
 
MEASUREMENT SCIENCE REVIEW, Volume 13, No. 2, 2013 

 83

 
Gas–liquid Flow Pattern Recognition Based on Wavelet Packet 

Energy Entropy of Vortex-induced Pressure Fluctuation 
Zhiqiang Sun1,2, Shuai Shao1,2, Hui Gong1,2 

1School of Energy Science and Engineering, Central South University, Changsha 410083, China 
2Hunan Key Laboratory of Energy Conservation in Process Industry, Central South University, Changsha 410083, China 

e-mail: zqsun@csu.edu.cn 
 

Here we report a novel flow-pattern map to distinguish the gas–liquid flow patterns in horizontal pipes at ambient temperature 
and atmospheric pressure. The map is constructed using the coordinate system of wavelet packet energy entropy versus total mass 
flow rate. The wavelet packet energy entropy is obtained from the coefficients of vortex-induced pressure fluctuation decomposed 
by the wavelet packet transform. A triangular bluff body perpendicular to the flow direction is employed to generate the pressure 
fluctuation. Experimental tests confirm the suitability of the wavelet packet energy entropy as an ideal indicator of the gas–liquid 
flow patterns. The overall identification rate of the map is 92.86%, which can satisfy most engineering applications. This method 
provides a simple, practical, and robust solution to the problem of gas–liquid flow pattern recognition.  
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1.  INTRODUCTION 

AS–LIQUID FLOW, the concurrent flow of gaseous and 
liquid two-phase mixture, abounds in the processes of 
industries such as petroleum, power, metallurgy, etc. 

Due to the highly complex interaction between deformable 
phases, a variety of interfacial geometric structures occurs in 
different gas–liquid flow systems. Flow patterns or regimes 
are defined to describe these interfacial structures by various 
researchers [1]. For instance, bubble, plug, slug, and annular 
flows are the four typical flow patterns frequently observed 
in horizontal pipes under adiabatic conditions. It has been 
acknowledged that the physical mechanisms controlling the 
pressure drop and the heat transfer coefficient in gas–liquid 
mixture are intrinsically related to the flow pattern [2]–[4], 
and therefore the prediction of flow patterns is an important 
aspect in gas–liquid flow studies. 

Identification of gas–liquid flow patterns is mainly based 
on experimental observations [5]. On account of its common 
occurrence and convenient acquisition, pressure fluctuation 
has been widely used in the characterization of gas–liquid 
flow patterns [6], [7]. However, pressure fluctuation signals 
are nonlinear and nonstationary in nature, so it is difficult to 
extract the flow pattern related features from both time and 
frequency domains precisely and simultaneously [8], [9]. 
The unsteady wake behind a bluff body is a source full of 
fluid flow information [10]. Recent investigations have 
shown that there exist some close couplings between the 
vortex-induced pressure fluctuation across a bluff body and 
the regime of the gas–liquid flow [11], [12]. Different from 
the single-phase Kármán vortex street, the fluctuation of 
gas–liquid wake involves not only the vortex shedding 
induced by the continuous phase, but contains the 
impingement caused by the disperse phase [13]–[15]. 
Previous studies reveal that it is possible to discern gas–
liquid flow patterns by appropriate processing of the vortex-
induced pressure fluctuation signals [16].  

This paper aims to discern various gas–liquid flow patterns 
by energy entropies of vortex-induced pressure fluctuation. 

Original pressure fluctuations acquired across a bluff body 
are first decomposed by the wavelet packet transform, and 
the approximation and detail coefficients are obtained. The 
energy entropy of the coefficients, named the wavelet packet 
energy entropy, is introduced to indicate the gas–liquid flow 
patterns. A flow-pattern map constructed using the wavelet 
packet energy entropy versus the total mass flow rate is then 
established. The identification rate of the flow-pattern map 
is finally verified by experimental tests. 
 

2.  WAVELET PACKET ENERGY ENTROPY 
The wavelet packet transform, an extension of the wavelet 

transform, employs a rich library of redundant bases with 
arbitrary time–frequency resolution to decompose a signal in 
both the approximation space and the detail space. Signal 
f(t) decomposed by the wavelet packet transform is normally 
represented as [17]: 
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where μn(t) is the orthogonal wavelet packet of orthogonal-
scale function. 

From (1), it reveals that the signal can be divided into two 
parts by the wavelet packet transform adopting the recursive 
relationships defined by (2) and (3): one is the projection on 
μ2n(2–j–1t – i), signal passing through the low band filter H; 
the other is the projection on μ2n+1(2–j–1t – i) passing through 
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the high band filter G. Fig.1. illustrates the procedure of a 
four-level wavelet packet decomposition that is used in this 
paper, where ci is the simplified representation of the final 
coefficient. 

Entropy is a measure of irregularities of states, which has 
been recognized as an ideal parameter for quantifying the 
ordering of nonstationary signals [18]. The energy entropy 
based on the wavelet packet decomposition was reported to 
detect and classify power quality disturbances [19]. Due to 
the orthogonality of wavelet packet decomposition, the sum 
of  the  energy  of  the  coefficients  should  be  equal  to  the 
total  energy  of  the  original  signal.   Each  wavelet  packet  

 
 

coefficient includes a certain band of frequency 
components; hence its energy forms an energy distribution 
in the frequency domain. Therefore, in this paper the 
wavelet packet energy entropy is defined as [20] 
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where pi = Ei/E is the percent of the energy of ci in the whole 
signal energy (E = ∑Ei). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1.  Four-level wavelet packet decomposition tree. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2.  Schematic of the experimental rig: (1) water pool; (2) pump; (3) water surge tank; (4) electromagnetic flowmeter; (5) air 
compressor; (6) air surge tank; (7) gas flowmeter; (8) static mixer; (9) transparent pipe; (10) bluff body; (11) differential pressure sensor; 
(12) signal conditioner; (13) digital oscilloscope. 

 
 

3.  ACQUISITION OF THE VORTEX-INDUCED PRESSURE 
FLUCTUATIONS 

Experiments were carried out on a gas–liquid two-phase 
flow test rig by using air and water as the working fluids at 
ambient temperature and atmospheric pressure, as shown in 
Fig.2. The compressed air and the pumped water were first 
pressed into a surge tank to make smooth before their flow 
rates were measured. The air and water mixed well through 
a static  mixer, then entered into the test section horizontally,  

and finally recirculated to the water pool. In the test section, 
a prismatic bluff body perpendicular to the fluid flow 
direction was mounted in a circular pipe to generate vortex 
shedding. The inner diameter D of the circular pipe was 50 
mm. The cross section of the bluff body was actually a 
truncated isosceles triangle with the width w of 14 mm, so 
the blockage ratio of the test section was b = w/D = 0.28. As 
accepted by most commercial vortex flowmeters to reduce 
unwanted fluid noises, this blockage ratio is one of the best 
choices for flow pattern identification.  
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Fig.3.  Raw vortex-induced pressure fluctuations in various flow patterns:  (a) bubble flow (qmT = 7.92 t·h–1, β = 0.159);   (b) plug flow 
(qmT = 7.78 t·h–1, β = 0.685); (c) slug flow (qmT = 7.29 t·h–1, β = 0.813); (d) annular flow (qmT = 2.14 t·h–1, β = 0.983). 
 

Herein the vortex-induced pressure fluctuation signals 
were detected by the Duct-wall Differential Pressure 
Method (DDPM) [21]–[24] using a dynamic piezoresistive 
sensor. The two pressure tappings were located 1.0D 
upstream and 0.2D downstream of the bluff body. The 
fluctuating differential pressure signals were acquired by a 
fast response digital oscilloscope. A sampling rate of 1 kHz 
was set throughout the experiments with a 10 s holding time 
to obtain all embedded flow information [11]. Thus, each 
data set contained 104 points. 

The upstream and downstream straight pipes connecting 
the bluff body were 70D and 50D long, which ensured that 
each flow pattern was fully developed in the test section. 
The flow pattern was recorded manually via a section of a 
transparent pipe that was installed in front of the bluff body. 
During the experiments the volumetric flow rates qvG and 
qvL of air and water were 0.1–130 m3·h–1 with 1.0% 
accuracy and 0.5–19 m3·h–1 with 0.5% accuracy. The 
pressure and temperature of air and water were also 
measured to calculate their densities, so the mass flow rates 
were obtained by multiplying the volumetric flow rates with 
their corresponding densities. The total mass flow rate qmT 
of the gas–liquid two-phase mixture was 0.648–18.278 t·h–1, 
and the volumetric void fraction β in the test section was 
0.017–0.997. 

 

The bubble, plug, slug, and annular flows were observed 
continually in the experiments. Typical raw vortex-induced 
pressure fluctuation signals of each flow pattern are shown 
in Fig.3. It indicates that regular vortex shedding may still 
occur in the bubble flow, but chaotic oscillations dominate 
the pressure fluctuations in the other three flow patterns. 
The differences in these signals provide the feasibility to 
realize gas–liquid flow pattern recognition; however, it is 
hard to discern the flow patterns directly from the original 
signals. So advanced methods for processing and analyzing 
the pressure fluctuations are needed. 
 

4.  RECOGNITION OF THE GAS–LIQUID FLOW PATTERNS 
The pressure fluctuation signals were decomposed by the 

four-level wavelet packet. Since it has been used frequently 
in multiphase flow analysis to decompose time series [25], 
the four-scale Daubechies base wavelet (db4) was employed 
in the decomposition. Sixteen wavelet packet coefficients ci 
were obtained as a result. Fig.4. gives the first three and the 
last three wavelet packet coefficients of each flow pattern. 
The sampling frequency 1 kHz is employed throughout the 
experiments, so the highest frequency that can be acquired 
from the pressure fluctuation signals is 500 Hz according to 
the Shannon’s theorem. Table 1. provides the frequency 
band of each wavelet packet coefficient.  
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Fig.4.  Partial wavelet packet decomposition results of the vortex-induced pressure fluctuations: (a) bubble flow (qmT = 7.92 t·h–1, β = 
0.159); (b) plug flow (qmT = 7.78 t·h–1, β = 0.685); (c) slug flow (qmT = 7.29 t·h–1, β = 0.813); (d) annular flow (qmT = 2.14 t·h–1, β = 
0.983). 

 
Table 1.  Frequency band of the wavelet packet coefficients. 

Coefficient Frequency 
band/Hz Coefficient Frequency 

band/Hz 
c1 0.00–31.25 c9 250.00–281.25 
c2 31.25–62.50 c10 281.25–312.50 
c3 62.50–93.75 c11 312.50–343.75 
c4 93.75–125.00 c12 343.74–375.00 
c5 125.00–156.25 c13 375.00–406.25 
c6 156.25–187.50 c14 406.25–437.50 
c7 187.50–218.75 c15 437.50–468.75 
c8 218.75–250.00 c16 468.75–500.00 

Table 2.  Number of flow patterns. 

Flow pattern Total data Construction data Test data 
Bubble 112 95 17 
Plug 49 42 7 
Slug 120 102 18 
Annular 49 42 7 
Total 330 281 49 

 
To construct a flow-pattern map, it is necessary to define 

an advisable coordinate system that can distinguish various 
flow patterns fairly. Each wavelet packet coefficient is the 
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component of gas–liquid wake fluctuation within a certain 
band of frequency, so we adopted the wavelet packet energy 
entropy S as the vertical coordinate of the flow-pattern map. 
For the horizontal coordinate, we tried to use several flow 
variables such as the total mass flow rate, the volumetric 
void fraction, the average density, and the Reynolds number. 
We find that the total mass flow rate qmT is a candidate 
horizontal coordinate according to the S distribution of each 
flow pattern on the map. The total mass flow rate is 
comparatively easy to obtain in most cases and remains 
invariant in the experimental loop, so it is of benefit to the 
flow pattern identification. 
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Fig.5.  Construction process of the wavelet packet energy entropy 
based flow-pattern map. 

A total of 330 groups of the pressure fluctuation data were 

acquired during the experiments. The number of each flow 
pattern recorded is listed in Table 2. Following the common 
practice of pattern recognition, about 85% of the total data is 
selected to construct the flow-pattern maps, which is called 
the construction data. The remainder of the data is used as 
the test data for verifying the flow-pattern map. 

The construction process of the S–qmT flow-pattern map, 
as illustrated in Fig.5., consists of three steps. First of all, the 
construction data are plotted on a plane with the coordinate 
system of S versus qmT. The distribution of S in different 
flow patterns differs with qmT, and these differences provide 
the rational basis for the discerning of these flow patterns. 
Second, the zone of each flow pattern is established on the 
coordinated plane with the construction data. The criterion 
to delineate the boundaries is that the mid-separate lines are 
used as far as possible to discern each flow pattern region 
including both the overlapping and the transitional zones. 
Third, the construction data are removed, but the boundaries 
are reserved after the delineation of all the boundaries. Each 
region on the plane is then tagged with the name of the flow 
pattern, and the flow-pattern map takes form eventually as 
Fig.5c. 

The test data are plotted on the flow-pattern map devised 
to examine its validity. It is assumed that, if a point of the 
test data locates wholly on the region of another flow 
pattern, it is deemed to be a wrong identification; if a test 
data point happens to fall on the boundaries, it is regarded as 
half wrong identification. With this convention, the 
identification rate of the S–qmT map is obtained. The overall 
identification rate of the map developed is 92.86%. Two 
points of the test data, from the bubble and the slug flows, 
respectively, fall in the region of the plug flow, one point 
from the plug flow falls in the region of the bubble flow and 
another one lies on the boundary, and the other test data are 
identified successfully. 

The above results confirm the suitability of adopting the 
wavelet packet energy entropy as a rational indicator of the 
gas–liquid flow pattern. Simultaneously, it reveals that only 
the neighboring flow patterns are confused on the map. In 
view of the nature of the complex interaction between phase 
interfaces, concurrence of multiple flow patterns may exist 
on the boundary of the near-transition conditions. 
 

5.  CONCLUSIONS 
The gas–liquid flow pattern recognition is achieved by a 

novel flow-pattern map based on the wavelet packet energy 
entropy of vortex-induced pressure fluctuation generated by 
a triangular bluff body perpendicular to the flow direction. 
Experiments with air and water are conducted at ambient 
temperature and atmospheric pressure in a 50-mm-diameter 
horizontal pipe. The pressure fluctuations are recorded in the 
bubble, plug, slug, and annular flows. The results show that 
the overall identification rate of the proposed map is 
92.86%, and only the neighboring flow patterns are mixed 
up on the map.  

In view of the common occurrence and easy acquisition of 
pressure fluctuation, this approach is appealing. Moreover, 
the total mass flow rate is relatively convenient to obtain in 
most cases and remains invariant throughout the test system. 
In this regard, the proposed approach is simple, practical and 
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robust for engineering applications. However, subjectivity is 
unavoidable in the delineation of the boundaries between the 
observed flow patterns. More experimental tests are needed 
to further increase the identification rate and applicability of 
the flow-pattern map proposed. 
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