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This paper proposes an optimization classification model, which combines particle swarm optimization (PSO) with weighted k-

nearest neighbors (WKNN), namely PWKNN. The model optimizes the weight and k parameter of WKNN to improve the 
detection accuracy of gearbox lubrication levels. In the experiment, the current signals of the generator are measured, and the 
relative frequency spectrum of the measured signals is illustrated by using fast Fourier transform (FFT). The features from the 
spectrum are extracted, and then the optimal weight and k parameter of WKNN are obtained by using PSO. The average 
detection accuracy of gearbox lubrication levels is 96% by using PWKNN, which the result shows that the proposed PWKNN can 
efficiently detect the lubrication level of gearboxes. The experiment also shows that the performance of the proposed PWKNN by 
using the current signals of the generator is superior to that by using typical vibration signals of a gearbox. In addition, the 
accuracy can reach 95.4% even in environments with 20 dB noise interference. 
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1.  INTRODUCTION 

IND TURBINES are assembled with complicated 
components. Any minute component malfunction 
leads to serious damage to the entire wind turbine. In 

many components, gearbox faults seriously affect generator 
efficiency, necessitating gearbox condition monitoring. 
Planetary gearboxes are often used in wind turbines because 
its cost is inexpensive and the structure is robust. As 
lubrication of the gearboxes is inadequate, it causes broken 
gear teeth or to gear displacement during operations. 
Moreover, inadequate lubrication leads to gearbox 
vibrations even cause entire wind turbine damages. These 
situations can be avoided by observing lubrication levels of 
gearboxes. Most level detection methods adopt lubrication 
sight glasses and float balls to monitor system dynamics. 
These methods need extra measurement apparatus, such as 
float balls, which methods may not be accurate because of 
aging or displacement of the apparatus. This paper adopts an 
alternate approach using current signals, differ from 
vibration signals, to detect lubrication levels of gearboxes. 

Literatures focus the mechanical faults of gearboxes, 
including gear tooth breaks and gear displacements. The 
research proposes methods to detect mechanical faults, but 
they seldom investigate lubrication level detection. 
Literatures mention the measurement of the vibration signals 
of gearbox and induction motor by using accelerometers to 
determine whether the gearbox and motor are healthy [1]-
[5]. Recently, both current and voltage signals of a motor 
are used to detect rotating machinery faults. The research 
detects induction motor faults by using current signals [7]. 
The research uses generator output current to monitor 
generator condition [8]. References [9]-[10] use current 
signals to detect motor faults. The references show that the 
use of current signals for rotating machinery faults diagnosis 
is available. 

Signal analysis is important to effectively detect the 
lubrication levels of gearboxes. Typical methods for signal 
analysis, such as Fourier transform (FT) [9], waveform 

transform (WT) [10]-[14], S transform (ST) [15] and Hilbert 
Huang transform (HHT) [16], are applied to analyze signals. 
WT is commonly used in signals analysis, but accurate 
conclusions depend on the researcher ability to choose 
preliminary basis functions, as different basis functions lead 
to different analysis results. ST is commonly used in power-
quality analysis, but the analysis is time consuming. HHT is 
commonly used in transient and non-linear signals analysis. 
However, the method must address the issue of envelope 
selection and end effects [17]. This study applies fast 
Fourier transform (FFT) to shorten computational time [10] 
and to obtain better analysis results. Meanwhile, using FFT 
is easier to implement online detection when compared to 
the other methods. 

Many automatic detection systems are based on 
classification algorithms, such as back propagation neural 
network (BPNN), probability neural network (PNN) and k-
nearest neighbor (KNN) [18]-[20]. The BPNN classification 
results are affected by various neuron numbers and learning 
rates. The PNN classification results are affected by various 
smoothing parameters as well [21]. Typical KNN is a fast 
and non-training classification algorithm that computes 
correlations of each known vector and uses nearest k-
samples to classify unknown vectors. Each feature of KNN 
is equal importance which means each feature equally affect 
classification results [22],[23]. For example, an unknown 
vector is in a feature space, which contains three types of 
vectors, Types A, B and C, in Fig.1. The weight of each 
feature is equal, i.e., w=[1, 1], the unknown type is classified 
as Type C when k is set as 6, as shown in Fig.1(a). If the 
weights are changed to w=[1, 0.6], the unknown type is 
classified as Type B when k is set as 6, as shown in Fig.1(b).  

That means that only choosing features cannot obtain an 
optimal result, and using the feature weights to adjust the 
importance of each feature of KNN is necessary. Thus, this 
study applies weighted k-nearest neighbors (WKNN) and 
particle swarm optimization (PSO) to optimize the weights 
and k parameter to improve classification accuracy [24]. 
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Fig.1.  Vector space (a)w=[1,1], (b) w=[1,0.6]. 

 
This paper proposes an optimization classification model, 

which combines PSO with WKNN, namely PWKNN, to 
detect lubrication levels of a gearbox. The experiment 
includes three steps: 1) measure the current signals of the 
generator and vibration signals of gearboxes; 2) use FFT 
analysis model to obtain frequency spectrum; 3) extract any 
10 features from the spectrum, including maximum, 
minimum, average, mean squared error, standard deviation, 
kurtosis, skewness, variance, sum and fundamental 
frequency. The study focuses on the proposed PWKNN 
manner that can optimize feature weights of WKNN, even 
some of these features are dependent. 
 

2.  PARTICLE SWARM OPTIMIZATION WITH WEIGHTED k-
NEAREST NEIGHBORS (PWKNN) 

A.  Weighted k-nearest neighbors (WKNN) 
The typical KNN is a common and simple classification 

algorithm, which includes three steps: 1) calculate 
correlations of known feature vectors and unknown feature 
vectors; 2) consider k nearest known feature vectors in a 
feature vector; 3) determine the unknown vector by the 
largest number of known feature vectors in k samples. 
Inaccuracies arise because KNN weights all feature vectors 
equally. WKNN addresses this problem by modifying 
feature vector weights [w1, w2, …, wn] of KNN for different 
features. This can increase correlations of useful features 
and improve the results of classification; as shown in (1). 
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where w is weighted feature, n is dimension number of 
feature vector, dist is Euclidean distance of unknown x and 
identified sample p, i is between 1 and k. 
 
B.  The Proposed PWKNN 

Recently, the PSO is commonly be used for searching the 
optimal solution [23], [25]. The best position of each 
particle and best position of the group are estimated by the 
fitness function Fit(�). The steps of PSO are listed as 
follows: 
Step 1. Random initial 0Xt

i  and 0t
iv , and then let 0Xt

i w= . 

Step 2. Calculate initial 0tFit , 0Pbt  and 0Gbt . 
Step 3. The iteration start, let t=1. 
Step 4. Update velocity 1t

iv + , where c1=c2=2.05、 ϕ =4.1 
and κ =1, so 0.72984χ ≈ , as shown in (2) [26][27]. 

Step 5. Update position 1Xt
i
+ , as shown in (3). 

Step 6. Calculate 1tFit + , 1Pbt+  and 1Gbt+ , as shown in (4)-
(5). 

Step 7. t=t+1. 
Step 8. If do not reach terminal, as shown in (7) go back to 

Step 4. 
Step 9. 1

BestGbt w+ = . 
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where t is the iteration time, X is the particle i, v is the 
velocity of  the particle i, Pb is the current best particle 
(position), Gb is the global best for any particles. r1, r2 is 
random number between 0 and 1. c1 and c2 are the self 
confidence factor and swarm confidence factor, respectively. 
χ  is a constriction factor. 
A new vector can be written in (8), in which the vector is 

assembled by weight of KNN and a k-parameter. This study 
uses PSO to optimize the new vector w, and the best vector 
wbest (group best position) is obtained, as shown in (9). The 
PSO flowchart is shown in Fig.2. 
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Fig.2.  PWKNN flowchart. 
 
3.  RESULTS OF SIGNALS ANALYSIS AND LUBRICATION LEVEL 

DETECTION 
This study applies a dynamometer test bed composed to a 

11 kW/4,000 rpm induction motor to drive a 10:1 planetary 
gearbox and three-phase permanent magnet generator. The 
generator is connected to a DC electronic load through a 
bridge rectifier. A National Instruments PIX-1033 signal 
acquisition and accelerometer are adopted to measure 
simultaneously the current and vibration signals.  

The experiment structure and test bed apparatus are shown 
in Figs.3. and 4., respectively. Three processes of 
experiment are measurement, analysis and recognition. First, 
in the measurement process, the both signals of various 
lubrication levels, the current and vibration signals, are 
acquired when the gearbox is operating. Second, in the 
analysis process, the spectrums of the both signals are 
obtained, and then the features are extracted from the two 
spectrums. Finally, in the recognition process, the 
recognition rates by using the typical classifiers and the 
proposed PWKNN are calculated.  

A.  Experiment explanation 
Spectrums of vibration signals analyzed by FFT are shown 

in Fig.5(a). However, observing the spectrums of vibration 
signals cannot directly perceive discrepancy to various 
lubrication levels. Thus, current signals are adopted and 
analyzed by FFT. The fundamental frequency of current 
signals are decreased about 5 Hz as the lubrication levels of 
the gearbox change from high to low, as shown in Fig.5(b). 
The decreased lubricity affects the friction and rotation 
speed of the gearbox, and consequently the current 
frequency of the generator is affected.  
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Fig.3.  Experiment structure chart. 
 
 

Generator
Accelerometer

Gearbox

Induction motor

Accelerometer

 
 

Fig.4.  Experimental test bed. 
 

The frequency spectrum spam of vibration signals is wider 
because of the environment noise and over sensitivity of 
vibration sensor. That is the reason the spectrum cannot be 
obviously detect the lubrication level. The benefit of using 
current signals is that the fundamental frequency is certain, 
and the variation of the environment noise and over 
sensitivity of vibration sensor does not affect seriously the 
fundamental frequency. Thus, the changes of the current 
caused by the inadequate lubrication of gearboxes can be 
obviously illustrated. 

In this paper, we use the common analysis method, 
extracting features from the frequency spectrum, to obtain 
two feature distributions of current and vibration signals, as 
shown in Fig.6(a). and 6(b). respectively. In which the 
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extracted features are maximum, minimum, average, mean 
squared error, standard deviation, kurtosis, skewness, 
variance, sum and fundamental frequency. In Fig.6., we can 
be easier to determine the level by using the current signals, 
as shown in Fig.6(b)., but not to vibration signals, as shown 
in Fig.6(a). The two feature distributions show that the 
feature extraction method cannot improve the performance 
of lubrication level detection. 
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Fig.5.  All lubrication level of spectrum 
a) vibration signals,  b) current signals. 

 
The sampling rate of current signals in the experiment is 

1,000 Hz by using typical acquisition, and the spectrum 
shows the resolution is enough to recognize the gearbox 
lubrication status. However, the resolution is inappropriate 
to recognize the lubrication situation by using the same 
sampling rate, 1,000 Hz. Furthermore, we enlarge the 
sampling rate of vibration signals to 10,000 Hz. Even the 
sampling rate, 10,000 Hz, of vibration signal is much higher 
than that of current signals, 1,000 Hz, the spectrum obtained 
by using current signals is clearer and superior to that using 
vibration signals to recognize the lubrication status in this 
situation. The results show that the current signals can 
recognize the lubrication status instead of the function of 
typical vibration signals. 

B.  Lubrication level detection results 
 B.1.  Various lubrication levels 

The experiment measures the generator current to obtain 
the 100 samples for each lubrication level of gearboxes, and 
the total 1,100 samples (100-samples and 11-layers) are 
divided into the 990 training and 110 test data, where the 
parameter of k of typical KNN is 3. The hidden layer 
number of back propagation neural network is set as 1, and 
the neural number is set as 10.  

We discuss the three facets, which are (1) the comparison 
of the typical KNN, BPNN and the proposed PWKNN and 
(2) the comparison of the classification accuracies by using 
the current signals and the typical vibration signals. The 
results of the two facets are described as below:  
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Fig.6.  All lubrication level of feature distribution  

(a) vibration signals,  (b) current signals. 
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(1). The classification accuracy obtained by using the 
proposed PWKNN model is 94.1%, and accuracies by using 
the KNN and BPNN model are 93.5% and 92.4% 
respectively. The result shows that the proposed PWKNN 
method is superior to that by using typical KNN and BPNN 
models based on the measured current signals, as shown in 
Table 1, in which the proposed PWKNN method is superior 
to that by using typical KNN and BPNN models based on 
the measured vibration signals. 

(2). Based on the current signals, the classification 
accuracies obtained by using the proposed PWKNN, KNN 
and BPNN models are 94.1%, 93.5% and 92.4% 
respectively. Based on the vibration signals, the accuracies 
obtained by using the proposed PWKNN, KNN and BPNN 
models are 87.0%, 85.5% and 77.5% respectively. The 
result shows that the accuracy using the current signals is 
superior to that using the vibration signals. 

 
B.2.  Lubrication levels with various loads 

The motor current in this experiment commonly operates 
at 1.1A, which is referred by the guideline of the motor. 
Three loads, which are 1.5A, 1.1A and 0.7A as the light, 
regular and heavy loads respectively, are designed to realize 
the performance of various loads application. The 
classification   accuracies   of 1.5A,   1.1A   and   0.7A cases  

obtained by using the proposed PWKNN are 98.0%, 94.1% 
and 96.0%, respectively. Comparing to the classification 
accuracies obtained by using KNN and BPNN models, the 
classification accuracy of the proposed PWKNN model is 
superior in each load. The availability and superiority of the 
proposed PWKNN can be validates even using in the 
vibration signals based experiment, as shown in Table 2. 

 
B.3.  Lubrication levels with noise interference 

To verify the robustness of the proposed PWKNN model, 
20dB of white noise is added into the original current and 
vibration signals. The classification accuracy with 20dB 
white noise, obtained by using the proposed PWKNN model, 
is 90.1%, and accuracies by using the KNN and BPNN 
model are 88.0 and 77.2% respectively, as shown in Table 3. 
The result shows that the proposed PWKNN method is 
superior to that by using typical KNN and BPNN models 
based on the measured current signals, even in the 
environments of interference. Observing the results of using 
vibration signals with 20 dB noise in Table 3., it is noted 
that the all classification models cannot be available to 
detect the lubrication level of gearboxes. Thus, the proposed 
PWKNN with the current signals are more appropriate to 
solve the level detection problem. 

 
 

 

Table 1. Detection accuracy of various lubrication levels based on regular load. 
Current signals Vibration signals Level (%) 

PWKNN(%) KNN(%) BPNN(%) PWKNN(%) KNN(%) BPNN(%) 
100 98 98 100 99 97 98 
90 88 87 96 97 99 66 
80 86 84 97 87 87 89 
70 90 92 90 84 80 45 
60 99 100 98 75 78 67 
50 100 100 93 99 97 100 
40 91 87 93 79 67 51 
30 100 100 100 98 97 81 
20 100 100 87 100 99 100 
10 100 100 100 72 70 91 
0 83 81 62 67 69 64 

Average accuracy 94.1 93.5 92.4 87.0 85.5 77.5 
 

Table 2. Detection accuracy in various loads. 
Current signals Vibration signals Load (A) 

PWKNN(%) KNN(%) BPNN(%) PWKNN(%) KNN(%) BPNN(%) 
Heavy 1.5 98.0 96.0 91.5 82.7 78.9 77.1 

Regular 1.1 94.1 93.5 92.4 87.0 85.5 77.5 
Light 0.7 96.0 93.2 93.0 88.1 86.1 74.7 

 
Table 3. Detection result with 20dB noise. 

Current signals Vibration signals Level (%) 
PWKNN(%) KNN(%) BPNN(%) PWKNN(%) KNN(%) BPNN(%) 

Without noise  94.1 93.5 92.4 87.0 85.5 77.5 
With 20dB noise 90.1 88.0 77.2 28.1 22.5 37.7 
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4.  RESULT DISCUSSION. 
This study extracts the features of the spectrum of the 

measured signal and proposes a new PWKNN model to 
improve the performance detection accuracy of lubrication 
level of gearboxes. In the study, the parameter w and k of 
WKNN is optimized by PSO, and the effectiveness of this 
PWKNN model is verified by the experiment. Three 
advantages of PWKNN are summarized as follow: 
1). Adoptive for generator current –The study uses current 

signals of generator to effectively improving the 
inaccuracy of using typical  method, vibration signals, to 
detect the statuses of the lubrication level. The study 
results verify that the detection accuracy of using current 
signals is superior to that of using vibration signals to 
detect lubrication level of gearboxes. 

2). Optimize the w & k of WKNN - The proposed PWKNN 
improves the equal weight problems of typical KNN. 
The weights and k parameter are optimized by PSO. The 
optimized weights and k parameter can improve the 
classification accuracy. And the proposed model can be 
available even in various loads. 

3). Improve robustness - The detection accuracies of 
lubrication level of gearboxes between with and without 
the noise are 90.1% and 94.1%, respectively, That 
similar accuracies means that the proposed PWKNN can 
efficiently detect the lubrication level of  interference 
even in environments of noise interference.  

 
5.  CONCLUSION 

The study proposes the PSO-based PWKNN model to 
improve the typical WKNN model, and the weights and k 
parameter of WKNN are optimized by PSO in the proposed 
PWKNN model. We also adopt the current signals to detect 
the lubrication levels of a gearbox. Comparing to the. typical  
vibration signals method to detect the status of gearboxes, 
the results of the experiment show that the proposed 
PWKNN and the adopted current signals method can 
improve the detection accuracy, and the availability and 
superiority of the proposed PWKNN model is verified. 
Furthermore, the proposed PWKNN is superior even in 
environments of noise interferences.  
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