

MEASUREMENT SCIENCE REVIEW, Volume 13, No. 3, 2013

 132

CGCI-SIFT: A More Efficient and Compact Representation

of Local Descriptor
Dongliang Su1, Jian Wu1, Zhiming Cui1, Victor S. Sheng2, Shengrong Gong1

1The Institute of Intelligent Information Processing and Application, Soochow University, Suzhou 215006, China
2Department of Computer Science, University of Central Arkansas, Conway 72035, USA,

jianwu@suda.edu.cn

This paper proposes a novel invariant local descriptor, a combination of gradient histograms with contrast intensity (CGCI),
for image matching and object recognition. Considering the different contributions of sub-regions inside a local interest region to
an interest point, we divide the local interest region around the interest point into two main sub-regions: an inner region and a
peripheral region. Then we describe the divided regions with gradient histogram information for the inner region and contrast
intensity information for the peripheral region respectively. The contrast intensity information is defined as intensity difference
between an interest point and other pixels in the local region. Our experimental results demonstrate that the proposed descriptor
performs better than SIFT and its variants PCA-SIFT and SURF with various optical and geometric transformations. It also has
better matching efficiency than SIFT and its variants PCA-SIFT and SURF, and has the potential to be used in a variety of real-
time applications.

Keywords: Image matching, descriptor, SIFT, CGCI-SIFT, real-time

1. INTRODUCTION

MAGE MATCHING is a primary technology in computer
vision and image processing. Among the image matching
algorithms, local descriptor algorithms [1] are more stable.

Local descriptors are discriminative, and robust to partial
occlusion. They do not require segmentation preprocessing,
and are invariant under a variety of transformations. All
these properties make local descriptor algorithms be widely
applied in many fields, such as, content-based large-scale
retrieval [2], video analysis, copy detection, object
recognition, photo tourism, and 3D reconstruction [3].

A good local descriptor algorithm should have following
characteristics: no necessity of pre-segmenting images [4],
high repeatability of feature detector, low dimension of
feature descriptor, robustness to partial occlusion, and
invariance against image transformations, such as,
illumination, rotation, scale, blur, and affine.

Local descriptors have received considerable attention in
recent years. Harris proposed the Harris corner detector [5],
based on the eigenvalues of the second-moment matrix, but
it is not scale-invariant. Lowe introduced a scale invariant
feature transformation (SIFT) [1]. It is invariant under a
variety of transformations, such as scale and viewpoint
changes, rotation, and illumination transformations.
Mikolajczyk and Schmid [6] showed that SIFT is one of the
most effective image matching algorithms against viewpoint
and scale transformations. However, the dimensionality of a
SIFT descriptor is high. This results in inefficiency in real-
time applications. In order to improve the matching
accuracy and reduce the matching time, various extensions
of SIFT have been proposed. For example, Ke and
Sukthankar proposed PCA–SIFT [8], which uses image
gradient patch, and applies principal component analysis
(PCA) to replace the smoothed weighted histograms in SIFT
to reduce the size of a descriptor. It performs better on
artificially generated data. E.N. Mortensen proposed GSIFT

[9], which combines SIFT with global texture information.
H. Bay proposed SURF [7], which has similar steps with
SIFT. But SURF adopts a new processing method for each
step. Its computing speed is faster. E. Tola proposed a
descriptor DAISY [10], which computes dense depth and
occlusion maps from wide-baseline image pairs on the basis
of the EM algorithm. It is very efficient for intensive
computing. Yang and Sluzek [11] proposed a low dimension
descriptor combined with shape features and location
information.

Local descriptor algorithms consist of three primary steps.
First, interest points are detected at distinctive locations in
an image, such as corners. Second, the local region of the
interest point is represented by a feature vector. The
descriptor has to be distinctive, robust to noise and detection
errors, and invariant against geometric and photometric
transformations. Finally, vectors of descriptors are matched
between different images. Many extensions of SIFT are
mainly related to the construction of the SIFT descriptor.
The algorithm proposed in this paper is also related to the
improvement of the SIFT descriptor.

In this paper, we propose a novel invariant local descriptor,
a combination of gradient histograms with contrast intensity
(CGCI), for image matching and object recognition. It
exploits contrast intensity information by evaluating
intensity difference between an interest point and other
pixels in the local region. It is one of the extensions of a
standard descriptor SIFT, called CGCI-SIFT in following
paragraphs. It is more efficient than SIFT and its two
variants (PCA-SIFT and SURF), since it can require less
data to represent a local region. Our experimental results in
Section 4 show that it not only achieves significantly better
performance, but also uses less time in both feature
extraction and image matching, comparing with SIFT and its
two variants.

I

10.2478/msr-2013-0022

MEASUREMENT SCIENCE REVIEW, Volume 13, No. 3, 2013

 133

The remainder of this paper is organized as follows.
Section 2 reviews the relevant aspects of the SIFT algorithm.
Section 3 details the local feature construction of our CGCI-
SIFT descriptor. Section 4 presents our evaluation
methodology, performance metrics, and experimental results.
Finally, we conclude our work in Section 5.

2. REVIEW OF THE SIFT ALGORITHM

SIFT consists of four major stages of computation used to
generate a set of image features: (1) scale-space extreme
detection; (2) keypoint localization; (3) orientation
assignment; (4) keypoint descriptor.

In the first stage, SIFT searches over all image locations
and scales to find potential interest points as keypoints. It is
implemented efficiently by constructing a Gaussian pyramid
and searching for extreme in a series of difference-of-
Gaussian (DoG) [12] images. It is proved that under a series
of reasonable hypotheses a Gaussian function is the only
possible scale-space kernel [1].

The scale-space of an image is defined as a
function (, ,)L x y σ , which is the convolution of an original
image (,)I x y with a variable-scale Gaussian (, ,)G x y σ .
That is:

(, ,) (, ,) (,)L x y G x y I x yσ σ= ∗ (1)

where ∗ is the convolution operation in x and y , and

2 2 2()/2

2

1(, ,)
2

x yG x y e σσ
πσ

− += (2)

where σ is a scale-space factor. The size of σ is the
determiner of a smoothing degree of an image. Large scale
represents its general information, and small scale for its
detailed characteristics [13].

The SIFT algorithm detects stable interest point locations
by a DOG (difference-of-Gaussian) function, which can be
computed from the difference of two nearby scales:

(, ,) ((, ,) (, ,)) (,)

 (, ,) (, ,)

D x y G x y k G x y I x y

L x y k L x y

σ σ σ

σ σ

= − ×

= −
(3)

where k is a constant multiplicative factor.

In the second stage, interest point candidates are localized
to sub-pixel accuracy and eliminated if found to be low-
contrast keypoints and not robust to small amounts of noise.

In the third step, each keypoint is assigned one or two
dominant orientations based on its local region. This step
makes SIFT invariant to rotation. The Gaussian-smoothed
image (, ,)L x y σ at the scale σ of an interest point is taken,
so that all computation is performed in a scale-invariant
manner. For an image sample (,)L x y at a scale σ , its
gradient magnitude (,)m x y and gradient orientation (,)x yθ
are computed using pixel differences. Their mathematical
definitions are:

2 2(,) ((1,) (1,)) ((, 1) (, 1))m x y L x y L x y L x y L x y= + − − + + − − (4)

(, 1) (, 1)(,) arctan
(1,) (1,)

L x y L x yx y
L x y L x y

θ + − −
=

+ − −
 (5)

The final stage of SIFT constructs a representation for

each keypoint based on a patch of pixels in its local region.
A 4×4 array of orientation histograms with 8 bins are
computed in a 16×16 region around a keypoint. These
histograms are computed from magnitude and orientation
values of samples in the local region. Each histogram
contains samples from 4×4 = 16 sub-regions divided from
an original local region. There are 4×4 = 16 histograms and
each with 8 bins, so the vector has 128 elements. The 128-
dimension vector is then normalized to a unit length in order
to reduce the impact of non-linear illumination.

The construction of the SIFT keypoint descriptor is
complicated, and the dimension of the SIFT descriptor is
high. Our initial motivation is to explore simpler alternatives,
which are faster for computation, more distinctive and
compact.

3. THE CGCI-SIFT DESCRIPTOR
The main idea of all invariant local descriptors is on how

to divide the region of the neighborhood of a keypoint and
represent the region effectively and discriminatively. In this
section, we first discuss our fundamental ideas, and then
explain the description of a keypoint of our CGCI-SIFT.

3.1. Fundamental Ideas

The first step of establishing local invariant descriptor is to
effectively choose a patch of pixels as a region in the local
neighborhood of a keypoint. SIFT chooses an adjacent
16×16 region, using the keypoint as the center. After the
region is chosen, SIFT divides this region into 4×4 sub-
regions, and calculate the gradient histogram in each sub-
region. Our CGCI-SIFT follows this approach to choose a
16×16 local region for each keypoint.

After a local region is chosen for a keypoint, one of the
main issues is how to represent the local region effectively
and discriminatively. As we know, the intensity of each
pixel in the local region is different. With in-depth
investigations and analyses, we conjecture that the intensity
of the pixels near to the keypoint is similar to that of the
keypoint. The intensity of the pixels far away from the
keypoint could be significantly different from that of the
keypoint. For example, Fig.1. shows a typical gray-scale
intensity distribution of its neighborhood pixels of an
interest point kp . kp is the keypoint in its local region. As
we can see from the figure, the intensity of each pixel is
different. The intensity difference between each pixel and
the keypoint is varied. The intensity difference between each
pixel (indicated by white dots in the figure) and kp is small,
and these pixels are closest to the keypoint. However, the
intensity difference between each pixel (indicated by black
dots or stars) and kp is great, and these pixels are far away
from the keypoint. This observation motives us to divide the
16×16 local region into two non-overlapping sub-regions: an
inner region

innerR and a peripheral region
peripheralR , as shown

in Fig.1.

MEASUREMENT SCIENCE REVIEW, Volume 13, No. 3, 2013

 134

The log-polar coordinate division system has been proved
that pixels near the interest point are more susceptive than
pixels far away [15]. It is also proved that the log-polar
coordinate division system is more effective [6], and is used
by many algorithms. For example, GLOH [6] changes a
rectangular grid division system of SIFT into a log-polar
location grid [14]. Thus, in this paper, we use a log-polar
coordinate grid with three bins in the radial direction and
eight bins in the angular direction. (Details are explained in
next subsection.) The direction of 0 degrees in the log-polar
coordinate system is set to coincide with the dominant
orientations of the interest point based on its local region.

Fig.1. A typical gray-scale intensity distribution of neighboring
pixels.

3.2. Description of Local Feature Points

Our algorithm CGCI-SIFT is one of local descriptors. It
receives the same input as the standard SIFT descriptor: the
scale, location, and dominant orientations of an interest
point. As we said before, it extracts a 16×16 region around
the keypoint at the scale, and rotates to its dominant
orientation, in the same manner as SIFT does, shown in
Fig.1. Each interest point kp is in the center of a 16×16
local region R .

Considering different effects of the pixels in the local
region of an interest point, CGCI-SIFT makes use of two
known methods to construct its descriptor, instead of storing
the gradient orientations of all pixels in a local region like
the SIFT approach. Besides, in contrast to classical
approaches like SIFT (PCA-SIFT and SURF) that exploit
the rectangular grid as a division system, CGCI-SIFT
applies a log-polar coordinate system to divide the local
region. It uses a log-polar coordinate grid with three bins in
the radial direction (the radiuses of the three bins are set to 2,
5, and 8 respectively). It divides the 16×16 local region
R into two non-overlapping sub-regions: an inner region,

innerR and a peripheral region
peripheralR . The region within

radius 2 is the inner region. Both the region (outside the
circle with radius 2 and inside the circle with radius 5) and
the region (outside the circle with radius 5 and inside the

circle with radius 8) are the two components of the
peripheral region. The following paragraph provides the
details of how the log-polar coordinate system is used in our
CGCI-SIFT.

CGCI-SIFT further uses a log-polar coordinate system
(,)r θ to divide

innerR into η +1 non-overlapping sub-regions,
denoted as:

0 1, ...R R Rη
 with 2=r , and to divide

peripheralR into

t -η non-overlapping sub-regions, denoted as:
1, 2 t...R R Rη η+ +

.

Note that η and t are the two parameters of our CGCI-
SIFT, which determines the number of sub-regions of the
inner region

innerR and the number of sub-regions of the
peripheral region

peripheralR of a keypoint. Thus, the two

parameters directly impact the dimensions of a keypoint
description.

For innerR , we adopt the gradient weighted histograms,
which are defined in (4) and (5), to construct descriptors.
We calculate the magnitudes and orientations of an image
gradient in a sub-region iR which is belong to the innerR , and
build smoothed orientation histograms to catch the
representative information. The gradient orientations are
quantized in 8 bins. Each bin of a sub-region iR in innerR can
be represented as ({0,1, 2, }, {0,1, 2,3 ... 7})

iR jG d i jη∈ ∈ .

For
peripheralR , we consider a technique that represents the

contrast values of pixels within a region with respect to a
keypoint. A contrast value is defined as the intensity
difference between a pixel and the keypoint [16]. In the
following, we introduce how to compute contrast values.

For a pixel p in the local region around the interest
point kp , we compute the intensity difference ()D p defined
as () () ()kD p I p I p= − , where ()I p and ()kI p represent the
intensity value of p and kp respectively. For each p in a
sub-region iR , we define the positive intensity information
(6) and negative intensity information (7) [16] with respect
to kp respectively:

{(() ()) | () 0}I p I p p R and D pikH PRi NumRi

Σ − ∈ ≥
=

+
 (6)

{(() ()) | () 0}I p I p p R and D pikH NRi NumRi

Σ − ∈ <
=

−
 (7)

where iNumR + represents the number of pixels whose
intensity is greater than the interest point in the sub-region

iR . In contrast, iNumR −
 represents the number of pixels

whose intensity is smaller than that of the interest point.
Next, we normalize the descriptor to a unit vector to deal

with illumination changes. Finally, we combine the all
histogram entries from all the sub-regions into a single
vector. Thus, the CGCI-SIFT descriptor of kp with its local
region R can be defined as:

MEASUREMENT SCIENCE REVIEW, Volume 13, No. 3, 2013

 135

(, ..., ... , ..., ,
0 7 0 70 0

, ... ,)
(1) (1)

N

CGCI G d G d G d G d
R R R R

H P H H P H N
R R R Rt t

η η

η η

=

+ +

(8)

From the above explanation, the number of dimensions of

a descriptor provided by our CGCI-SIFT can be calculated
using:

8 (1) 2 (t)Dimen η η= × + + × − . (9)

Our CGCI-SIFT is a general framework. It could have
many different versions by setting its two parameters η and
t . Each version has a certain dimension, which can be
calculated by (9).

As we know, the dimension of the descriptor has a direct
impact on its computation time. The dimension of CGCI-
SIFT can be much lower than that of SIFT with proper
parameter settings. Thus, CGCI-SIFT would also be more
efficient than SIFT.

In our experiments, we set the radius of the log-polar
coordinate to 2, 5, and 8 respectively for both the 64-
dimension CGCI-SIFT (CGCI-64) and the 40-dimension
CGCI-SIFT (CGCI-40). Please note that the parameters are
set as 3, 19tη = = in CGCI-64. For CGCI-40, its parameters
are set as 0, 16tη = = .

The structures of the CGCI-64 descriptor and the CGCI-40
are shown in Fig.2. From the left sub-figure of Fig.2., we
can see that its inner region is separated into four non-
overlapping sub-regions 0 1 2 3, , ,R R R R , and its peripheral
region is separated into sixteen non-overlapping sub-
regions 4 5 6 19, , ...R R R R . Hence, there are 4×8=32 entries in
the inner descriptor, and 2×16=32 entries in the peripheral
descriptor. We combine the two parts together. Thus, the
dimension of the CGCI-64 descriptor is 32+32 = 64.

It is easy to follow the above explanation to find out the
dimension of the CGCI-40 descriptor is 32+8 = 40. We do
not repeat the explanation here.

Fig.2. The region structures of CGCI-64 (left) and CGCI-40
(right).

4. EXPERIMENTS

In this section, we conduct experiments to investigate the
performance of our CGCI-SIFT, and make comparisons
with SIFT and its two variants (PCA-SIFT and SURF) under
different situations: scale and rotation change, blur change,

illumination change, JPEG compression, and affine change.
We also investigate its time consumption, by comparing
with SIFT and its two variants.

4.1. Data Sets

We evaluate our CGCI-SIFT on five image data sets used
in [6] and [17]. These data sets consist of real images with
different geometric and photometric transformations and for
different scene types. Within the data sets, a set of boat
images are used to evaluate the scale and rotation invariance
of CGCI-SIFT, a set of bike images used to evaluate the blur
invariance of CGCI-SIFT, a set of Leuven images used to
evaluate the illumination invariance of CGCI-SIFT, a set of
house images used to evaluate the JPEG compression
invariance of CGCI-SIFT, and a set of graffiti images used
to evaluate the affine invariance of CGCI-SIFT.

4.2. Evaluation Measures

We use two measures, the number of correct matches and
false matches obtained from an image pair, to evaluate the
performance of our CGCI-SIFT. The adopted matching
strategy is the nearest neighbor distance ratio matching. The
nearest neighbor distance ratio matching can be explained as
follows.

Considering a pair of images (a reference image and a test
image), ap denotes a keypoint in the reference image, and

bp and cp denote two keypoints in the test image, where

bp and cp are the nearest point and second nearest point,
respectively. We define that the keypoints ap and bp match
if (,) (,)a b a cdist p p dist p pβ< × , where ()dist is a Euclidean
distance between the descriptors of two keypoints, and β is
a threshold. Otherwise, we define that the keypoints ap and

bp mismatch. Every keypoint descriptor in the reference
image is compared with every keypoint descriptor in the test
image.

The thresholdβ is varied to obtain the curves to present
our experimental results (recall versus 1-precision, which is
used in [6], [7] and [17]) in Section 4.3. Recall is defined as
the number of correct matches with respect to the number of
corresponding matches between two images of the same
scene:

#

#
correctMatchesrecall

correspondences
=

(10)

We determine the number of correct matches and

correspondences using an overlap error ε . The overlap error
measures how well the regions correspond under a particular
transformation, and that is a homography in our case. It is
defined by the ratio of the intersection over the union of the
regions:

BHHA
BHHA

T

T

∪
∩

= -1ε (11)

where A and B are the regions and H is the homography
between the two images. Details can be found in [17]. The

MEASUREMENT SCIENCE REVIEW, Volume 13, No. 3, 2013

 136

correct match that we define is satisfied with the condition
5.0<ε , which means the overlap error in the image region

covered by two corresponding regions is less than 0.5 of the
region union.

The 1-precision represents the number of false matches
relative to the total number of matches, defined as:

#

1
+#

falseMatches
precision

correctMatches falseMatches
− =

(12)

The recall and 1-precision are independent terms. The

results in recall versus 1-precision show the performance of
an algorithm on only a pair of images. We need to display
the performance of an algorithm on between an image and a
sequence of its transformations. Thus, we add another
evaluation measure, correct match rate (CMR). Correct
match rate is defined as follows.

#
#

correctMatchsCMR
correctMatchs falseMatchs

=
+

 (13)

where #correctMatchs represents the number of correct
matches, and # falseMatchs represents the number of false
matches. In our experiments of evaluating the performance
of each algorithm in term of correct matching rate (CMR),
we set the threshold β =0.49 as the matching condition.

4.3. Experiment Results

In the experiments of this paper, we use CGCI-64 (η =3
and t=19) and CGCI-40 (η =0 and t=16) as the two
representatives of our CGCI-SIFT, and compare their
experimental results with SIFT, SURF and PCA-SIFT.
Again, CGCI-64 denotes the CGCI-SIFT descriptor with 64
dimensions, while CGCI-40 denotes the CGCI-SIFT
descriptor with 40 dimensions. Thus, we can see the
performance of CGCI-SIFT under different dimensions.
Note that CGCI-SIFT is a general framework. It could have
many different versions by setting its two parameters η and
t . Each version has a certain dimension, which can be
calculated by (9). SURF and PCA-SIFT are extensions of
SIFT. Both of them have reduced the dimension of SIFT, so
we choose them to make comparisons.

All methods are implemented in Matlab 2010a and
executed on a Dell PC computer. It has a Pentium(R) Dual-
Core CPU E5300@2.60 GHz, and 4G RAM, running
Windows 7.

Image Rotation and Scale. We conduct the first set of
experiments on a set of boat images [17] to evaluate the
robustness of our CGCI-SIFT against image rotation and
scale change. The set of images is shown in Fig.3. This set
has six images in total. Each represents different scale and
rotation respectively. Note that the range of rotations of the
images is from 30 to 50 degrees, and the range of their
scales is from 2 to 2.5. We also compare our CGCI-SIFT
with SIFT and its two variants (PCA-SIFT and SURF). Our
experiments match the image A1 with others (A2-A6)
respectively. The experimental results are shown in Fig.4.

A1 A2

A3 A4

A5 A6

Fig.3. Images used for evaluation under rotation and scale
changes.

2 3 4 5 6
0

10

20

30

40

50

60

70

80

90

100

Image ID

C
or

re
ct

 M
at

ch
 R

at
e

(%
)

CGCI−64
CGCI−40
SIFT
PCA−SIFT
SURF

(a) Correct Match Rate

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1−precision

R
ec

al
l (

#C
or

re
ct

M
at

ch
es

 /
92

6)

CGCI−64
CGCI−40
SIFT
PCA−SIFT
SURF

(b) Recall versus 1-precision

Fig.4. Evaluation under rotation and scale changes.

MEASUREMENT SCIENCE REVIEW, Volume 13, No. 3, 2013

 137

Fig.4.(a). shows the matching correct rate of each
algorithm between the image A1 and the others (A2-A6)
respectively. Note that we also compare the performance of
the two versions of CGCI-SIFT (CGCI-64 and CGCI-40).
Fig.4.(a). clearly shows the relationships among the
compared algorithms. From Fig.4.(a)., we can see that
CGCI-64 has the highest matching correct rate under all
comparing pairs. It is followed by SIFT. CGCI-40 performs
the third, which is better than both PCA-SIFT and SURF.
Between PCA-SIFT and SURF, SURF has the lowest
matching correct rate under all image pairs.

Fig.4.(b). shows the specific experimental results for
matching the image A1 with A6 for our CGCI-SIFT (CGCI-
64 and CGCI-40), SIFT and its variants (PCA-SIFT and
SURF). First, we can see that the recall of every algorithm
increase with the increment of 1-precision, as expected.
Among these algorithms, the recall of SIFT increases
quickly when 1-precision is small. Our CGCI-64 increases
more quickly than SIFT does when 1-precision is greater
than 0.3. Thus, after 1-precision is greater than 0.7, our
CGCI-64 has higher recall than SIFT. Except SIFT, both
CGCI-64 and CGCI-40 always have higher recall than
SURF and PCA-SIFT. Compared with CGCI-40, CGCI-64
is better.

Image Blur: The second set of experiments is conducted
on a set of bike images to evaluate the performance of our
CGCI-SIFT against blur invariance. The set of images is
shown in Fig.5. It has six images in total. The image B1 is
an original one from the image set [17]. We use it to
produce 10 different blur images with different fuzzy
radiuses (from 1 to 10, refer to the horizontal axis in
Fig.6.(a).), which represent different degrees of blur. Fig.5.
shows the original image and five produced images with
their corresponding blur radius. The experimental results are
shown in Fig.6.

Fig.6.(a). shows the matching correct rate of each
algorithm between the original image B1 and the 10
generated images respectively. Note that we also compare
the performance of the two versions of CGCI-SIFT (CGCI-
64 and CGCI-40). Fig.6.(a). clearly shows the relationships
among the compared algorithms. From Fig.6.(a)., we can see
that both versions of our CGCI-SIFT (CGCI-64 and CGCI-
40) perform significantly better than all others (SIFT, PCA-
SIFT, and SURF). Between two versions themselves, CGCI-
64 performs slightly better when the bur degree is greater
than 6. Among the rest three algorithms, SIFT performs
better than PCA-SIFT. SURF performs the worst.

Fig.6.(b). shows the specific experimental results for
matching the original image B1 and the most blurring image
B6 shown in Fig.5. for our CGCI-SIFT (CGCI-64 and
CGCI-40), SIFT and its variants (PCA-SIFT and SURF).
First, we can see that the recall of every algorithm increase
with the increment of 1-precision, as expected. Among
these algorithms, the recall of our CGCI-SIFT increases
quickly when 1-precision is small. Both versions of our
CGCI-SIFT always dominates all other algorithms (SIFT,
PCA-SIFT, and SURF). Between the two versions of our
CGCI-SIFT, CGCI-64 performs slightly better than CGCI-
40. Among the three other algorithms (SIFT, PCA-SIFT,
and SURF), the recall of SIFT is higher than that of SURF.
The recall of SURF is higher than that of PCA-SIFT.

B1 B2

B3 B4

B5 B6

Fig.5. Images used for evaluation under image blurring.

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Blur radius

C
or

re
ct

 M
at

ch
 R

at
e

(%
)

CGCI−64
CGCI−40
SIFT
PCA−SIFT
SURF

(a) Correct Match Rate

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1−precision

R
ec

al
l (

#c
or

re
ct

M
at

ch
es

 /
92

6)

CGCI−64
CGCI−40
SIFT
PCA−SIFT
SURF

(b) Recall versus 1-precision

Fig.6. Evaluation under blur change.

MEASUREMENT SCIENCE REVIEW, Volume 13, No. 3, 2013

 138

Illumination Changes. The third set of experiments is
conducted on a set of Leuven images to evaluate the
performance of our CGCI-SIFT against illumination
invariance. The set of images are shown in Fig.7. Please
note that the image C3 is the original image [17]. We use the
original image C3 to produce 10 different illumination
images by decreasing and increasing brightness intensity
(from -150 to 150, refer to the horizontal axis in Fig.8.(a)).
The brightness intensity represents a degree of illumination.
Fig.7. shows the original image C3 and five produced
images (C1-C2, and C4-C5). Note that we order the images
according their brightness. Images C1 and C2 are darker
than the original one C3. The images C4-C5 are brighter
than the original one. The experimental results are shown in
Fig.8.

C1 C2

C3 C4

C5 C6

Fig.7. Images used for evaluation under Illumination changes.

Fig.8.(a). shows the matching correct rate of each
algorithm between the original image C3 and the 10
generated images respectively. From Fig.8.(a)., we can see
that our CGCI-SIFT performs consistently well under
different brightness intensities. When the brightness
intensity is very high (greater than 100 in the horizontal axis
in Fig.8.(a).), our CGCI-SIFT performs the best, although it
performs a little worse than SIFT (the best one among all
algorithms) when the brightness intensity is negative. From
Fig.8.(a)., we can also see that PCA-SIFT performs well,
and SURF performs the worst.

Fig.8.(b). shows the specific experimental results for
matching the original image C3 and the brightest image C6
among the images shown in Fig.7. First, we can see that the
recall of every algorithm increase with the increment of 1-
precision, as expected. Among these algorithms, the recall
of our CGCI-SIFT increases quickly when 1-precision is
less than 0.4. Both versions of our CGCI-SIFT have better

performance when the value 1-precision is less than 0.4.
When the value 1-precision is greater than 0.4, SIFT
performs the best, followed by CGCI-64 and CGCI-40. Both
CGCI-64 and CGCI-40 perform better than SURF and PCA-
SIFT. Between SURF and PCA-SIFT, PCA-SIFT performs
better when 1-precision is smaller than 0.4, while it
performs worse when 1-precision is greater.

−150 −100 −50 0 50 100 150
40

50

60

70

80

90

100

Brightness Change

C
or

re
ct

 M
at

ch
 R

at
e

(%
)

CGCI−64
CGCI−40
SIFT
PCA−SIFT
SURF

(a) Correct Match Rate

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1−precision

R
ec

al
l (

#c
or

re
ct

M
at

ch
es

 /
42

6)

CGCI−64
CGCI−40
SIFT
PCA−SIFT
SURF

(b) Recall versus 1-precision

Fig.8. Evaluation under illumination changes.

JPEG Compression. JPEG compression is widely used to
reduce the size of images in real-time applications with
specific purposes, such as network traffic reduction.
Matching descriptors with JPEG images indicate whether
the descriptors can still represent image regions under
compressions.

The forth set of experiments is conducted on a set of house
images to evaluate the performance of our CGCI-SIFT
against JPEG invariance. The set of images are shown in
Fig.9. Please note that the image D1 is the original image [6].
We use the original image D1 to produce 5 different JPEG
compression images by increasing the compression
percentage (from 60 to 100, refer to the horizontal axis in
Fig.10.(a).). The experimental results are shown in Fig.10.

MEASUREMENT SCIENCE REVIEW, Volume 13, No. 3, 2013

 139

D1 D2

D3 D4

D5 D6

Fig.9. Images used for evaluation under JPEG compression.

60 65 70 75 80 85 90 95 100
0

10

20

30

40

50

60

70

80

90

100

JPEG Compression (%)

C
or

re
ct

 M
at

ch
 R

at
e

(%
)

CGCI−64
CGCI−40
SIFT
PCA−SIFT
SURF

(a) Correct Match Rate

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1−precision

R
ec

al
l (

#C
or

re
ct

M
at

ch
es

 /
72

6)

CGCI−64
CGCI−40
SIFT
PCA−SIFT
SURF

(b) Recall versus 1-precision

Fig.10. Evaluation under JPEG Compression.

Fig.10.(a). shows the matching correct rate of each
algorithm between the original image D1 and the five
generated images respectively. From Fig.10.(a)., we can see
that our CGCI-SIFT performs well under different JPEG
compression. When the compression rate is greater than 80
in the horizontal axis in Fig.10.(a).), our CGCI-64 performs
the best, although it performs a little worse than SIFT (the
best one among all algorithms) when the compression rate is
less than 80. From Fig.10.(a)., we can also see that our
CGCI-40 performs better than PCA-SIFT and SURF.
Between PCA-SIFT and SURF, PCA-SIFT performs better.

Fig.10.(b). shows the specific experimental results for
matching the image D1 with D6 for our CGCI-SIFT (CGCI-
64 and CGCI-40), SIFT and its variants (PCA-SIFT and
SURF). First, we can see that the recall of every algorithm
increase with the increment of 1-precision, as expected.
Among these algorithms, the recall of our CGCI-64
increases quickly when 1-precision is smaller than 0.6,
although SIFT performs better after that. Our CGCI-40
performs the best among the rest algorithms (PCA-SIFT and
SURF), although it performs worse than CGCI-64 and SIFT.
Between PCA-SIFT and SURF, SURF performs better.

Affine Transformation. The fifth set of experiments is
conducted on the set of Graffiti images [17] to evaluate the
performance of our CGCI-SIFT against affine invariance.
This set has six images in total, shown in Fig.11. Each
image has a different viewpoint (from 20 to 60 degrees,
refer to the horizontal axis in Fig.12.(a).). The experimental
results are shown in Fig.12.

E1 E2

E3 E4

E5 E6

Fig.11. Images used for evaluation under viewpoint changes.

Fig.12.(a). shows the matching correct rate of each
algorithm between the image E1 and the others (E2-E6)
respectively. Note that we also compare the performance of
the two versions of CGCI-SIFT (CGCI-64 and CGCI-40).
From Fig.12.(a)., we can also see that the correct matching

MEASUREMENT SCIENCE REVIEW, Volume 13, No. 3, 2013

 140

rate of every algorithm decreases when the viewpoint angle
increases. Fig.12.(a). also clearly shows the relationships
among the compared algorithms. From Fig.12.(a)., we can
see that both versions of our CGCI-SIFT (CGCI-64 and
CGCI-40) perform significantly better than all others (SIFT,
PCA-SIFT, and SURF) under different angles of viewpoints.
Between two versions themselves, CGCI-64 always
performs much better than CGCI-40 under different
viewpoints. It also maintains a very high matching correct
rate. Among the rest three algorithms, SIFT performs better
than PCA-SIFT and SURF. PCA-SIFT performs better than
SURF when the angle of the viewpoint is smaller than 30
degrees. Otherwise, SURF performs slightly better than
PCA-SIFT.

20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

60

70

80

90

100

Viewpoint angle (degree)

C
or

re
ct

 M
at

ch
 R

at
e

(%
)

CGCI−64
CGCI−40
SIFT
PCA−SIFT
SURF

(a) Correct Match Rate

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1−precision

R
ec

al
l (

#C
or

re
ct

 /
42

6)

CGCI−64
CGCI−40
SIFT
PCA−SIFT
SURF

(b) Recall

Fig.12. Evaluation under viewpoint changes.

Fig.12.(b). shows the specific experimental results for
matching the image E1 with E6 for our CGCI-SIFT (CGCI-
64 and CGCI-40), SIFT and its variants (PCA-SIFT and
SURF). First, we can see that the recall of every algorithm
increase with the increment of 1-precision, as expected.
Among these algorithms, the recall of our CGCI-64
increases quickly when 1-precision is small, although SIFT
performs better when 1-precision is greater or equal than
0.3. Overall, SIFT and our CGCI-64 perform better than the
rest algorithms (CGCI-40, PCA-SIFT, and SURF). Among
the three algorithms, PCA-SIFT performs the best, followed
by our CGCI-40. SURF performs the worst.

4.4. Time Consumption Evaluation
Many real-world applications of image matching are real-

time. It is import to investigate the time consumption of
each algorithm. In this section, we investigate the time
consumption of our CGCI-SIFT, by comparing with SIFT
and its two variants (PCA-SIFT and SURF). We have
conducted experiments to investigate the time consumption
of each algorithm under different situations (i.e., scale and
rotation change, blur change, illumination change, JPEG
compression, and affine change), on the whole data sets (six
images for scale and rotation change, 11 images for image
blur change and illumination change respectively, six
images for JPEG impression and affine change respectively,
40 images in total) [17].

Table 1. shows the time consumption of each algorithm
running on the 40 images. In order to see the details of the
time consumed by each algorithm, we also show feature
extraction time and matching time separately in the table.
The feature extraction time is the total time of interest point
selection and descriptor construction for all the 40 images.
The matching time is the total time required to find the
corresponding pairs between the image A1 and other five
images in its group (A2-A6) for scale and rotation
invariance, between the original image B1 and other 10
generated images for blur invariance, between the original
image C3 and other 10 generated images for illumination
invariance, between the image D1 and other five images in
its group (D2-D6) for JPEG impression, and between the
image E1 and other five images in its group (E2-E6). We
also provide the summation of the time consumption of
stages in the last column of Table 1.

As we can see from Table 1., the running time of CGCI-
SIFT is shorter than SIFT. For PCA-SIFT, the matching
time is the shortest, however, mapping the 3024-
dimensional vector to the 36-dimensional vector still
requires much time. Therefore, the descriptor construction
of PCA-SIFT is the most time consuming. The SURF has
more advantages on detection and description parts, but the
detected points of SURF are more than others. Therefore,
the matching time is longer than CGCI-SIFT. The descriptor
generating time of CGCI-SIFT is much less than that of
SIFT because only a simple operation is required to
construct CGCI-SIFT. In contrast, SIFT needs to compute
the magnitudes and orientations of all the pixels in a local
region. The matching time of CGCI-SIFT is also shorter
because the dimensions of CGCI-SIFT are smaller than
those of SIFT.

Table.1. Total computation time for each algorithm on all 40
images (in Seconds).

Name Feature extraction(s) Matching (s) Total(s)

CGCI-64 1.375 1.080 2.458
CGCI-40 1.187 0.854 2.042

SIFT 2.132 1.846 3.913
PCA-SIFT 3.141 0.729 3.875

SURF 1.390 1.187 2.580

MEASUREMENT SCIENCE REVIEW, Volume 13, No. 3, 2013

 141

5. CONCLUSION
This paper proposed a novel invariant local descriptor

CGCI-SIFT, an extension of the standard local descriptor
SIFT. Considering different effects of different sub-regions
inside the local region of an interest point, CGCI-SIFT
divides the local interest region around the interest point into
two main sub-regions: an inner region and a peripheral
region. Then, it makes use of two known methods to
construct its descriptor. It uses the gradient histogram
information for the inner region, and the contrast intensity
information for the peripheral region, instead of only storing
the gradient orientations of all pixels in a local region (the
SIFT approach). Besides, in contrast to classical approaches
like SIFT (PCA-SIFT and SURF) that exploit the
rectangular grid as division systems, CGCI-SIFT applies a
log-polar coordinate system to divide the local region, which
is more sensitive to the pixels that are near to the interest
point than those farther away.

Our experimental results demonstrate that the proposed
descriptor CGCI-SIFT performs better than SIFT and its
variants PCA-SIFT and SURF with various optical and
geometric transformations, such as scale and rotation
change, blur change, and viewpoint change. It is competitive
under illumination change and JPEG compression. Most
importantly, it also has better matching efficiency than SIFT
and its variants PCA-SIFT and SURF. Because of its high
matching accuracy and efficient computation, CGCI-SIFT
can to be used in a variety of real-time applications.

In the future, we will continue to improve the detector of
CGCI-SIFT. At the same time, we will transform the gray-
value-based CGCI-SIFT to a color-based version, so that
more discriminative descriptors can be applied to color
images.

ACKNOWLEDGMENT

This research was partially supported by the Natural
Science Foundation of China under grant No. 61003054,
61170020, and 61170124, the Program for Postgraduates
Research Innovation in Jiangsu Province in 2011 under
grant No. CXLX11_0072, the Beforehand Research
Foundation of Soochow University, and the National
Science Foundation (IIS-1115417).

REFERENCES

[1] Lowe, D.G. (2004). Distinctive image features from
scale-invariant keypoints. International Journal of
Computer Vision, 60 (2), 91-110.

[2] Strecha, Ch., Bronstein, A.M. (2012). LDAHash:
Improved matching with smaller descriptors. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 34 (1), 66-78.

[3] Senchenko, E.S., Chugui, Yu.V. (2011). Shadow
inspection of 3D objects in partially coherent light.
Measurement Science Review, 11 (4), 104-107.

[4] Jin Guofeng, Zhang Wei, Yang Zhengwei et al.
(2012). Image segmentation of thermal waving
inspection based on particle swarm optimization fuzzy
clustering algorithm. Measurement Science Review, 12
(6), 296-301.

[5] Harris, Ch., Stephens, M. (1988). A combined corner
and edge detector. In Proceedings of the 4th Alvey
Vision Conference, 147-151.

[6] Mikolajczyk, K., Schmid, C. (2005). A performance
evaluation of local descriptors. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 27 (10),
1615-1630.

[7] Bay, H., Ess, A., Tuytelaars, T., Gool, L.V. (2008).
SURF: Speeded up robust features. Computer Vision
and Image Understanding, 10 (3), 346-359.

[8] Yan Ke, Sukthankar, R. (2004). PCA-SIFT: A more
distinctive representation for local image descriptors.
In Computer Vision and Pattern Recognition (CVPR
2004), 27 June- 2 July 2004. IEEE, Vol. 2, 506-513.

[9] Mortensen, E.N., Deng Hongli, Shapiro, L. (2005). A
SIFT descriptor with global context. In Computer
Vision and Pattern Recognition (CVPR 2005), 20-25
June 2005. IEEE, Vol. 1, 184-190.

[10] Tola, E., Lepetit, V., Fua, P. (2010). Daisy: An efficient
dense descriptor applied to wide baseline stereo. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 32 (5), 815-830.

[11] Yang Duanduan, Sluzek, A. (2010). A low-
dimensional local descriptor incorporating TPS
warping for image matching. Image & Vision
Computing, 28 (8), 1184-1195.

[12] Tuytelaars, T., Mikolajczyk, K. (2008). Local invariant
feature detectors: A survey. Computer Graphics and
Vision, 3 (3), 177-280.

[13] Rabbani, H. (2011). Statistical modeling of low SNR
magnetic resonance images in wavelet domain using
laplacian prior and two-sided rayleigh noise for visual
quality improvement. Measurement Science Review,
11 (4), 125-130.

[14] Xianqing Lei, Chunyang Zhang, Yujun Xue, Jishun Li.
(2011). Roundness error evaluation algorithm based on
polar coordinate transform. Measurement, 44 (2), 345-
350.

[15] Bai Cong, Kpalma Kidiyo, Ronsin Joseph. (2011).
Analysis of histogram descriptor for image retrieval in
DCT domain. In Intelligent Interactive Multimedia
Systems and Services. Springer, Vol. 11, 227-235.

[16] Huang, C.R., Chen, C.R., Chung, P.C. (2008). Contrast
context histogram an efcient discriminating local
descriptor for object recognition and image matching.
Pattern Recognition, 41 (10), 3071-3077.

[17] Mikolajczyk, K., Tuytelaars, T., Schmid, C.,
Zisserman, A. (2005). A comparison of affine region
detectors. International Journal of Computer Vision,
65 (1/2), 43-72.

Received December 7, 2012.
Accepted June 10, 2013.

