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1. Introduction

The applications of data analysis based on the statistical
linear mixed model, as a natural generalization of the

analysis of variance methods and the ANOVA models, (see
e.g. [44], [15], [36]), are widespread. Such applications with
analytical methods based on linear mixed models include dif-
ferent fields of the biomedical and technical research, (see
[56] and/or [11]). For illustration, here we shall mention just
few of them: e.g. genetics with its microarray experiments,
[7], [8], [9], [74], the plant and animal breeding in agricul-
tural, [5], statistical meta-analysis in medical research, [18],
neurophysiology, [51], as well as different technical applica-
tions, like e.g. calibration of devices, derivation of the toler-
ance intervals for industrial applications, interlaboratory com-
parisons in metrology, and methods for expression the uncer-
tainties in measurements, see e.g. [6], [14], [24], [31], [48],
[55], [62], [63], [64], [69], [70], [71], [72], and [73].

Although the linear mixed models and the methods for sta-
tistical inference based on such models have been recognized
and used for long time by the researchers in different fields,
it seems that some sort of misunderstanding of the principles
and/or the technical details (of the used methods for statisti-
cal inference based on such linear mixed models) may lead to
improper usage of the implemented methods and algorithms.
Moreover, there are still some further open theoretical prob-
lems (like e.g. methods for testing and constructing confi-
dence intervals/regions about the variance components, see
e.g. [2], [3], [4], [52], [57], [58], [59], [61], [65], [66], [67]).

So, the main goal of the paper is to present a brief overview
of the standard (conventionally used) methods for making sta-
tistical inference (in particular the methods for testing statis-
tical hypotheses and the methods for construction of the con-
fidence and/or prediction intervals/regions) about linear func-
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tions of the fixed effects and/or about the fixed and random
effects simultaneously, in conventional simple linear mixed
model, (with pointing to potential problems which may ap-
pear based on usage of these methods), and to present some of
the recently developed improvements, as well as some gener-
alizations, together with relatively detailed technical descrip-
tion of the model and the methods. The presented approach
is based on the elements of the solution of the Henderson’s
mixed model equations.

2. Henderson’s mixed model equations

We consider the linear mixed model (LMM) in the follow-
ing form

y= Xb+Zu+e, (1)

with y being ann-dimensional vector of observations,b being
the p-vector of fixed effects,u being ther-vector of random
effects withE(u) = 0 andVar(u) =G, andebeing then-vector
of random (measurement) errors withE(e)= 0 andVar(e)=R,
whereR is assumed to be strictly positive definite variance-
covariance matrix ofe. The (n× p)-matrix X and the (n× r)-
matrix Z are the known design matrices. Typically, we can
write Zu=

∑s
i=1Ziui , where the (n× r i) matricesZi and ther i-

dimensional random effectsui , i = 1, . . . , s, could be specified
from the structure of the model.

The main goal of this paper is to present an overview of
the methods for making statistical inference about linear func-
tions of the fixed effectsb and the random effectsu, i.e. about
K′b and/or aboutw = Λ′(b′,u′)′ = K′b+ L′u for given (suit-
able) coefficient matricesΛ, resp.K andL.

Henderson in [23] developed a set of equations, termed
as the mixed model equations (MMEs), that simultaneously
yield the best linear unbiased estimator (BLUE) ofXb (or any
vector of estimable linear functionsK′b) and the best linear
unbiased predictor (BLUP) ofu (or any vectorw= K′b+L′u,
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providedK′b is estimable), under the assumption that the co-
variance structure is known.

The MMEs were derived based on the normality assump-
tions, i.e.u ∼ N(0,G), e ∼ N(0,R), with Cov(u,e) = 0, for
known variance-covariance matricesG and R. Thus, the
joint probability density function (pdf) of the random vector
(y′,u′)′ is given as

f (y,u) = f (y|u) f (u)
1

(2π)n/2|R|1/2
exp

{
−

1
2

(y−Xb−Zu)′R−1(y−Xb−Zu)

}

×
1

(2π)r/2|G|1/2
exp

{
−

1
2

u′G−1u

}
. (2)

By solving the ML equations forb andu, i.e.

∂ f (y,u)
∂b

= 0,
∂ f (y,u)
∂u

= 0 (3)

we get the MMEs in the following form
(

X′R−1X X′R−1Z
Z′R−1X Z′R−1Z+G−1

)(
b̃
ũ

)
=

(
X′R−1y
Z′R−1y

)
. (4)

The left-hand side matrix of (4) will be termed as the Hender-
son’s MME matrix, here denoted byH, i.e.

H = (X,Z)′R−1(X,Z)+ (0, Ir )
′G−1(0, Ir ), (5)

where by 0 we denote a zero matrix with suitable dimensions,
here (r × p). Alternatively,

(
X′R−1X X′R−1ZG
Z′R−1X W−1

)(
b̃
ṽ

)
=

(
X′R−1y
Z′R−1y

)
. (6)

whereW = (I +Z′R−1ZG)−1. Notice, that based on (6), there
is no need to restrict the variance-covariance matrixG to be
strictly positive definite. This version of MMEs is preferred
for numerical evaluations, ifG can be a bad conditioned ma-
trix.

Given the variance-covariance matricesG andR, let us de-
note asC the following matrix of coefficients

C =

(
C11 C12

C21 C22

)

=

(
X′R−1X X′R−1Z
Z′R−1X Z′R−1Z+G−1

)−

=

(
Ip 0
0 G

)(
X′R−1X X′R−1ZG
Z′R−1X W−1

)−
, (7)

where byA− we denote anyg-inverse of the matrixA.
Let b̃ andũ be any solution to the MMEs (4). Notice that

based oñb andṽ, the solutions from (6), we can reconstruct ˜u
by ũ =Gṽ. Then the BLUE of the vector of linear estimable
functions of the fixed effectsK′b, see e.g. [49], is

BLUE(K′b) = K′
(
X′V−1X

)−
X′V−1y= K′b̃, (8)

whereK′ is a (q× p)-matrix of coefficients of the estimable
linear functionK′b, i.e. K = X′A for some matrixA, andV =

Z′GZ+R. The BLUP of the vector of linear functions of the
fixed and random effects, sayK′b+L′u, is

BLUP(K′b+L′u) = BLUE(K′b)
+L′GZ′V−1(y−BLUE(Xb)),

= K′b̃+L′ũ, (9)

where L′ is an arbitrary (q× r)-matrix of coefficients, and
BLUE(Xb) = Xb̃.

Important properties of the solutions of the MMEs are sum-
marized bellow, for more details see e.g. [38]:

1. In the class of linear unbiased predictors, BLUP maxi-
mizes the correlation betweenu andũ.

2. K′b̃ is BLUE of the set of estimable linear functionsK′b.

3. E(u| ũ) = ũ.

4. ũ is unique.

5. K′b̃+ L′ũ is BLUP of K′b+ L′u provided thatK′b is es-
timable.

6. Var
(
K′b̃

)
= K′C11K.

7. Var
(
K′b̃+L′ũ

)
= K′C11K +L′(G−C22)L.

8. Var
((

K′b̃+L′ũ
)
− (K′b+L′u)

)
= (K′,L′)C(K′,L′)′.

9. Cov
(
K′b̃, ũ′

)
= 0.

10. Cov
(
K′b̃,u′

)
= −K′C12.

11. Cov
(
K′b̃,u′− ũ′

)
= −K′C12.

12. Var(ũ) = Cov(ũ,u′) =G−C22.

13. Var(ũ−u) =C22.

In this paper we shall consider only a special form of the
model (1) — a conventional simple LMM with normally dis-
tributed errors and random effects. That is, we shall assume
mutually uncorrelated (independent) normally distributed ran-
dom effects u1, . . . ,us and e with E(ui) = 0 for i = 1, . . . , r,
E(e) = 0, Cov(ui ,u j) = 0 for i , j, and Cov(ui ,e) = 0 for
all i = 1, . . . , s. Further, we shall assumeVar(ui) = σ2

i Ir i ,
i = 1, . . . , s, with r =

∑s
i=1 r i , andVar(e) = σ2

s+1In. Hence,

E(y) = Xb, andVar(y) =
s∑

i=1

σ2
i ZiZ

′
i +σ

2
s+1In, (10)

with σ2 =
(
σ2

1, . . . ,σ
2
s,σ

2
s+1

)′
being the vector of variance

components with the parameter space specified byσ2
i ≥ 0 for

i = 1, . . . , s, andσ2
s+1 > 0. However, in order to avoid possible

technical and numerical problems, it is reasonable to assume
that the true parameterσ2 =

(
σ2

1, . . . ,σ
2
s,σ

2
s+1

)′
is in the inte-

rior of this parameter space. So, here we shall assume that
σ2

i > 0 for i = 1, . . . , s+1,
In other words, we shall assumey ∼ N(Xb,V), with V =

Var(y) = ZGZ′ +R, whereG is (r × r) diagonal matrix,G =
Var(u) = diag(σ2

i Ir i ), and R is (n× n) diagonal matrix,R=
Var(e) = σ2

s+1In, with σ2
i > 0 for i = 1, . . . , s+1.
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If the variance componentsσ2 =
(
σ2

1, . . . ,σ
2
s,σ

2
s+1

)′
are un-

known, they can be (and in general must be) estimated from
the observed data by any reasonably effective and computa-
tionally efficient method, like e.g. by the methods based on
moments (the minimum variance (norm) quadratic estima-
tion) or the methods based on likelihood function (ML or
REML).

There are several efficient implementations for estimation
of the variance components in general LMMs. One method
used to fit such LMMs is the expectation-maximization (EM)
algorithm, see [34], where the variance components are
treated as unobserved nuisance parameters in the joint likeli-
hood. Currently, such methods are implemented in the major
statistical software packages SAS (Proc MIXED) andR (lme
in thenlme library). In particular, Proc MIXED uses a ridge-
stabilized Newton-Raphson algorithm to optimize either a full
(ML) or residual (REML) likelihood function, see also [45],
[35], [60], and [40].

However, here we present a relatively simple method,
based on repeated iterative solving of the MMEs, suggested
by Searle, Casella and McCulloch in [49]. The elements of
MMEs are used for setting up iterative procedures for simulta-
neous estimation of the variance componentsσ2

1, . . . ,σ
2
s,σ

2
s+1

and the empirical versions of the BLUE ofb and the BLUP of
u, in the simple LMM (10).

The algorithm provides solution to the maximum likeli-
hood (ML) or the restricted maximum likelihood (REML)
equations for estimating variance components, see e.g. [17],
[39], [19], [32], and [49]. The algorithm can be also used for
estimation of the related Fisher information matrices for ML
and/or REML estimators of the variance components (i.e. the
inverse of the asymptotic variance-covariance matrix of the
ML /REML estimators). Moreover, it can be also used for
computing the minimum norm quadratic estimates MINQE(I)
(realizations of the invariant minimum norm quadratic estima-
tors) or the MINQE(U,I) (invariant and unbiased minimum
norm quadratic estimators) of the variance components, for
more details see e.g. [33], [42], and [43].

The final solutions of such iterative procedure will be de-
noted byb̂, û = (û′1, . . . , û

′
s)
′, andσ̂2 = (σ̂2

1, . . . , σ̂
2
s+1)′. Simi-

larly, we shall use the adequate notationĜ, R̂, andĈ for the
estimated versions of matricesG, R, andC. The solutionŝb
andû satisfy the MMEs (4) if the unknown matricesG andR
are replaced by the estimated versionsĜ andR̂. Finally, based
on σ̂2, the important output of the algorithm is the estimated
Fisher information matrix, sayIML(σ̂2) or IREML(σ̂2), respec-
tively. Consequently, it provides the estimated asymptotic
variance-covariance matrix of the estimated variance compo-

nentsσ̂2, sayΣ̂ =
(
IML(σ̂2)

)−1
or Σ̂ =

(
IREML(σ̂2)

)−1
, provided

that the inverses do exist. For detailed description of the algo-
rithm see SectionB.

3. Standard methods for statistical inference on fixed and
random effects

Here we consider the problem of making statistical infer-
ence aboutq linear functions of the fixed effectsb and the
random effectsu, i.e. aboutΛ′ (b′,u′)′ = K′b+ L′u whereΛ
is ((p+ r)×q)-dimensional full-ranked matrix with estimable
K′b (i.e. K = X′A for some matrixA).

Let b̃ and ũ are the solutions of the MMEs (4), so w̃ =
Λ′

(
b̃′, ũ′

)′
= K′b̃+ L′ũ is the best linear unbiased predictor

(BLUP) of w= K′b+L′u. Then, according to the properties 6
and 8 of Section2, the variance ofK′b̃ and the mean squared
error (MSE) ofw̃ are given by

Var(K′b̃) = K′C11K, (11)

and

MSE(w̃) = E
(
(w̃−w) (w̃−w)′

)

= Var(w̃−w) = Λ′CΛ = Mw̃. (12)

Notice that the MSE matrix of ˜w, Mw̃, functionally depends
on the variance componentsσ2 =

(
σ2

1, . . . ,σ
2
s,σ

2
s+1

)′
.

If the variance componentsσ2 =
(
σ2

1, . . . ,σ
2
s,σ

2
s+1

)′
are

known, based on the model assumptions and from (11) and
(12), we trivially get the pivot, Wald-type statistic, useful for
making statistical inference aboutK′b (e.g. testing a null hy-
pothesisH0 : K′b= K′b0 for someb0) and/or about the vari-
ablew= K′b+L′u with their exact (null) distribution:

Q=
(
K′b̃−K′b0

)′ (
K′C11K

)−1
(
K′b̃−K′b0

)
∼ χ2

q, (13)

and
Q= (w̃−w)′

(
Λ′CΛ

)−1 (w̃−w) ∼ χ2
q, (14)

where χ2
q denotes the chi-squared distribution withq =

rank(K′) = rank(Λ′) degrees of freedom.
If the variance components are unknown and the estimated

valuesσ̂2 =
(
σ̂2

1, . . . , σ̂
2
s+1

)′
are available together witĥC, a

commonly used test statistic for fixed effects hypothesisH0 :
K′b= K′b0, is based onK′b̂ andĈ11:

F =
1
q

(
K′b̂−K′b0

)′ (
K′Ĉ11K

)−1 (
K′b̂−K′b0

)
, (15)

where K′b̂ denotes the empirical version of the best linear
unbiased estimatorK′b̃ of K′b (i.e. version with the esti-
mated variance-covariance components). Notice thatC11 =(
X′V−1X

)−
, see e.g. [49] (Eqn. (55) p. 276), and consequently

Ĉ11=
(
X′V̂−1X

)−
, whereV̂ = ZĜZ′+ R̂.

As a generalization, for making simultaneous statistical in-
ference on the fixed as well as the random effects, i.e. on
w = Λ′ (b′,u′)′ (e.g. construction of the prediction region)
based on the empirical BLUP (EBLUP), i.e. the predictor
ŵ = Λ′

(
b̂′, û′

)′
(where b̂ and û are solutions of the MMEs

with estimated̂RandĜ), it is natural to consider the following
statistic

F =
1
q

(ŵ−w)′
(
Λ′ĈΛ

)−1
(ŵ−w) , (16)
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whereq is rank of the matrixΛ′.
As a special case, ifw is a one-dimensional function given

by w= λ′ (b′,u′)′ = k′b+ l′u, in analogy with (15) and (16), it
is natural to consider the pivot statistic

t =
k′b̂−k′b0√

k′Ĉ11k
, (17)

and/or its generalization

t =
ŵ−w√
λ′Ĉλ

, (18)

whereŵ= λ′
(
b̂′, û′

)′
is the EBLUP ofw.

The (null) distribution of the statistics (17) and (18) is com-
monly approximated by the Student’st-distribution withν de-
grees of freedom (DF), estimated by applying the Satterth-
waite’s approximation. The (null) distribution of the statis-
tics (15) and (16) is commonly approximated by the Fisher-
Snedecor’sF-distribution withν1 andν2 degrees of freedom,
where ν1 = q and ν2, the denominator degrees of freedom
(DDF), whereν2 is typically estimated by a generalization of
the Satterthwaite’s method, as suggested e.g. by Fai and Cor-
nelius in [13], or alternatively, by applying moment based ap-
proximation for theF-distribution. The explicit expressions
for DF and DDF estimators of (17), (18), (15) and (16) are
given in Sections3.1and3.2.

3.1. DF estimated by the Satterthwaite’s method

Giesbrecht and Burns in [16], (see also [37], [12], and
[50]), suggested to approximate the null distribution of the
pivotal quantity (17) by the Student’st-distribution withν̂ de-
grees of freedom (DF), where ˆν is the Satterthwaite’s approx-
imation1 of the (unknown)ν, see [46], [47], i.e.

t =
k′b̂−k′b0√

k′Ĉ11k
∼ tν̂k , (19)

with

ν̂k =
2
(
k′Ĉ11k

)2

V̂ar
(
k′Ĉ11k

) ≡
2
(
k′Ĉ11k

)2

ĝ′kΣ̂ĝk
, (20)

where V̂ar
(
k′Ĉ11k

)
denotes the estimated value of

Var
(
k′Ĉ11k

)
.

The suggested estimator of̂Var
(
k′Ĉ11k

)
≡ ĝ′kΣ̂ĝk is based

on the estimated version of the Taylor series expansion of
the variance of the estimatork′b̃ (BLUE), i.e. Var

(
k′b̃

)
=

1The Satterthwaite’s approximation of the distribution ofk′Ĉ11k is based
on assumption thatν

(
k′Ĉ11k

)
/σ2 ∼ χ2

ν for some parametersσ2 andν. By
comparing the first and the second moments of both random variables we get
E
(
ν
(
k′Ĉ11k

)
/σ2

)
= ν andVar

(
ν
(
k′Ĉ11k

)
/σ2

)
= 2ν. From that we directly

getσ2 = E
(
k′Ĉ11k

)
andν = 2

(
E
(
k′Ĉ11k

))2
/Var

(
k′Ĉ11k

)
. As E

(
k′Ĉ11k

)
and

Var
(
k′Ĉ11k

)
depend on unknown parameters they should be estimated. So,

we get the natural estimator as ˆν = 2
(
k′Ĉ11k

)
/V̂ar

(
k′Ĉ11k

)
.

k′C11k, with respect to the variance componentsσ2 =

(σ2
1, . . . ,σ

2
s,σ

2
s+1). Here, Σ̂ is the estimated (asymptotic)

variance-covariance matrix of the estimators (e.g. REML es-
timators) of the variance componentsσ2, and ĝk is the esti-
mated version (evaluated at the estimated values of the vari-
ance components ˆσ2) of the gradientgk of k′C11k, with re-
spect to the variance componentsσ2, i.e.

gk =



∂(k′C11k)
∂σ2

1
...

∂(k′C11k)
∂σ2

s
∂(k′C11k)
∂σ2

s+1



. (21)

As a generalization of the approach by Giesbrecht and
Burns, it is natural to consider similar approximation for the
distribution of the pivotal quantity (18), i.e.

t =
ŵ−w√
λ′Ĉλ

∼ tν̂λ , (22)

with

ν̂λ =
2
(
λ′Ĉλ

)2

V̂ar(λ′Ĉλ)
≡

2
(
λ′Ĉλ

)2

ĝ′
λ
Σ̂ĝλ

, (23)

where ĝλ is the estimated version of the gradientgλ of
MSE(w̃) = λ′Cλ with respect to the variance componentsσ2,
defined by

gλ =



∂(λ′Cλ)
∂σ2

1
...

∂(λ′Cλ)
∂σ2

s
∂(λ′Cλ)
∂σ2

s+1



. (24)

For more details on computing gradients of theMSE(w̃) see
SectionA.

Provided that the estimated matrix̂C is available, e.g. as
an output of the algorithm for estimating the variance compo-
nents, the estimators ˆgk andĝλ of the gradients (21) and (24)
could be evaluated, by using the elements of the estimated
matrix Ĉ (instead ofC).

For that, let us definêλ = Ĉλ and letλ̂ be decomposed into
its subvectors such thatλ̂ = (λ̂′0, λ̂

′
1, . . . , λ̂

′
s)
′, whereλ̂0 is p-

dimensional subvector, and̂λi , i = 1, . . . , s, arer i-dimensional
subvectors of̂λ. Then, by using (78) from SectionA.3, we get

ĝλ =



1(
σ̂2

1

)2 λ̂
′
1λ̂1

...
1(
σ̂2

s

)2 λ̂
′
sλ̂s

1(
σ̂2

s+1

)2 λ̂
′H0λ̂



, (25)

whereH0 is given by

H0 = (X,Z)′(X,Z) =

(
X′X X′Z
Z′X Z′Z

)
. (26)

237



MEASUREMENT SCIENCE REVIEW, Volume 12, No. 6, 2012

Consequently, ask′b is a special case ofλ′ (b′,u′)′ = k′b+
l′u with λ = λ(k) =

(
k′,0′r

)′, so we can use (25) also for evalu-
ation ofĝk by replacingλ̂ with λ̂(k) = Ĉλ(k).

3.2. DDF estimated by the Fai-Cornelius method

Fai and Cornelius in [13] proposed a generalization of the
Satterthwaite’s method for multivariate linear functionsof the
fixed and random effects to approximate the (null) distribution
of the statistic (15) by the Fisher-SnedecorF-distribution with
ν1 = q andν2 = ν̂, i.e. with the estimated denominator degrees
of freedom (DDF).

As a straightforward generalization of the Fai-Cornelius
approach, it is natural to approximate the distribution of
the F-statistic (16), based on the multivariate functionw =
Λ′ (b′,u′)′ = K′b+ L′u and its empirical predictor ˆw = K′b̂+
L′û, by the Fisher-SnedecorF-distribution with ν1 = q and
ν2 = ν̂ degrees of freedom, where where

ν̂ =
2Ê

Ê−q
, (27)

with

Ê =
q∑

i=1

ν̂i

ν̂i −2
1{ν̂i>2} . (28)

Here,1{·} denotes the indicator function and ˆνi , for i = 1, . . . ,q,
are the degrees of freedom, estimated by the Satterthwaite’s
method (23), of thet-statistics (18) for ŵi = λ̂

′
i

(
b̂′, û′

)′
, where

λ̂i , i = 1, . . . ,q, are the columns of the matrix̂ΛFC given by

Λ̂FC = ΛÛ, (29)

andÛ denotes the unitary matrix of a spectral decomposition
of a matrixΛ′ĈΛ, i.e. such matrix that̂U′Λ′ĈΛÛ = Ŝ, where
Ŝ is a diagonal matrix.

4. Statistical inference on fixed and random effects based
on adjusted estimator of theMSEmatrix of the

EBLUP

As argued by Harville in [22], usage of the MSE matrix of
the BLUPw̃, sayMw̃, (or its estimated version, saŷMw̃), in-
stead of the correct MSE matrix of the EBLUP ˆw, sayMŵ, (or
its estimated version, saŷMŵ), is inadequate, as the estimator
M̂w̃ = Λ

′ĈΛ can severely underestimate the true MSE of the
EBLUP ŵ. As will be explained bellow, there are two main
sources of such bias. For a comprehensive discussion on the
problem and proposed solutions see also [27], [28], [20], [25],
[41], [21], [26], [50], [53], [54], [10], [29], [30], and [1].

4.1. Decomposition of the EBLUP prediction error and its
MSE

The first source of the bias can be observed if we decom-
pose the prediction error of the EBLUP ˆw. In particular,

(ŵ−w) = (w̃−w)+ (ŵ− w̃) , (30)

and consequently, based on unbiasedness of EBLUP and its
independence on BLUP, see [27], [28], [20], and [21], we get
the MSE matrix ofŵ in the form

Mŵ = Mw̃+Mδŵ, (31)

where Mδŵ = E
(
(ŵ− w̃) (ŵ− w̃)′

)
= Var(ŵ− w̃), and thus,

Mŵ ≥ Mw̃.
The MSE of the first component of the prediction error,

Mw̃, is given by (12). The MSE of the second component of
the prediction error,Mδŵ, is not expressible in closed form,
except for very simple special cases. Kackar and Harville in
[28], see also [29] and [30], suggested approximation ofMδŵ
based on first-order Taylor series approximation. In particular,
a Taylor series expansion for ˆw−w̃ in σ̂2 =

(
σ̂2

1, . . . , σ̂
2
s, σ̂

2
s+1

)′
,

as e.g. REML, aboutσ2 =
(
σ2

1, . . . ,σ
2
s,σ

2
s+1

)′
, gives approxi-

mation

(ŵ− w̃) ≈ (w̃− w̃)+
s+1∑

i=1

∂w̃

∂σ2
i

(
σ̂2

i −σ
2
i

)

+
1
2

s+1∑

i=1

s+1∑

j=1

∂2w̃

∂σ2
i σ

2
j

(
σ̂2

i −σ
2
i

) (
σ̂2

j −σ
2
j

)
.(32)

Then taking expectation of the square of the first-order term,
and using the results in [28] and [21], we get the first-order
approximationṀδŵ of Mδŵ as

Ṁδŵ = E

(
∂w̃

∂σ2′
Σ
∂w̃′

∂σ2

)

=

s+1∑

i=1

s+1∑

j=1

Σi j E


∂w̃

∂σ2
i

∂w̃′

∂σ2
i



=

s+1∑

i=1

s+1∑

j=1

Σi j Cov


∂ (w̃−w)

∂σ2
i

,
∂ (w̃−w)

∂σ2
i

 , (33)

whereΣi j are elements of the variance-covariance matrixΣ of
the estimator ˆσ2.

For derivation of the approximation oḟMδŵ see Sec-
tion A.4. The second component of the EBLUP’s MSE matrix
Mδŵ in the simple LMM (10) can be approximated by

Ṁδŵ =
s+1∑

i=1

s+1∑

j=1

Σi jCi j . (34)

whereCi j , i, j = 1, . . . , s+1, are given by (87), or alternatively
by

Ṁδŵ = −
1
2

s+1∑

i=1

s+1∑

j=1

Σi j M
(i, j)
w̃ , (35)

where the matricesM(i, j)
w̃ are given by (79), (80), (81), and

(82).
Consequently, we get the approximatioṅMŵ of the

EBLUP’s MSE matrixMŵ in the form

Ṁŵ = Mw̃+ Ṁδŵ

238



MEASUREMENT SCIENCE REVIEW, Volume 12, No. 6, 2012

= Mw̃+

s+1∑

i=1

s+1∑

j=1

Σi jCi j

≡ Mw̃−
1
2

s+1∑

i=1

s+1∑

j=1

Σi j M
(i, j)
w̃ , (36)

whereΣi j are elements of the variance-covariance matrix of

the REML estimator ˆσ2, andM(i, j)
w̃ represent the second par-

tial derivatives of the BLUP’s MSE matrixMw̃ with respect
to the variance componentsσ2

i andσ2
j , i, j = 1, . . . , s+ 1, in

simple LMM (10).

4.2. Bias-corrected estimator of the EBLUP’s MSE matrix
Mŵ

As the EBLUP’s MSE matrixMŵ, as well as its approxima-
tion Ṁŵ (which is a function ofΣ), depend on the unknown
variance componentsσ2 =

(
σ2

1, . . . ,σ
2
s+1

)′
, for further appli-

cations it is necessary to use its estimator, saŷ̇Mŵ. A natural
option for such estimator would be

̂̇Mŵ = M̂w̃+
̂̇Mδŵ, (37)

i.e. by using (36), where the true (unknown) vector of variance
componentsσ2 is replaced by its estimator ˆσ2. Notice thatΣ,
the true variance-covariance matrix of the REML estimator
σ̂2 also depends onσ2. So, the estimator (37) functionally
depends on̂Σi j , the elements of estimated variance-covariance
matrix Σ̂.

Based on similar arguments as given by Alnosaier in [1]
for the special case of empirical BLUE of the fixed effects,

we can assume thaṫ̂Mδŵ is approximately unbiased estimator
of Mδŵ, for another formal justification see also [41] and [10].

However, as pointed out by Harville and Jeske in [21],
Prasad and Rao in [41], and in special case of fixed effects
estimator by Kenward and Roger in [29] and [30], additional
bias will appear if the estimator̂Mw̃ is used as an estimators
of the MSE matrixMw̃ in (37). In order to show that, let us
expandM̂w̃ in σ̂2 aboutσ2, and then take expectation of this
approximation, so

E
(
M̂w̃

)
≈ Mw̃+

s+1∑

i=1

E
(
σ̂2

i −σ
2
i

) ∂Mw̃

∂σ2
i

+
1
2

s+1∑

i=1

s+1∑

j=1

E
((
σ̂2

i −σ
2
i

) (
σ̂2

j −σ
2
j

)) ∂2Mw̃

∂σ2
i ∂σ

2
j

≈ Mw̃+
1
2

s+1∑

i=1

s+1∑

j=1

Σi j M
(i, j)
w̃

= Mw̃− Ṁδŵ, (38)

where we have assumed that the first-order term could be ig-
nored, andṀδŵ is given by (35). This could be informally
justified by the assumption that ˆσ2

i is approximately an un-
biased estimator ofσ2

i , as was suggested in [29]. However,
formal justification was provided by Alnosaier in [1] and by

Kenward and Roger in [30]. Kenward and Roger derived
Taylor series approximation for the bias of REML estima-
tor, i.e.E

(
σ̂2

i −σ
2
i

)
, and proved that in linear mixed models

with linear parametrization of the variance-covariance matrix
V = Z′GZ+R, like e.g. in simple LMM (10), its first-order
approximation is equal to zero.

Hence, by combining (37) and (38), we get the adjusted,
bias-corrected estimator of the EBLUP’s MSE matrixMŵ,
given by

̂̇Mŵ,A = M̂w̃+2̂̇Mδŵ. (39)

The explicit form of the estimator (39) in simple LMM (10)
is given by (92) in SectionA.5.

4.3. Generalization of the Kenward-Roger method for sta-
tistical inference on fixed and random effects based on
adjusted estimator of the MSE matrix of the EBLUP

For statistical inference about the vector of linear functions
of fixed effectsK′b based on its empirical BLUE, Kenward
and Roger suggested in [29] to use the Wald-type statistic as a
pivot, with adjusted covariance matrix of the empirical BLUE
of the functionK′b.

Here we suggest to consider a generalization of the
Kenward-Roger method for the inference about the vector of
functions of fixed and random effectsw = Λ′(b′,u′)′ (which
is useful for testing hypotheses about the fixed effects and for
constructing the prediction regions for functions of the fixed
and the random effects simultaneously), based on its EBLUP
and the adjusted MSE matrix. For that we shall consider the
Wald-type pivotF-statistic

F =
1
q

(ŵ−w)′
(
̂̇Mŵ,A

)−1
(ŵ−w) , (40)

where ̂̇Mŵ,A is given by (39), or (in its explicit form) by (92)
from SectionA.5, respectively.

In accordance with [29] and [1], we suggest to approximate
the (null) distribution of the scaled Wald-typeF-statistic (40)
by the Fisher-SnedecorF-distribution withq andν degrees of
freedom. In particular,

κF
approx.
∼ Fq,ν, (41)

where the unknown parametersκ andν should be estimated
from the data.

In analogy with derivation of the estimators presented by
Alnosaier in [1] for the fixed effects problem, here we suggest
the following estimators of the scaleκ and the denominator
degrees of freedomν:

κ̂ =
ν̂

Ê (ν̂−2)
,

ν̂ = 4+
2+q
q ˆ̺ −1

, (42)

where

ˆ̺ =
V̂

2Ê2
,
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Ê = 1+
Â2

q
,

V̂ =
2
q

(
1+ B̂

)
,

B̂ =
1
2q

(
Â1+6Â2

)
, (43)

and

Â1 =

s+1∑

i=1

s+1∑

j=1

Σ̂i j tr
(
M̂−1

w̃ M̂(i)
w̃

)
tr
(
M̂−1

w̃ M̂( j)
w̃

)
,

Â2 =

s+1∑

i=1

s+1∑

j=1

Σ̂i j tr
(
M̂−1

w̃ M̂(i)
w̃ M̂−1

w̃ M̂( j)
w̃

)
. (44)

By tr(A) we denote the trace of a matrixA, i.e. tr(A) =∑
i
∑

j Ai j , M̂w̃ = Λ
′ĈΛ denotes the estimated version ofMw̃,

andM̂(i)
w̃ , i = 1, . . . , s+1, denote the estimated versions of the

first partial derivatives ofMw̃, defined by (78). For more de-
tails and explicit forms of the estimatorŝA1 and Â2 see Sec-
tion A.6, (107) and (108).

In order to match the exact values for the scaleκ and the
denominator degrees of freedomν for testing hypothesis on
fixed effects in two special cases, in particular in the balanced
one-way ANOVA and the HotellingT2 models, Kenward and
Roger in [29] suggested the modified estimators ˆκ∗ and ν̂∗,
which can be analogically generalized and used to approxi-
mate the (null) distribution of the scaled Wald-typeF-statistic
(40)

κ̂∗ =
ν̂∗

Ê∗ (ν̂∗−2)
,

ν̂∗ = 4+
2+q

q ˆ̺∗−1
, (45)

where

ˆ̺∗ =
V̂∗

2Ê∗2
,

Ê∗ =

(
1−

Â2

q

)−1

,

V̂∗ =
2
q

(
1+c1B̂

(1−c2B̂)2(1−c3B̂)

)
, (46)

and

c1 =
g

3q+2(1−g)
,

c2 =
q−g

3q+2(1−g)
,

c3 =
q−g+2

3q+2(1−g)
,

g =
(q+1)Â1− (q+4)Â2

(q+2)Â2
, (47)

with B̂, Â1, Â2 given by (43) and (44). For more details see
Section 4 in [1].

5. Conclusions

Here we have presented a brief overview of the conven-
tionally used methods for making statistical inference about
linear functions of the fixed effects and/or about the fixed and
random effects simultaneously, in conventional simple linear
mixed model, by using the elements of the solution of the
Henderson’s mixed model equations. Further, we have also
presented some improvements, based on the adjusted MSE
matrix of the EBLUP, as well as a generalization of the stan-
dard Kenward-Roger method (suggested for making statisti-
cal inference about the fixed effects) for derivation of the ap-
proximate distribution of the Wald-type pivot statistic, sug-
gested for making statistical inference about the fixed and
random effects simultaneously. Notice that this method for
derivation of the approximate distribution of the Wald-type
pivot statistic is not unique. As pointed out by Alnosaier
in [1], there are several other alternative solutions available,
however, such modifications have not been considered here.

The presented (explicit) expressions are valid in the simple
LMM defined by (10). They are rather simple, and can be
readily implemented in practically any (statistical) software
environment. Based on the results presented in SectionA, it
is straightforward to get explicit expressions also for themore
general LMM with linear parametrization of the variance-
covariance matricesG andR, provided that the REML of vari-
ance components and its estimated variance-covariance ma-
trix is available. The situation with nonlinear parametrization
of the matricesG andR requires more specific approach.
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Appendix

A. Derivatives of theMSEmatrix with respect to the
variance components

Here we shall assume thatG−1, the inverse ofG = Var(u),
does exist, and thus we can use the MMEs as defined by
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(4). Although the subsequent derivation of the derivatives
of the matrixC is general, finally we shall consider only a
special case, based on the covariance structure of the simple
linear mixed model (10), with the variance-covariance ma-
trices of the following form:G = Var(u) = diag{σ2

i Ir i }, i =
1, . . . , s, andR= Var(e) = σ2

s+1In, soV = Var(y) = ZGZ′+R=∑s
i=1σ

2
i ZiZ′i +σ

2
s+1In.

Moreover, as we consider methods for statistical infer-
ence for estimable linear functionsw=Λ′(b′,u′)′ = K′b+L′u,
i.e. such thatK = X′A for some matrixA, further we shall as-
sume, without loss of generality, that the inverse of the MME
matrix H (the matrix on the left-hand side of the equation (4))
does exist, in particular we shall assume that the inverse of
X′R−1X does exist. Recall that

H = (X,Z)′R−1(X,Z)+ (0, Ir )
′G−1(0, Ir ), (48)

and so,
C = H−1 or H =C−1, (49)

Further, we shall denote

∆0 = (0, Ir )
′(0, Ir ), (50)

∆i =
(
0,

(
0, . . . , Ir i , . . . ,0

))′ (
0,

(
0, . . . , Ir i , . . . ,0

))

=

(
0 0
0 diagi{Ir i }

)
, (51)

∆s+1 = (X,Z)′(X,Z) = H0, (52)

for i = 1, . . . , s, where diagi{Ir i } is (r × r)-matrix with its i-th
diagonal block equal toIr i , otherwise with zero elements.

Further, for arbitrary matrixA we shall denote its partial
derivatives with respect to the components of a vector param-
eterθ = (θ1, . . . , θs+1)′ as

A(i) =
∂A
∂θi
, A(i, j) =

∂2A
∂θi∂θ j

, A(i, j,k) =
∂3A

∂θi∂θ j∂θk
, (53)

for i, j,k= 1, . . . , s+1.
Here we shall derive explicit expressions for derivatives of

the matrixC, i.e.C(i), C(i, j), andC(i, j,k), which depend on the
derivatives of the matricesG andR, i.e. onG(i), G(i, j), G(i, j,k),
andR(i), R(i, j), andR(i, j,k).

Recall that the derivative ofA−1, the inverse of a symmetric
matrix A, with respect to some scalar parameterθ, is given by

∂

∂θ
A−1 = −A−1∂A

∂θ
A−1, (54)

and the rule for computing the derivative of a symmetric ma-
trix ABAwith respect to some parameterθ is

∂

∂θ
ABA= AB

∂A
∂θ
+
∂A
∂θ

BA+A
∂B
∂θ

A. (55)

Let A be an inverse of a symmetric matrixB, i.e. A= B−1.
Then, based on (54) and (55), we define the following matrix
operators:

D(i) (A,B) = −AB(i)A, (56)

D(i, j) (A,B) = A
(
B(i)AB( j)+B( j)AB(i)−B(i, j)

)
A, (57)

D(i, j,k) (A,B) = −A
(
B(i)AB( j)+B( j)AB(i)−B(i, j)

)
AB(k)A

−AB(k)A
(
B(i)AB( j)+B( j)AB(i)−B(i, j)

)
A

+A
(
B(i)AB( j,k)+B(i,k)AB( j)+B( j)AB(i,k)+B( j,k)AB(i)−

−B(i)AB(k)AB( j)−B( j)AB(k)AB(i)A+B(i, j,k)
)
A. (58)

From that we directly get

C(i) = D(i) (C,H)
= −CH(i)C, (59)

C(i, j) = D(i, j) (C,H)
= C

(
H(i)CH( j)+H( j)CH(i)−H(i, j)

)
C, (60)

C(i, j,k) = D(i, j,k) (C,H) , (61)

for i, j,k= 1, . . . , s+1,
Further, based on (48), we directly get the derivatives of the

matrix H. For i, j,k= 1, . . . , s

H(i) = (0, Ir )
′G−1(i)(0, Ir ), (62)

H(s+1) = (X,Z)′R−1(s+1)(X,Z), (63)

H(i, j) = (0, Ir )
′G−1(i, j)(0, Ir ), (64)

H(s+1,s+1) = (X,Z)′R−1(s+1,s+1)(X,Z), (65)

H(i, j,k) = (0, Ir )
′G−1(i, j,k)(0, Ir ), (66)

H(s+1,s+1,s+1) = (X,Z)′R−1(s+1,s+1,s+1)(X,Z), (67)

where

G−1(i) = D(i)
(
G−1,G

)

G−1(i, j) = D(i, j)
(
G−1,G

)

G−1(i, j,k) = D(i, j,k)
(
G−1,G

)

R−1(s+1) = D(s+1)
(
R−1,R

)

R−1(s+1,s+1) = D(s+1,s+1)
(
R−1,R

)

R−1(s+1,s+1,s+1) = D(s+1,s+1,s+1)
(
R−1,R

)
. (68)

Notice that

H(i,s+1) = H(s+1, j) = 0, i, j , s+1 (69)

H(i, j,k) = 0, (70)

whenever one index is equal tos+ 1 and some of the other
indices is different from fors+1, for i, j,k= 1, . . . , s+1.

A.1. Derivatives of the MME matrixH in simple LMM

In the simple LMM (10), we get

H(i) = −
1

(
σ2

i

)2
∆i , (71)

H(i,i) =
2

(
σ2

i

)3
∆i , (72)

H(i,i,i) = −
6

(
σ2

i

)4
∆i , (73)

241



MEASUREMENT SCIENCE REVIEW, Volume 12, No. 6, 2012

for i = 1, . . . , s+1. Notice that

H(i, j) = 0, and H(i, j,k) = 0, (74)

for any combination of unequal indicesi, j,k= 1, . . . , s+1.

A.2. Derivatives of the MME matrixC in simple LMM

By combining (59), (60), (71), (72), and (74), in simple
LMM ( 10), we directly get

C(i) =
1

(
σ2

i

)2
C∆iC, (75)

C(i,i) =
2

(
σ2

i

)4
C

(
∆iC∆i −σ

2
i ∆i

)
C, (76)

C(i, j) =
1

(
σ2

i σ
2
j

)2
C

(
∆iC∆ j +∆ jC∆i

)
C, i , j, (77)

for i, j = 1, . . . , s+1.
The explicit expression forC(i, j,k), i.e. the third partial

derivative ofC for i, j,k = 1, . . . , s+ 1, is not presented here,
however, it can be similarly evaluated based on (61), (71),
(72), (73), and (74).

A.3. Derivatives of the MSE matrixMw̃ in simple LMM

Recall thatMw̃, the MSE matrix of the best linear unbiased
predictor ofw, is given byMw̃ = Λ

′CΛ, whereΛ is ((p+ r)×
q)-matrix of given coefficients.

Let Λ̃ be a solution of a system of linear equations
HΛ̃ = Λ, i.e. Λ̃ = CΛ, and letΛ̃ be decomposed into block-
matrices such that̃Λ = (Λ̃′0, Λ̃

′
1, . . . , Λ̃

′
s)
′, whereΛ̃0 is (p×q)-

dimensional block-matrix, and̃Λi , i = 1, . . . , s, are (r i × q)-
dimensional block-matrices of̃Λ. Similarly, let {C}i j denote
the (i, j)-th block2 of the matrixC, and let{C}i· denote thei-th
row-block and{C}·i the i-th column-block of the matrixC.

Then, based on the derivatives of the matrixC, we directly
get the first partial derivatives of the MSE matrixMw̃ with
respect to the variance componentsσ2

1, . . . ,σ
2
s,σ

2
s+1 as

M(i)
w̃ =

1
(
σ2

i

)2
Λ̃′∆iΛ̃ =

1
(
σ2

i

)2
Λ̃′i Λ̃i , i = 1, . . . , s,

M(s+1)
w̃ =

1
(
σ2

s+1

)2
Λ̃′∆s+1Λ̃, (78)

where the matrices∆i are defined by (51) and (52). The sec-
ond partial derivatives ofMw̃ are given by:

M(i,i)
w̃ =

2
(
σ2

i

)4
Λ̃′

(
∆iC∆i −σ

2
i ∆i

)
Λ̃

2Notice that fori, j = 1, . . . , s the block{C}i j = {C22}i j , i.e. it is the (i, j)-th
block of the matrixC22, which can be, based on (7), efficiently computed as

C22 = σ
2
s+1G

(
σ2

s+1Ir +MG
)−1

, whereM = Z′Z−Z′X(X′X)−X′Z.

=
2

(
σ2

i

)4

(
Λ̃′i {C}ii Λ̃i −σ

2
i Λ̃
′
i Λ̃i

)
, (79)

for i = 1, . . . , s, and in fori = s+1 we get

M(s+1,s+1)
w̃ =

2
(
σ2

s+1

)4
Λ̃′

(
∆s+1C∆s+1−σ

2
s+1∆s+1

)
Λ̃, (80)

Further,

M(i, j)
w̃ = M( j,i)

w̃

=
1

(
σ2

i σ
2
j

)2
Λ̃′

(
∆iC∆ j +∆ jC∆i

)
Λ̃

=
1

(
σ2

i σ
2
j

)2

(
Λ̃′i {C}i j Λ̃ j +Λ̃

′
j{C} ji Λ̃i

)
, (81)

for i , j, i, j = 1, . . . , s, and

M(i,s+1)
w̃ = M(s+1,i)

w̃

=
1

(
σ2

i σ
2
s+1

)2
Λ̃′ (∆iC∆s+1+∆s+1C∆i) Λ̃,

=
1

(
σ2

i σ
2
s+1

)2

(
Λ̃′i {C}i·∆s+1Λ̃

+ Λ̃′∆s+1{C}·iΛ̃i

)
, (82)

for i = 1, . . . , s.

A.4. Approximation of the second component of the
EBLUP’s MSE matrix in simple LMM

According to (33), let us defineṀδŵ by

Ṁδŵ =

s+1∑

i=1

s+1∑

j=1

Σi j Cov


∂ (w̃−w)

∂σ2
i

,
∂ (w̃−w)

∂σ2
i

 ,

=

s+1∑

i=1

s+1∑

j=1

Σi jCi j (83)

whereΣi j denote the elements of the variance-covariance ma-
trix Σ of σ̂2. Then, by using

w̃−w= Λ′C(X,Z)′R−1 (y−Xb)−Λ′(0, Ir )
′u, (84)

we get

∂ (w̃−w)

∂σ2
i

= −Λ′CH(i)C(X,Z)′R−1(y−Xb)

−Λ′C(X,Z)′R−1R(i)R−1(y−Xb). (85)

and then, by taking the covariances of the vectors withi, j =
1, . . . , s+1, we get,

Ci j = Λ
′C

(
H(i)C(X,Z)′R−1VR−1(X,Z)CH( j)

+ H(i)C(X,Z)′R−1VR−1R( j)R−1(X,Z)
+ (X,Z)′R−1R(i)R−1VR−1(X,Z)CH( j)

242



MEASUREMENT SCIENCE REVIEW, Volume 12, No. 6, 2012

+ C(X,Z)′R−1R(i)R−1VR−1R( j)R−1(X,Z)

)
CΛ,

(86)

whereV = ZGZ′+R.
Notice that in the simple LMM (10) we haveR(i) =R( j) = 0,

for i, j = 1, . . . , s, andR(s+1) = In. From that we getR−1R(s+1) =

R(s+1)R−1 = R−1 = 1
σ2

s+1
In, and

Ci, j =
1

(
σ2

i σ
2
j

)2
Λ′C

(
∆iCHVC∆ j

−1{i=s+1}σ
2
s+1HVC∆ j −1{ j=s+1}σ

2
s+1∆iCHV

+1{i= j=s+1}

(
σ2

s+1

)2
HV

)
CΛ, (87)

for i, j = 1, . . . , s+ 1, where 1{i=s+1}, 1{ j=s+1}, 1{i= j=s+1} are
the indicator functions, andHV = (X,Z)′R−1VR−1(X,Z) ful-
fills the property

CHVC =

(
C11 0
0 G−C22

)
. (88)

Hence, the approximation of the second component of the
EBLUP’s MSE matrix, i.e.Ṁδŵ, in simple LMM is

Ṁδŵ =
s+1∑

i=1

s+1∑

j=1

Σi jCi j . (89)

with Ci j , i, j = 1, . . . , s+1, given by (87).
By recognizing that in simple LMM (10) we haveM(i,i)

w̃ =

−2Ci,i andM(i, j)
w̃ =−

(
Ci, j +C j,i

)
, i, j = 1, . . . , s+1, see also [22]

eq. (4.6), we get the alternative expression for the approxima-
tion of the second component of the EBLUP’s MSE matrix in
simple LMM, given by

Ṁδŵ = −
1
2

s+1∑

i=1

s+1∑

j=1

Σi j M
(i, j)
w̃ , (90)

where the matricesM(i, j)
w̃ are given by (79), (80), (81), and

(82).

A.5. Bias-corrected estimator of the MSE matrix of EBLUP
in simple LMM

In simple LMM (10), the bias-corrected estimator of the
MSE matrix of the empirical BLUP ofw=Λ′(b′,u′)′, i.e.Mŵ,
is given (based on (39) and (90)), as

̂̇Mŵ,A = M̂w̃+2̂̇Mδŵ

= M̂w̃−


s+1∑

i=1

s+1∑

j=1

Σ̂i j M̂
(i, j)
w̃

 , (91)

and in particular, by usinĝMw̃ = Λ
′ĈΛ and (79), (80), (81),

and (82), we get

̂̇Mŵ,A = Λ
′Λ̂+

4Σ̂s+1,s+1
(
σ̂2

s+1

)4
Λ̂′

(
σ̂2

s+1H0−H0ĈH0

)
Λ̂

+

s∑

i=1

4Σ̂ii(
σ̂2

i

)4

(
σ̂2

i Λ̂
′
i Λ̂i − Λ̂

′
i {Ĉ}ii Λ̂i

)

−

s∑

i=1

4Σ̂i,s+1
(
σ̂2

i σ̂
2
s+1

)2

(
Λ̂′i {Ĉ}i·H0Λ̂+ Λ̂

′H0{Ĉ}·iΛ̂i

)

−

s∑∑

i< j

4Σ̂i j
(
σ̂2

i σ̂
2
j

)2

(
Λ̂′i {Ĉ}i j Λ̂ j +Λ̂

′
j{Ĉ} ji Λ̂i

)
, (92)

where Λ̂ = ĈΛ, H0 = ∆s+1 = (X,Z)′(X,Z), and Σ̂,
(with elements Σ̂i j , i, j = 1, . . . , s+ 1), is the estimated
variance-covariance matrix of the REML estimator ˆσ2 =(
σ̂2

1, . . . , σ̂
2
s+1

)′
. Here, Λ̂ =

(
Λ̂′0, Λ̂

′
1, . . . , Λ̂

′
s

)′
is decomposed

into block-matrices such thatΛ̂0 is (p×q)-dimensional block-
matrix, andΛ̂i , i = 1, . . . , s, are (r i × q)-dimensional block-
matrices ofΛ̂. Similarly, {Ĉ}i j denote the (i, j)-th (r i × r j)-
dimensional block of the matrix̂C, and{Ĉ}i· denote thei-th
(r i × (p+ r))-dimesional row-block and{Ĉ}·i the i-th ((p+ r)×
r i)-dimesional column-block of the matrix̂C.

A.6. Generalized Kenward-Roger method for statistical in-
ference on fixed and random effects based on adjusted
estimator of the MSE matrix of the EBLUP in simple
LMM

Here we shall consider the scaled Wald-typeF-statistic de-
fined by (40), in particular

κF∗ =
κ

q
(ŵ−w)′

(
̂̇Mŵ,A

)−1
(ŵ−w)

approx.
∼ Fq,ν, (93)

wherê̇Mŵ,A is given by (92).
The moment based estimators of the parametersκ andν are

based on comparing the first and the second moments of the
scaledF-statistic (93) with the moments of theF-distribution
with q andν degrees of freedom, i.e. by solving the system of
equations

E(κF∗) = κE∗ � E = E(Fq,ν),
Var(κF∗) = κ

2V∗ � V = Var(Fq,ν), (94)

whereE∗ = E(F∗) andV∗ = Var(F∗). Based on the properties
of theF-distribution we get

E =
ν

ν−2
,

V =
2ν2(ν+q−2)

q(ν−2)2(ν−4)

=
2E2

q
ν+q−2
ν−4

, (95)

provided thatν > 4. By denoting

̺ =
V

2E2
(96)

we get

ν = 4+
q+2
q̺−1

, (97)
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and consequently, the moment estimators ofκ andν are given
as

κ̃ =
ν̃

E∗(ν̃−2)

ν̃ = 4+
q+2
q ˜̺ −1

, (98)

where

˜̺ =
V∗

2E∗2
. (99)

The expectation and the variance of the statisticF∗ defined by
(93) can be estimated by using

E∗ = E(F∗) = Eσ̂2

(
Eŵ

(
F∗ | σ̂

2
))

V∗ = Var(F∗) = Eσ̂2

(
Varŵ

(
F∗ | σ̂

2
))

+Varσ̂2

(
Eŵ

(
F∗ | σ̂

2
))
. (100)

Alnosaier in [1] derived approximations forE∗ andV∗ in the
special case, when theF-statistic (93) is restricted on fixed
effects only. The derivation of the approximationsE∗ andV∗
in the general case, (i.e. for theF-statistic defined by (93)), is
not presented here. However, in analogy with the derivation
of the approximations presented in [1], we suggesṫE∗ andV̇∗,
as the approximations ofE∗ andV∗, in the following form

Ė∗ = 1+
A2

q
,

V̇∗ =
2
q

(1+B) , (101)

where

B =
1
2q

(A1+6A2) ,

A1 =

s+1∑

i=1

s+1∑

j=1

Σi j tr
(
M−1

w̃ M(i)
w̃

)
tr
(
M−1

w̃ M( j)
w̃

)
,

A2 =

s+1∑

i=1

s+1∑

j=1

Σi j tr
(
M−1

w̃ M(i)
w̃ M−1

w̃ M( j)
w̃

)
. (102)

The suggested approximations depend on the unknown
variance componentsσ2 =

(
σ2

1, . . . ,σ
2
s+1

)′
. Consequently, the

suggested estimators of the parametersκ andν, based on the
estimated versions of (98), are

κ̂ =
ν̂

̂̇E∗(ν̂−2)

ν̂ = 4+
q+2
q ˆ̺ −1

, (103)

where

ˆ̺ =
̂̇V∗
2̂̇E

2

∗

, (104)

and

̂̇E∗ = 1+
Â2

q
,

̂̇V∗ =
2
q

(
1+ B̂

)
, (105)

with

B̂ =
1
2q

(
Â1+6Â2

)
,

Â1 =

s+1∑

i=1

s+1∑

j=1

Σ̂i j tr
(
M̂−1

w̃ M̂(i)
w̃

)
tr
(
M̂−1

w̃ M̂( j)
w̃

)
,

Â2 =

s+1∑

i=1

s+1∑

j=1

Σ̂i j tr
(
M̂−1

w̃ M̂(i)
w̃ M̂−1

w̃ M̂( j)
w̃

)
. (106)

In particular, by usinĝMw̃ =Λ
′ĈΛ=Λ′Λ̂ and (78), we finally

get

Â1 =

s∑

i=1

Σ̂ii(
σ̂2

i

)4
tr
((
Λ′Λ̂

)−1
Λ̂′i Λ̂i

)2

+

s∑∑

i< j

2Σ̂i j
(
σ̂2

i σ̂
2
j

)2

× tr
((
Λ′Λ̂

)−1
Λ̂′i Λ̂i

)
tr
((
Λ′Λ̂

)−1
Λ̂′jΛ̂ j

)

+

s∑

i=1

2̂Σi,s+1
(
σ̂2

i σ̂
2
s+1

)2

× tr
((
Λ′Λ̂

)−1
Λ̂′i Λ̂i

)
tr
((
Λ′Λ̂

)−1
Λ̂′H0Λ̂

)

+
Σ̂s+1,s+1
(
σ̂2

s+1

)4
tr
((
Λ′Λ̂

)−1
Λ̂′H0Λ̂

)2
, (107)

Â2 =

s∑

i=1

Σ̂ii(
σ̂2

i

)4
tr

(((
Λ′Λ̂

)−1
Λ̂′i Λ̂i

)2
)

+

s∑∑

i< j

2Σ̂i j
(
σ̂2

i σ̂
2
j

)2

× tr
((
Λ′Λ̂

)−1
Λ̂′i Λ̂i

(
Λ′Λ̂

)−1
Λ̂′jΛ̂ j

)

+

s∑

i=1

2̂Σi,s+1
(
σ̂2

i σ̂
2
s+1

)2

× tr
((
Λ′Λ̂

)−1
Λ̂′i Λ̂i

(
Λ′Λ̂

)−1
Λ̂′H0Λ̂

)

+
Σ̂s+1,s+1
(
σ̂2

s+1

)4
tr

(((
Λ′Λ̂

)−1
Λ̂′H0Λ̂

)2
)
, (108)

as before, Λ̂ = ĈΛ, H0 = ∆s+1 = (X,Z)′(X,Z), and Σ̂,
(with elements Σ̂i j , i, j = 1, . . . , s+ 1), is the estimated
variance-covariance matrix of the REML estimator ˆσ2 =(
σ̂2

1, . . . , σ̂
2
s+1

)′
. Λ̂ =

(
Λ̂′0, Λ̂

′
1, . . . , Λ̂

′
s

)′
is decomposed into

block-matrices such that̂Λ0 is (p× q)-dimensional block-
matrix, andΛ̂i , i = 1, . . . , s, are (r i × q)-dimensional block-
matrices ofΛ̂. Similarly, {Ĉ}i j denote the (i, j)-th (r i × r j)-
dimensional block of the matrixĈ, and {Ĉ}i· denote the
i-th (r i × (p+ r))-dimensional row-block and{Ĉ}·i the i-th
((p+ r)× r i)-dimensional column-block of the matrix̂C.
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B. Estimation of the variance components by solving the
MMEs

The presented iterative procedure for estimation of the vari-
ance components by solving the Henderson’s mixed model
equations has been suggested by Searle, Casella and McCul-
loch in [49], see pp. 275–286. The MATLAB version of the
algorithm has been implemented by Witkovský in [68].

Here we use the same notation as in [49]. In each step
of the suggested iterative procedure, we shall denoteV(t) =

σ
2(t)
s+1Ir + Z′ZG(t), G(t) = diag

(
σ

2(t)
i Ir i

)
. The algorithm starts

with the choice of the starting values for variance components
σ2(0) =

(
σ

2(0)
1 , . . . ,σ

2(0)
s+1

)′
and settingt = 0. In thet-th step of

the procedure the algorithm solves the system of mixed model
equations:

(
X′X X′ZG(t)

Z′X V(t)

)(
b̃(t)

ṽ(t)

)
=

(
X′y
Z′y

)
, (109)

andũ(t) =G(t)ṽ(t).

B.1. ML estimates of the variance components

The ML estimates of the variance components are calcu-
lated iteratively as

σ2
i

(t+1)
=

ũ(t)′

i ũ(t)
i

r i − tr
(
W(t)

ii

) , i = 1, . . . , s,

σ2
s+1

(t+1)
=

y′
(
y−Xb̃(t)−Zũ(t)

)

n
, (110)

whereũ(t)
i is thei-th r i-dimensional subvector of ˜u(t) andW(t)

ii
is thei-th diagonal block of the matrixW(t), where

W(t) = σ
2(t)
s+1V(t)−1

= σ
2(t)
s+1

(
σ

2(t)
s+1Ir +Z′ZG(t)

)−1
. (111)

The iterative procedure should be stopped after thet-th step

if
∥∥∥∥σ2(t)

−σ2(t−1)
∥∥∥∥ < ε, for the chosen precision limitε, and

whereσ2(t)
=

(
σ2

1
(t)
, . . . ,σ2

r+1
(t)
)′

.

The final solutions of the iterative procedure are denoted
by b̂, û=

(
û′1, . . . , û

′
s

)′
, andσ̂2 =

(
σ̂2

1, . . . , σ̂
2
s+1

)′
. Similarly, we

denoteŴ and use the adequate notationĜ, R̂, andĈ for the
estimated versions of matricesG, R, andC.

The log-likelihood function for ML estimation evaluated at
the ML estimateŝb andσ̂2, say loglikML, is

loglikML = −
1
2

nlog(2π)−
1
2

log
(
|V̂|

)

−
1
2

(
y−Xb̂

)′
V̂−1

(
y−Xb̂

)
,

= −
1
2

(
nlog

(
2πσ̂2

s+1

)
− log

(
|Ŵ|

)
+n

)
,(112)

whereV̂ = ZĜZ′+ σ̂2
s+1In andŴ=

(
Ir +Z′ZĜ/σ̂2

s+1

)−1
.

The Fisher information matrix (which is in fact the inverse
of the asymptotic variance-covariance matrix) of the ML esti-
mators of the variance components, sayIML(σ2), can be eval-
uated at the ML estimates ˆσ2 as

IML

(
σ̂2

)
=

1
2
×



{
mat

δi j [r i−2tr(Ŵii )]+tr(Ŵi j Ŵji )
σ̂2

i σ̂
2
j

}s

i, j=1

{
col

tr(Ŵii )−
∑s

j tr(Ŵi j Ŵji )

σ̂2
i σ̂

2
s+1

}s

i=1{
row

tr(Ŵii )−
∑s

j tr(Ŵi j Ŵji )

σ̂2
i σ̂

2
s+1

}s

i=1
n−m+tr(Ŵ2)
σ̂4

s+1


, (113)

whereδi j = 1 if i = j, otherwiseδi j = 0, andŴi j is the (r i × r j)
block of the matrixŴ.

B.2. REML estimates of the variance components

Similarly, the REML estimates of the variance components
are calculated iteratively as

σ2
i

(t+1)
=

ũ(t)′

i ũ(t)
i

r i − tr
(
T(t)

ii

) , i = 1, . . . , s,

σ2
s+1

(t+1)
=

y′
(
y−Xb̃(t)−Zũ(t)

)

n− rX
, (114)

where byrX we denote the rank of the matrixX, ũ(t)
i is thei-th

r i-dimensional subvector of ˜u(t) andT(t)
ii is the i-th diagonal

block of the matrixT(t), where

T(t) = σ2
s+1

(t)
(
σ2

s+1
(t)

Ir +MG(t)
)−1
, (115)

whereM = Z′Z−Z′X(X′X)−X′Z.
The log-likelihood function for REML estimation evalu-

ated at the REML estimates ˆσ2, say loglikREML, is

loglikREML = −
1
2

(n− rX) log(2π)−
1
2

log
(
|B′V̂B|

)

−
1
2

y′B(B′V̂B)−1B′y,

= −
1
2

(n− rX) log
(
2πσ̂2

s+1

)

−
1
2

(
− log

(
|T̂ |

)
+ (n− rX)

)
, (116)

where B is an n× (n− rX) matrix, such thatBB′ = In −

X(X′X)−X′ andB′B= In−rX . Further,T̂ =
(
Ir +MĜ/σ̂2

s+1

)−1
.

The Fisher information matrix of the REML estimators of
the variance components,IREML(σ2), can be evaluated at the
REML estimates ˆσ2 as

IREML

(
σ̂2

)
=

1
2
×



{
mat

δi j [r i−2tr(T̂ii )]+tr(T̂i j T̂ ji )
σ̂2

i σ̂
2
j

}s

i, j=1

{
col

tr(T̂ii )−
∑s

j tr(T̂i j T̂ ji )

σ̂2
i σ̂

2
s+1

}s

i=1{
row

tr(T̂ii )−
∑s

j tr(T̂i j T̂ ji )

σ̂2
i σ̂

2
s+1

}s

i=1
n−rX−r+tr(T̂2)

σ̂4
s+1


, (117)

whereδi j = 1 if i = j, otherwiseδi j = 0, andT̂i j is the (r i × r j)
block of the matrixT̂.

Similarly, the final solutions of the procedure are denoted
by b̂, û =

(
û′1, . . . , û

′
s

)′
, andσ̂2 =

(
σ̂2

1, . . . , σ̂
2
s+1

)′
. Further, we
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denoteT̂, and use the adequate notationĜ, R̂, andĈ for the
estimated versions of matricesG, R, andC.

For more details on ML and REML estimators see the
Chapter 6 in Searle et al. (1992).

B.3. MINQE’s of the variance components

For completeness, here we present procedures to calculate
the MINQE(I) and the MINQE(U,I) estimators of the variance
components at given (prior) values of the variance compo-
nentsσ2(0)=

(
σ

2(0)
1 , . . . ,σ

2(0)
s+1

)′
. Here we assume thatσ2(0)

i > 0
for all i = 1, . . . , s+ 1. For more details on minimum norm
quadratic estimation of the variance components see e.g. [33],
[42], and [43].

The MINQE(I) of σ2, say σ̂2, at the prior valueσ2(0) is
defined as the solution of the following system of equations

H(I )σ̂
2 = q, (118)

where by H(I ) we denote the (s+ 1 × s+ 1)-dimensional
MINQE(I)-matrix andq = (q1, . . . ,qs+1)′ denotes the vector
of MINQE quadratic forms. The matrixH(I ) is defined by its
elements as

{
H(I )

}
i j = tr

(
V(0)−1

ViV
(0)−1

V j

)
, (119)

i, j = 1, . . . , s+ 1, whereVi = ZiZ′i , for i = 1, . . . , s, Vs+1 = In,

andV(0) = ZG(0)Z′ +σ2(0)
s+1 In =

∑s+1
i=1 σ

2(0)
i Vi . The matrixH(I )

can be easily evaluated by using (113), namely

H(I ) = 2IML

(
σ2(0)

)
. (120)

Further, the vectorq of MINQE quadratic forms, defined
by its elements as

qi = y′
(
MXV(0)MX

)+
Vi

(
MXV(0)MX

)+
y, (121)

i = 1, . . . , s+1, with MX = In−X(X′X)−X, could be easily eval-
uated by using

qi =
ũ(0)′

i ũ(0)
i(

σ
2(0)
i

)2
, i = 1, . . . , s,

qs+1 =

(
y−Xb̃(0)−Zũ(0)

)′ (
y−Xb̃(0)−Zũ(0)

)

(
σ

2(0)
s+1

)2
, (122)

whereũ(0)
i is thei-th r i-dimensional subvector of ˜u(0).

Similarly, the MINQE(U,I) ofσ2, sayσ̂2, at the prior value
σ2(0) is defined as the solution of the following system of
equations

H(UI )σ̂
2 = q, (123)

where H(UI ) denotes the (s + 1 × s + 1)-dimensional
MINQE(U,I) matrix, defined by its elements

{
H(UI )

}
i j = tr

((
MXV(0)MX

)+
Vi

(
MXV(0)MX

)+
V j

)
, (124)

i, j = 1, . . . , s+1, and by using (117) we get

H(UI ) = 2IREML

(
σ2(0)

)
. (125)

Note that the MINQE ˆσ2, defined by (118) or by (123), is
not given uniquely unless the MINQE matrix is of full rank.
In fact, one version of the solution to the MINQE equations is
σ̂2 = H+q, whereH+ denote the Moore-Penroseg-inverse of
the appropriate MINQE matrix.

The MINQE of unbiasedly estimable vectorFσ2, whereF
is such matrix thatF′ = HA for some matrixA, is Fσ̂2, and is
unique.

In particular, under given assumptions, the MINQE(U,I)
Fσ̂2, with F such thatF′ = H(UI )A for some matrixA, is the
σ2(0)-locally minimum variance unbiased invariant estimator
of Fσ2 with

E
(
Fσ̂2

)
= Fσ2,

Var
(
Fσ̂2 |σ2(0)

)
= 2FH−(UI )F

′

= 2A′H(UI )A. (126)

On the other hand, the MINQE(I)Fσ̂2 is a biased estimator
of Fσ2 with

E(Fσ̂2) = FH−(I )H(UI )σ
2,

Var
(
Fσ̃2 |σ2(0)

)
= 2FH−(I )H(UI )H

−
(I )F

′. (127)
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