorithm basically sets the weights and 
biases to minimize the performance (Mean Square Error — 
MSE) by using the gradient of the performance function. It 
was mentioned earlier that the classification efficiency of 
ANN depended on the selection of proper feature set, 
network structure, and training algorithm. 

For this research, both the algorithms, namely Levenberg-
Marquardt and scaled conjugate gradient, are applied to find 
out their applicability and performance in ANN. The 
numerical optimization techniques based Levenberg-
Marquardt is the fastest and powerful method for training of 
moderate-sized feed-forward neural networks. The scaled 
conjugated gradient algorithm gives the solution to choose 
nearly conjugate directions of search instead of calculating 
the Hessian matrix or performing a line search. Some of the 
steps are also taken into consideration to improve the 
network generalization and to avoid overfitting. This is done 
by dividing the training input data in a random manner; 70% 
for training, 15% for validation and 15% for testing. In 
addition to these, the numbers of data points in each training 
set are plenty enough to estimate the total numbers of 
parameters for different architecture of the network. As per 
the requirement of improving the network generalization, 
the early stopping method was also applied during training. 
Two early stopping criteria are used: one is total mean 
squared error, MSE <=0.001 and another is the number of 
maximum training iterations set to 1000. For each of the 
training sessions, the weights and biases for input and 
hidden layers are saved and are utilized in the next training 
session iteratively until a satisfactory simulation result is 
obtained. This is the general process to speed up the 
training, thus advancing the network with improved 
performance and less training time consumption. With 
different input features and corresponding targets, the 
network has been trained repeatedly until it has achieved 
some performance criteria (acceptable tolerance, training 
time, epochs). 

 
 
 

  
 

Fig.4.  Architecture of Artificial Neural Network 
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Fig.5.  Detail Architecture view of Artificial Neural Network 
 
 
D.  Optimizing the Neural Network for Classification 

The network has been trained with 204 sets of data points 
which are extracted from the denoised EMG signals for 
predefined hand movements. Each set of data comprises an 
input feature vector obtained from a specific type of hand 
movement and its corresponding output vector. The training 
and performance testing of ANN are done by applying both 
Levenberg-Marquardt (trainlm) and scale conjugate gradient 
(trainscg) algorithms. During each time of the training 
period, both algorithms function to adjust the weights and 
biases of the network in such a way as to minimize the MSE 
and hence increase the rate of network performance [14].  

For the successful training, some of the conditions are set. 
These are the MSE set to 0.001, maximum validation failure 
set to 6 times, learning rate set to 0.05, training status 
display set to 1 and the maximum number of epochs set to 
1000. The performance of the training is evaluated with 
MSE of the training data, correlation coefficient, i.e. 
regression (R) between the network outputs and 
corresponding target outputs and the characteristics of the 
training, validation, and testing errors. The networks with 
the best performance (lowest MSE, highest R) and almost 
similar error characteristics among the training, validation 
and testing are selected as the optimized network for the 
respective network architecture. During training session, if a 
large variation of error is being observed then the network 
structure could be considered unsatisfactory even though the 
MSE shows minimum value. Hence, further tuning and 
training  of  the  network  is  necessary  for  achieving  better  

 

 
performance. For the whole research work, different 
numbers of neurons for hidden layer have been chosen for 
both types of back-propagation training algorithm to find 
out most optimized and best performed network structure 
through studying the MSE and R. 
 

3.  RESULTS 
The network responses and the performances for different 

architectural design are verified with the help of statistical 
analysis of MSE and R. Each of the different ANN 
architectures has been trained and then simulated for 10 
times and their respective network performances (in terms 
of MSE and R) are collected. The graphical presentations of 
MSE are shown in Fig.6. where the comparison of the 
performances of different network structures can be viewed 
through error bars of mean and SD. The graphical 
presentation (Fig.7.) of the regression analysis of the 
network responses (R) for different network structures and 
different training algorithms is clearly promoting the ANN 
structure with 10 hidden neurons and Levenberg-Marquardt 
algorithm in preference to the other type.  

The designed ANN structure has also been studied for 
different combinations of feature sets. Fig.8. shows the error 
histogram for different combinations of feature sets. Fig.8. 
(d) is clearly different from the other combinations. It has 
been found that, if the optimized ANN structure is fed with 
an input vector of seven features then maximum instances 
(around 550) of MSE errors are distributed near to zero line 
in the error histogram. 
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Fig.6.  Mean-SD bar graph for MSE in between different ANN architecture 
 
 

 
 

Fig.7.  Mean-SD bar graph for Regression (R) in between different ANN architecture 
 

 

 
 

Fig.8.  Error histogram for input vector of (a) four features, (b) five features, (c) six features and (d) seven features. 
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The optimized ANN structure is trained by both types of 
learning algorithms with input-output feature vectors and is 
simulated for several times. For a single run, the training is 
stopped after 10 epochs since the validation error increased 
for more than six times as shown in Fig.9. The training, 
validation, and testing errors were in fairly good conditions 
with the characteristics set during training.  
 

 
 

Fig.9.  Training Validation and Test errors during training with 
Levenberg-Marquardt algorithm 
 

For a single trial, the confusion matrix is also presented in 
Fig.10. with the detailed classification performance of the 
network during training, validation, testing and overall. The 
detailed performance of network during training, validation, 
testing and overall during a single trial is shown by 
confusion matrix for different classes in Fig.10. The 
numbers as presented with Target Class and Output Class 
are for different hand movements (‘1’-Left, ‘2’-Right, ‘3’-
Up and ‘4’-Down). Considering the Training Confusion 
Matrix, there are 142 hand movements in total (‘1’-37, ‘2’-
40, ‘3’-35 and ‘4’-30), which are randomly chosen from 
input data to the neural network. The Light green color area 
is for correctly classified numbers; the red color area is for 
misclassified numbers, the deep green area for average 
classification, and blue color area is for total average 
classification. The percentage shows the ratio of the number 
with the total number of movements. If we consider a class 
‘2’, 39 numbers of movements are correctly classified. On 
the  other  hand  is  a single movement misclassified as class  

‘3’ which belongs to class ‘2’. So, average classification for 
class ‘2’ is 97.5% and 2.5% belongs to wrong classification. 
Finally, for Training Confusion Matrix, the total average 
classification by considering all types of class is 88.7% and 
11.3% is a misclassification. 

 

 
 

Fig.10.  Confusion matrix for classification efficiency of the 
optimized structure of ANN 

 
The generalization and performance of the trained ANN 

have also been tested for classifying completely unknown 
EMG signals. The extracted feature vectors for different 
hand motions are fed into the trained network without the 
corresponding target vectors. The probable output is to be 
expected as 1 in its index position for a specific type of hand 
movement. The classification output of the trained network 
is presented in Table 2., where p1, p2…p10 represent the 
extracted feature vectors from the test EMG signal. The bold 
numbers are denoted as the properly classified movements 
since these are the largest and/or closer to 1. Table 3. 
presents the summary of classification performance of 
different ANN architecture.  

 
Table 2.  Test data as feature input vector and its corresponding classification output from trained ANN 

 
Input> p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 

-0.12863 -0.61608 0.37114 0.20342 -0.13348 -0.75516 0.22405 0.33569 -0.24777 -0.79584 
-0.12208 -0.66515 0.34085 0.16422 -0.22866 -0.77763 0.09469 0.32470 -0.34035 -0.81355 
-0.51192 -0.88580 -0.00891 -0.22084 -0.60371 -0.93406 -0.29750 -0.02931 -0.69024 -0.94736 
-0.12391 -0.66707 0.33959 0.16281 -0.23027 -0.77885 0.09339 0.32338 -0.34266 -0.81470 
-0.17617 -0.64118 0.19024 0.32336 -0.13286 -0.75488 0.09132 0.46075 -0.34527 -0.78546 
-0.29730 0.40541 0.10811 -0.78378 -0.05405 0.45946 0.29730 -0.56757 0.08108 0.00000 Fe

at
ur
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t E
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G

 

-0.42105 -0.55263 -0.65789 0.31579 -0.23684 0.02632 -0.52632 0.50000 -0.55263 -0.50000 
0 0 1 0 0 0 1 0 0 0 
0 0 0 S1 0 0 0 1 0 0 
1 0 0 0 1 0 0 0 1 0 

Ex
pe

ct
ed

 
O

ut
pu

t 

0 1 0 0 0 1 0 0 0 1 
0.0036 0.0004 0.6597 0.0081 0.0447 0.0024 0.6676 0.0273 0.0063 0 
0.0085 0.0036 0.0032 0.955 0.0021 0 0.0017 0.8774 0.0003 0.0133 
0.9928 0.0001 0.3271 0.091 0.7688 0.0018 0.5993 0.1906 0.8913 0.0008 

Si
m

ul
at

io
n 

O
ut

pu
t 

0.0548 0.9991 0.02 0 0.1496 0.998 0.0093 0 0.288 0.9995 
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Table 3.  Comparison and summary of classification performance for different ANN architecture 
 

Classification Rate Training 
Function 

Stop 
Epochs

Regre- 
ssion 

Time 
Elapsed Training Validation Test Overall 

Hidden 
Neurons 

15 0.8597 1.047 88.6 83.3 90 88 
18 0.87251 0.921 94.3 66.7 80 88 
16 0.87401 0.8721 88.7 90.3 90.3 89.2 

Avg 0.86874 0.947 90.533 80.1 86.767 88.4 

10 

33 0.85706 2.797 91.4 70 83.3 87 
14 0.85508 1.218 90 80 86.7 88 
12 0.84772 1.094 92.9 76.7 83.3 89 

Avg 0.853287 1.703 91.433 75.567 84.433 88 

20 

16 0.86112 2.36 92.1 80 76.7 88 
11 0.85018 1.703 91.4 90 73.3 88.5 
14 0.85102 2.125 89.3 76.7 83.3 86.5 

Le
ve

nb
er

g-
M

ar
qu

ar
dt

 

Avg 0.854107 2.0627 90.933 82.233 77.767 87.667 

30 

37 0.7839 0.703 80.7 83.3 83.3 82.43 
27 0.7632 0.685 78.2 86 74.5 79.57 
32 0.7904 0.823 82.4 71.9 79.4 77.9 

Avg 0.77917 0.737 80.433 80.4 79.067 79.97 

10 

31 0.802 0.797 78.6 90 82.7 83.77 
35 0.8153 1.252 79 87.3 78.1 81.47 
34 0.79842 1.063 84.3 76.7 80 80.33 

Avg 0.80524 1.037 80.633 84.667 80.267 81.86 

20 

34 0.80767 2.457 83.6 83.3 86.7 84.53 
28 0.79215 1.073 81.2 72.1 69.5 74.27 
31 0.82531 1.352 86.6 76.5 78.8 80.63 

Sc
al

ed
 C

on
ju

ga
te

 G
ra

di
en

t 
 Avg 0.80837 1.627 83.8 73.3 78.333 79.81 

30 

 
 

4.  DISCUSSION 
Among various types of proposed ANN architecture, the 

feed-forward back-propagation type MLP is widely used to 
solve the pattern classification problems. The capability of 
learning from examples, the ability to reproduce arbitrary 
non-linear functions of input, and the highly parallel and 
regular structure of ANN make it especially suitable for 
pattern classification tasks [6], [27]. The ANN structures are 
capable of extracting useful information from the raw signal 
and can represent them through layers of significant 
numbers of neurons with associated weights and biases 
between the layers.  

From Fig.6., the lowest mean and the lowest SD of the 
MSE have been observed in the ANN designed with 10 
hidden neurons and trained with Levenberg-Marquardt 
training algorithm. In contrast to other network structures 
with different numbers of hidden neurons and scaled 
conjugate gradient training algorithm, this network performs 
better in terms of MSE. From Fig.7., it can easily be sorted 
out that the highest correlation coefficient is achieved for the 
ANN with 10 hidden neurons and Levenberg-Marquardt 
training algorithm. Compared to the other type of ANN 
architecture, this designed network shows the lowest mean 
and the lowest SD. It can be concluded that, for the efficient 
classification of single channel EMG signals, the ANN 
structure could be said to be optimal if it is designed with 
the Levenberg-Marquardt algorithm for back-propagation 
training and 10 neurons in its hidden layer. The MSE error 
histogram as presented in Fig.8. suggests that, using 7 
features as input to the ANN will achieve better 
classification accuracy since most of the MSE errors for 
training are likely to concentrate near the “zero errorˮ line.  

 
The validity of the ANN training performance as presented 

in Fig.9. proves that the training, validation and test error 
curves are almost identical, which helps to converge the 
ANN more quickly by complying with the necessary 
characteristics set. By analyzing the classification 
performance in Table 3., it can be understood that the 
Levenberg-Marquardt algorithm based neural network with 
10 hidden neurons yields the best classification rate and the 
required time is minimum. This network outperforms other 
network structures regarding the number of iterations 
required, time elapsed, classification rate, MSE and R. The 
performance of the Levenberg-Marquardt and scaled 
conjugate gradient training algorithms has been compared 
since these are well popular for faster training and solving 
pattern recognition/classification problems [13]. It is 
observed that the computational requirement of Levenberg-
Marquardt is a bit higher than the scaled conjugate gradient, 
however, it is actually responsible for providing better 
correlation and thus generates higher classification accuracy. 
Levenberg-Marquardt algorithm utilizes an adaptive 
learning rate and it does not show any oscillatory behavior 
during learning. The result analysis has clearly unfolded that 
Levenberg-Marquardt training algorithm with optimal 
network structure provides better classification with faster 
response, high error goal and less iteration which certainly 
agree with previous works [28], [29]. 

The classification performance of the designed ANN has 
also been compared with some of the previous researches as 
presented in Table 4. The study shows that the use of an 
increased number of channels increases the classification 
efficiency and another concluding remark from previous 
studies shows that the classification efficiency decreases 
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with an increase in output class and vice versa [30]. From 
Table 4., with 2 channels EMG signals, 95% and 93% 
classification accuracy was achieved since there were only 2 
classes and 4 classes, respectively. Use of EMG signals 
from multiple channels helps them to achieve a higher 
classification rate, whereas, since the number of classes 
increases for the second and fourth example, the 
classification performance reasonably decreases even if 4 

channels of EMG signal are used. This research work 
utilizes single channel EMG signal and shows the success 
rate of ANN with Levenberg-Marquardt training algorithm. 
Single channel EMG signal classification has been improved 
compared to previous research works where multiple 
channels were utilized. It proves that a better classification 
performance can be achieved without any prior training to 
the subject.  

 
Table 4.  Classification performance comparison between different methods 

 
Sl. Method Number of 

classes 
Number of 
channels 

Classification 
rate 

1 ANN with AR parameters [6] 2 2 95 % 
2 Neural Network [10] 7 2 70 % 
3 RBF and LVQ type Neural Network [17] 4 2 93 % 
4 LVQ type Neural Network [12] 7 4 78 % 
5 ANN with trainlm algorithm 4 single 88.4 % 

 
 

5.  CONCLUSIONS 
The feed-forward ANN with back-propagation training 

algorithms has been trained with the extracted features from 
EMG signals to classify different hand motions. Different 
types of network architecture, depending on numbers of 
hidden neurons have been chosen and their classification 
performances have been analyzed. With thorough 
performance comparison and by tuning the network 
structure, it can be concluded that the ANN is optimized for 
better classification performance with 10 hidden neurons. 
The result shows that Levenberg-Marquardt based 
optimized ANN architecture can efficiently classify the 
single channel EMG signals with an average successful 
classification rate of 88.4%. Moreover, the best overall 
classification performance, 89.2%, has been achieved for a 
single trial. The comparison of simulation results also 
indicates that among the back-propagation learning 
algorithms, Levenberg-Marquardt algorithm performs better 
than the scaled conjugate gradient algorithm, which agrees 
with the previous study as mentioned earlier. The result 
significantly demonstrates the suitability of the proposed 
design and optimization process of ANN with Levenberg-
Marquardt algorithm for the classification of single channel 
EMG signal classification. However, the designed ANN 
structure has not yet been tested for the EMG signals from 
disabled or aged people. They could have different 
musculatures and different ways to move hand muscles 
which may result in huge noise and poor EMG signals. This 
may yield poor classification performance of designed ANN 
and it may require a redesign of the network through trial 
and error to achieve better classification performance. 
 

REFERENCES 
[1] Ahsan, M.R., Ibrahimy, M.I., Khalifa, O.O. (2009). 

EMG signal classification for human computer 
interaction: A review. European Journal of Scientific 
Research, 33 (3), 480–501. 

[2] Reaz, M.B.I., Hussain, M.S., Mohd-Yasin, F. (2006). 
Techniques of EMG signal analysis: Detection, 

processing, classification and applications. Biological 
Procedures Online, 8 (1), 11–35. 

[3] Ahsan, M.R., Ibrahimy, M.I., Khalifa, O.O. (2011). 
Neural network classifier for hand motion detection 
from EMG signal. In IFMBE Proceedings, Vol. 35. 
Springer, 536-541.  

[4] Ahsan, M.R., Ibrahimy, M.I., Khalifa, O.O. (2010). 
Advances in electromyogram signal classification to 
improve the quality of life for the disabled and aged 
people. Journal of Computer Science, 6 (7), 705–715. 

[5] Hiraiwa, A., Shimohara, K., Tokunaga, Y. (1989). 
EMG pattern analysis and classification by neural 
network. In IEEE International Conference on 
Systems, Man and Cybernetics, 14-17 November 1989. 
IEEE, 1113-1115. 

[6] Putnam, W., Knapp, R.B. (1993). Real-time computer 
control using pattern recognition of the 
electromyogram. In EMBS 1993 : 15th Annual 
International Conference of the IEEE, 1236-1237.  

[7] Naik, G.R, Kumar, D.K., Singh, V.P., Palaniswami, 
M. (2006). Hand gestures for HCI using ICA of EMG. 
In HCSNet Workshop on Use of Vision in Human-
Computer Interaction (VisHCI ’06), 1-3 November 
2006. Australian Computer Society, 67-72. 

[8] Englehart, K., Hudgins, B., Stevenson, M., Parker, 
P.A. (2002). A dynamic feedforward neural network 
for subset classification of myoelectric signal patterns. 
In EMBS 2002 : 17th Annual Conference of the IEEE, 
20-25 September 1995. IEEE, Vol. 1, 819-820. 

[9] Kelly, M.F., Parker, P.A., Scott, R.N. (2002). The 
application of neural networks to myoelectric signal 
analysis: A preliminary study. IEEE Transactions on  
Biomedical Engineering, 37 (3), 221–230. 

[10] Itou, T., Terao, M., Nagata, J., Yoshida, M. (2001). 
Mouse cursor control system using EMG. In EMBS 
2001 : 23rd Annual International Conference of the 
IEEE. Vol. 2, 1368-1369. 

[11] Hudgins, B., Parker, P., Scott, R.N. (1993). A new 
strategy for multifunction myoelectric control. IEEE 
Transactions on  Biomedical Engineering, 40 (1), 82–
94.  



 
MEASUREMENT SCIENCE REVIEW, Volume 13, No. 3, 2013 

 
 

 151

[12] Jung, K.K., Kim, J.W., Lee, H.K., Chung, S.B., Eom, 
K.H. (2007). EMG pattern classification using spectral 
estimation and neural network. In Society of 
Instrument and Control Engineers (SICE 2007), 17-20 
Sept. 2007. IEEE, 1108-1111. 

[13] Hagan, M.T., Demuth, H.B., Beale, M.H. (1996). 
Neural Network Design. Boston, MA: PWS 
Publishing,  9.1-9.37. 

[14] Ahsan, M.R., Ibrahimy, M.I., Khalifa, O.O. (2012). 
EMG motion pattern classification through design and 
optimization of neural network. In Internetional 
Conference on Biomedical Engineering (IcoBE 2012), 
27-28 February 2012. IEEE, 175-179. 

[15] Englehart, K., Hudgins, B. (2003). A robust, real-time 
control scheme for multifunction myoelectric control. 
IEEE Transactions on  Biomedical Engineering, 50 
(7), 848–854. 

[16] Khezri, M., Jahed, M., Sadati, N. (2007). Neuro-fuzzy 
surface EMG pattern recognition for multifunctional 
hand prosthesis control. In IEEE International 
Symposium on Industrial Electronics, 4-7 June 2007. 
IEEE, 269-274. 

[17] Tsenov, G., Zeghbib, A.H., Palis, F., Shoylev, N., 
Mladenov, V. (2007). Neural networks for online 
classification of hand and finger movements using 
surface EMG signals. In 8th Seminar on Neural 
Network Applications in Electrical Engineering 
(NEUREL 2006), 25-27 September 2006. IEEE, 167-
171.  

[18] Phinyomark, A., Limsakul, C., Phukpattaranont, P. 
(2009). A novel feature extraction for robust EMG 
pattern recognition. Journal of Computing, 1 (1), 71–
80. 

[19] Lyman, J., Freedy, A., Solomonow, M. (1977). System 
integration of pattern recognition, adaptive aided, 
upper limb prostheses. Mechanism and Machine 
Theory, 12 (5), 503–514. 

[20] Naik, G.R., Kumar, D.K., Arjunan, S.P. (2010). 
Pattern classification of myoelectrical signal during 
different maximum voluntary contractions: A study 
using BSS techniques. Measurement Science Review, 
10 (1), 1-6. 

[21] Phinyomark, A., Limsakul, C., Phukpattaranont, P. 
(2011). Application of wavelet analysis in EMG 
feature extraction for pattern classification. 
Measurement Science Review, 11 (2), 45-52. 

[22] Kim, J., Mastnik, S., André, E. (2008). EMG-based 
hand gesture recognition for realtime biosignal 
interfacing. In 13th International Conference on 
Intelligent User Interfaces (IUI ’08), 13-16 January 
2008. New York: ACM, 30-39.  

[23] Ahsan, M.R., Ibrahimy, M.I., Khalifa, O.O. (2011). 
Electromyography (EMG) signal based hand gesture 
recognition using artificial neural network (ANN). In 
4th International Conference on Mechatronics (ICOM 
2011), 17-19 May 2011. IEEE, 1-6.  

[24] Khezri, M., Jahed, M. (2007). A novel approach to 
recognize hand movements via sEMG patterns. In 
EMBS 2007 : 29th Annual International Conference of 
the IEEE, 23-26 August 2007. IEEE, 4907-4910.  

[25] Cram, J.R., Criswell, E. (2010). Introduction to 
Surface Electromyography, 2nd ed. Sudbury, MA: 
Jones and Bartlett Publishers, 320-336. 

[26] Hussain, M.S., Mamun, M. (2012). Effectiveness of 
the wavelet transform on the surface EMG to 
understand the muscle fatigue during walk. 
Measurement Science Review, 12 (1), 28-33. 

[27] Subasi, A., Yilmaz, M., Ozcalik, H.R. (2006). 
Classification of EMG signals using wavelet neural 
network. Journal of Neuroscience Methods, 156 (1-2), 
360–367. 

[28] Zhao, J., Xie, Z., Jiang, L., Cai, H., Liu, H., Hirzinger, 
G. (2005). Levenberg-Marquardt based neural network 
control for a five-fingered prosthetic hand. In IEEE 
International Conference on Robotics and Automation, 
April 2005. IEEE, 4482-4487. 

[29] Guo, X., Yu, H., Zhen, G., Yuliang, L., Yong, Z., 
Ying, Z. (2009). Artificial intelligent based human 
motion pattern recognition and prediction for the 
surface electromyographic signals. In International 
Conference on Information Technology and Computer 
Science (ITCS 2009), 25-26 July 2009. IEEE, 289-292.  

[30] Naik, G.R., Kumar, D.K., Arjunan, S.P., Weghorn, H., 
Palaniswami, M. (2007). Limitations and applications 
of ICA in facial sEMG and hand gesture sEMG for 
human computer interaction. In 9th Biennial 
Conference of the Australian Pattern Recognition 
Society on Digital Image Computing Techniques and 
Applications, 3-5 December 2007. IEEE, 15-22.  

 

 

Received August 13, 2012.    
Accepted June 10, 2013. 


