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We present a brief overview of the methods for making statistical iference (testing statistical hypotheses, construction of confi
dence andor prediction intervals and regions) about linear functions of the fixed dfects andor about the fixed and random dfects
simultaneously, in conventional simple linear mixed model. The preseatl approach is based on solutions from the Henderson'’s
mixed model equations.

Keywords: Linear mixed model, mixed model equations, fixed fects, random dfects, REML, BLUP, EBLUP, MSE, Satterth-
waite approximation, Fai-Cornelius approximation, Harville-Jeske ard Prasad-Rao approximation, Kenward-Roger approximation

1. INTRODUCTION tions of the fixed &ects angbr about the fixed and random
effects simultaneously, in conventional simple linear mixed
THE appLicATIONs Of data analysis based on the statisticatodel, (with pointing to potential problems which may ap-
linear mixed model, as a natural generalization of thear based on usage of these methods), and to present some of
analysis of variance methods and the ANOVA models, (sg recently developed improvements, as well as some gener-
e.g. B4, [15], [36]), are widespread. Such applications withlizations, together with relatively detailed technicasdrip-
analytical methods based on linear mixed models include dibn of the model and the methods. The presented approach
ferent fields of the biomedical and technical research, (3§¢&ased on the elements of the solution of the Henderson’s
[56] andor [11]). For illustration, here we shall mention jusimixed model equations.
few of them: e.g. genetics with its microarray experiments,
[7], [8], [9], [74], the plant and animal breeding in agricul- 2
tural, [5], statistical meta-analysis in medical researd],[
neurophysiology,§1], as well as diferent technical applica- e consider the linear mixed model (LMM) in the follow-
tions, like e.g. calibration of devices, derivation of tleéet- jng form
ance intervals for industrial applications, interlaborsitcom- y=Xb+Zu+e, 1)

parisons in metrology, and methods for expression the uncer . . . . .
tainties in measurements, see efj, [14], [24], [31], [48], with y being am-dimensional vector of observatiorisbeing

(55, [62], [63], [64], [69], [70], [71], [72], and [73. the p-vector of fixed €ects,u being ther-vector of random

Although the linear mixed models and the methods for s%teCtS withE(u) = 0 andvar(u) = G, andebeing then-vector

tistical inference based on such models have been recazgnf} andom (measurement) errors wii(e) = 0 andvar(e) = R,

and used for long time by the researchers iffiedént fields, w ergR IS aSSLtjmedét()_rEe strictly pots!tl\f de(;‘|rt1r|]te variance-
it seems that some sort of misunderstanding of the prirx&::ip%’va.rlance matrix oe. 1he @x p)-ma.nx and the 0xr)-
atrix Z are the known design matrices. Typically, we can

andor the technical details (of the used methods for statiste ;

cal inference based on such linear mixed models) may lead§€ £4= 212U, where theix i) matricesZ and ther;-

improper usage of the implemented methods and algorithf'gr.]ens'onaI randomfiectst, i = 1,...,5, could be specified

Moreover, there are still some further open theoreticabpr rom the st.ructure of thg model.. .

lems (like e.g. methods for testing and constructing confi-The main goal of_th|s paper |s.to present an overview of

dence intervalsegions about the variance components, Sgwbe methods.for making statistical inference aboytllnaacf

e.g. I [3], [4], [52], [57, [58], [59, [61], [65], [66], [67]). thfns of the fixed ﬁects’b a,nd,t,he ra:wdom/f&ctsu,' i.e. abqut
So, the main goal of the paper is to present a brief overvig\gp andor "?‘bOUtW =_A (b, )" = Kb+ L'u for given (suit-

of the standard (conventionally used) methods for makiag & le) codlicient matrices\, resp.K andL.

tistical inference (in particular the methods for testitatis- Hende_rson in 13 develqped a set of equat!ons, termed
88 the mixed model equations (MMES), that simultaneously

yleld the best linear unbiased estimator (BLUEXdf (or any
vector of estimable linear functiort§’b) and the best linear
*Corresponding authowitkovsky@savba.sk unbiased predictor (BLUP) af (or any vectow = K’b+ L"u,

HENDERSON' S MIXED MODEL EQUATIONS

fidence anfbr prediction intervalgegions) about linear func-
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providedK’b is estimable), under the assumption that the
variance structure is known.

The MMEs were derived based on the normality assu
tions, i.e.u ~ N(0,G), e ~ N(0O,R), with CoVu,e) = 0, for
known variance-covariance matric€& and R. Thus, the

joint probability density function (pdf) of the random vect

(y,u) is given as

fyu) = f(&fu)f(u)

1 rp-1
Wexp{—é(y—Xb—Zu) R™*(y—Xb-2Zu)

1 1 r~—1
X—(er)r/2|G|1/2 exp{—éuG u}. 2)

By solving the ML equations fdp andu, i.e.
af(y.u) af(y,u)

= 0 = 0 3
ab ’ du 3
we get the MMEs in the following form
X'RIX XR1z b X'Rly
rp-1 -1 -1 M= rp-1 . (4)
Z/R*X ZRZ+G a 'Ry

The left-hand side matrix o#j will be termed as the Hende
son’s MME matrix, here denoted By, i.e.

H=(X2)R(X2)+(01,)G0,l,), (5)

where by 0 we denote a zero matrix with suitable dimensiong,

here ¢ x p). Alternatively,

| )5)-(255)

whereW = (I + Z’R1ZG)1. Notice, that based or6), there
is no need to restrict the variance-covariance mdrito be

X'RIX XR1ZG
ZrRX  wt

X’ R—ly

7’ Rly (6)

strictly positive definite. This version of MMEs is prefedre

for numerical evaluations, {& can be a bad conditioned m
trix.
Given the variance-covariance matriéesndR, let us de-
note a<C the following matrix of coficients
Cau Cx

X'RIX XR1z h

ZRX zZR'z+G1

lpb O X'RIX XR1zG

0 GJ)\zZr™x wt
where byA™ we denote ang-inverse of the matrixA.

Let b and( be any solution to the MMEs4}. Notice that
based orb andV; the solutions from@), we can reconstruct

C Cu Cp

)_, @)

by (= GV. Then the BLUE of the vector of linear estimabl

functions of the fixed #ectsK’b, see e.g.49, is

BLUE(K'b) = K’ (X'V™!X) X'Vly=K'b, (8)

whereK’ is a (@ x p)-matrix of cogficients of the estimable Var(u)

linear functionK’b, i.e. K = X’ A for some matrixA, andV =

ch‘GZ+R. The BLUP of the vector of linear functions of the
fixed and randomféects, sayK’b+L’u, is
mp-
BLUP(K’b+ L"u)

BLUE(K'b)
+L'GZ'V~}(y— BLUE(Xb)),
K'b+L'Q,

(9)

where L’ is an arbitrary @ x r)-matrix of coeficients, and
BLUE(Xb) = Xb.

Important properties of the solutions of the MMEs are sum-
marized bellow, for more details see e. 88|

1. In the class of linear unbiased predictors, BLUP maxi-

mizes the correlation betweerandu.

2. K’bis BLUE of the set of estimable linear functiokisb.
3. E(u|l) =
4. Gis unigque.
5. K’b+L’liis BLUP of K’b+ L’u provided thaK’b is es-
timable.
6. Var(K’b) = K'C11K.
™ 7. Var(K’b+L'i) = K'Cy3K + L'(G- Cpo)L.
8. Var((K'b+L'ti) - (K’'b+L'u)) = (K, L")C(K",L"Y".
9. Cov(K'b,) =
. Cov(K'b,u') = —K'Cpa.
11. Cov(K’B, u - ﬁ’) =—-K'Cy2.
12. Var(l) = Cov(i,u’) = G—Cya.

13. Var(li—u) = Cpo.

In this paper we shall consider only a special form of the
model () — a conventional simple LMM with normally dis-
tributed errors and randonffects. That is, we shall assume
mutually uncorrelated (independent) normally dlstrllnum
dom dfectsuy,...,us and e with E(u)) = 0 for i =1,.

E(e) = 0, Cov(ui,uj) =0 for i # j, and CoVu;,e) = 0 for

a-

all i =1,...,s. Further, we shall assum¢ar(u;) = o-izlri,
i=1,...,s withr = iszlri, andVar(e) = a-élln. Hence,

S
E(y) = Xb, and Var(y) = Z 0PZZ, + 02,1 n,

i=1

(10)

with o2 = (a-i,... §+1>, being the vector of variance

components with the parameter space specifie@‘?oa 0 for
=1,...,s ando? .1 > 0. However, in order to avoid possible

Ntechmcal and numerlcal problems, it is reasonable to assum
that the true parameter® = (a- 0'%,0';1) is in the inte-
nor of this parameter space. So here we shall assume that
(rl >0fori=1,...,s+1,

In other Words, we shall assunye~ N(Xb,V), with V =
Var(y) = ZGZ + R, whereG is (r xr) diagonal matrix,G =
= diag(a-izlri), andR is (nx n) diagonal matrix,R =

Var(e) = o2, In, with o2 > 0 fori = 1,...,s+1.

2
,05,0
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. ’
If the variance components® = (0‘%, ... ,o-é,o%ﬂ) are un- 3. SrANDARD METHODS FOR STATISTICAL INFERENCE ON FIXED AND

known, they can be (and in general must be) estimated from RANDOM EFFECTS

the observed data by any reasonalffigeive and computa-

tionally efficient method, like e.g. by the methods based onHere we consider the problem of making statistical infer-

moments (the minimum variance (norm) quadratic estim@ce about linear functions of the fixedfectsb and the

tion) or the methods based on likelihood function (ML diandom &ectsu, i.e. aboutA’ (',u’)" = K’b+L'u whereA

REML). is ((p+r) x g)-dimensional full-ranked matrix with estimable
K’b (i.e. K = X’ A for some matrixa).

There are severalfitcient implementations for estimation Izet b and 0 are the solutions of the MMES), soW =

of the variance components in general LMMs. One methéé(b"ﬁ/) = K’b+ LU is the best linear unbiased predictor
used to fit such LMMs is the expectation-maximization (EMPLUP) ofw=K’b+L"u. Then, according to the properties 6
algorithm, see 34], where the variance components arand 8 of Sect|or~2, the variance oK’b and the mean squared
treated as unobserved nuisance parameters in the joifit i@ (MSE) ofware given by

hooq. _Currently, such methods are implemented in the major Var(K'D) = K'Cy1K, (11)
statistical software packages SAS (Proc MIXED) &1dme

in thenlme library). In particular, Proc MIXED uses a ridge-and
stabilized Newton-Raphson algorithm to optimize eitharllk f
(ML) or residual (REML) likelihood function, see alsd],

[35], [60], and [4Q].

MSE(W)

E((W-w) (W-w)")
= Var(W-—w)=A'CA = My. (12)

Notice that the MSE matrix ofv,”My, functionally depends
However, here we present a relatively simple methaoh the variance componem§:(o-§,...,a-§,o-2 )/.

. . . s+l
based on repeated iterative solving of the MMEs, suggesteq 1o variance components? = (Uf,...,o-g,o-él)' are

by Searle, Casella anq McCgIIoch. ing. The element.f, of known, based on the model assumptions and frof &nd

MMEs are used for setting up iterative procedures f20r szlmult(lz), we trivially get the pivot, Wald-type statistic, usefiairf
neous estimation of the variance componergts...,o%,05, ) making statistical inference abokitb (e.g. testing a null hy-
and the empirical versions of the BLUE lbind the BLUP of pothesisHo : K’b = K’bg for somebg) andor about the vari-

u, in the simple LMM (L0). ablew = K’b+ L’u with their exact (null) distribution:

The algorithm provides solution to the maximum likeli- Q= (K'B—K’bo) (K'Cr1K) ™ (K'B-K'bo) ~x2,  (13)
hood (ML) or the restricted maximum likelihood (REML)and
equations for estimating variance components, see Efj. |
[39, [19], [32], and 49]. The algorithm can be also used for
estimation of the related Fisher information matrices fdr Mwhere Xﬁ denotes the chi-squared distribution with=
andor REML estimators of the variance components (i.e. thg@nkK’) = rank(A") degrees of freedom.
inverse of the asymptotic variance-covariance matrix ef th If the variance components are unknown and the estimated
ML/REML estimators). Moreover, it can be also used foulueso? = a—f,...,a—il " are available together wit€, a
computing the minimum norm quadratic estimates MINQE(@Ebmmonly used test statistic for fixedf@cts hypothesisiy :
(realizations of the invariant minimum norm quadraticesti  K’b = K’by, is based oK’b andCy1:
tors) or the MINQE(U,I) (invariant and unbiased minimum 1, . , A DU
norm quadratic estimators) of the variance components, for F = —(K’b— K’bo) (K’CllK) (K’b— K’bo), (15)
more details see e.gB83), [42], and 43]. q

Q= (W-w) (A'CA) ™ (W—w) ~ x2, (14)

where K’b denotes the empirical version of the best linear

The final solutions of such iterative procedure will be dembiased estimatoK’b of K’b (i.e. version with the esti-
noted byb, G = (0,...,05), ando? = (&f,...,o‘-il)’. Simi- mated variance-covariance components). Notice @hat=
larly, we shall use the adequate notatBnR, andC for the (X'V-!X), see e.g.49] (Eqn. (55) p. 276), and consequently
estimated versions of matric& R, andC. The solutions Ci1= (X'V-1X), whereV = 287 +R
Zped?ef)?;sgjtg;tt\/leMeEsfigg{égis:}sﬁ%ﬁﬁmﬁfss ?)r;isd As a generalization, for making simultaneous statistical i
on &2, the important output of the al orithrﬁ is the,estimat fgrence on tk)e fixed as well as the randoffe_etg, .. on

T P P 9 ‘W: A (b',u)" (e.g. construction of the prediction region)

Fisher information matrix, salju (6%) o Irem(2), 1€Spec- paced on the empirical BLUP (EBLUP), i.e. the predictor

tively. - Consequently, it provides the estimated asymptofl, _ (6’,0’)' (whereb and  are solutions of the MMEs
variance-covariance matrix of the estimated variance @aemp

nentso?, says = <| ML(@_Z))—l ors - (I REML(OA'Z))ila provided with estimatedRk andG), it is natural to consider the following

that the inverses do exist. For detailed description of lhe-a statistic 1 . JloA L
rithm see SectioB. F= a(W—W) (ACA) ~ (W-w), (16)
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whereq is rank of the matrixA’. k’'Cy1k, with respect to Athe variance components$ =
As a special case, if is a one-dimensional function given(o%,...,02,02,;). Here, £ is the estimated (asymptotic)
byw= ' (b/,u") = k'b+1"u, in analogy with 15) and (L6), it variance-covariance matrix of the estimators (e.g. REML es

is natural to consider the pivot statistic timators) of the variance components, anddy is the esti-
~ mated version (evaluated at the estimated values of the vari
‘= k’b—Kk’bo (17) ance components?) of the gradientgy of k'Cy11k, with re-
Gk spect to the variance components i.e.
andor its generalization %
1
W—w :
t= — (18) Ok = . . (21)
/_A/C 1 a(k célk)
00§
. ;. A(K'Cy1K)
wherew = V' (b, 1)’ is the EBLUP ofw. a2,

The (null) distribution of the statistic4{) and (L8) is com- A lizati f th h by Giesbrecht and
monly approximated by the Studentslistribution withy de- S @ generallzation of Ine approach by fslesbrecht an
grees of freedom (DF), estimated by applying the Satterﬁ]gm.s’ 'F Is natural .to con3|der_3|mlla.r approximation foet
waite’s approximation. The (null) distribution of the ssat istribution of the pivotal quantitylg), i.e.
tics (15) and (@6) is commonly approximated by the Fisher- W—w

Snedecor'$--distribution withv, andv; degrees of freedom, t= A b (22)
. ACa

wherev; = g and vz, the denominator degrees of freedom

(DDF), wherey; is typically estimated by a generalization ofith > o

the Satterthwaite’'s method, as suggested e.g. by Fai and Cor R 2(/1’C/l) B 2(/1’C/1)

nelius in [L3], or alternatively, by applying moment based ap- VA= Var(rG.) = %igﬂ ’ (23)

proximation for theF-distribution. The explicit expressions

for DF and DDF estimators ofLf), (18), (15) and (L6) are where g, is the estimated version of the gradiegt of
given in Section$.1and3.2 MSE(W) = 2’CA with respect to the variance components

defined by
0!/1’C/1!
3.1. DF estimated by the Satterthwaite’s method o2
Giesbrecht and Burns inl§], (see also 37], [12], and _ : (24)
[50]), suggested to approximate the null distribution of the 9= arey) |

pivotal quantity 7) by the Student's-distribution withyv'de- a(‘jifé 1)

grees of freedom (DF), wheres the Satterthwaite’s approx- 02
imatiort of the (unknown, see §8], [47), i.e. For more details on computing gradients of ISEHW) see
R L SectionA.
kK'b—k'bg . . A .
t= ———~ 1, (19) Provided that the estimated matiixis available, e.g. as
Vk'C1ik an output of the algorithm for estimating the variance compo
with nents, the estimatoigy andd, of the gradients1) and @4)

could be evaluated, by using the elements of the estimated
, (20) matrixC (instead ofC). i
For that, let us defing = CA and letd be decomposed into
o _ its subvectors such that= (1), 1}....,1%)’, wherelg is p-
where Var(k'Cllk) denotes the estimated value Ofimensional subvector, ant, i = 1,....s, arer;-dimensional

o 2(KCuk) 2(KCuk)’
V= ——— = -
Var(k’Cllk) 9,20k

Var (K'Cy1K). subvectors ofi. Then, by using78) from SectionA.3, we get
The suggested estimator Wér(k'C11k) = §Z8« is based L,
on the estimated version of the Taylor series expansion of (52) !
the variance of the estimatd’b (BLUE), i.e. Var(k’b) = :
R = 1 va , (25)
1The Satterthwaite’s approximation of the distributiorke€1k is based (5%)2 s7S
on assumption that(k/(fllk)/o-2 ~ x2 for some parameters® andv. By 1 VHed
comparing the first and the second moments of both random vesiale get (&2 1)2 0
S+

E(v(k’éllk)/a-z) =y andVar(v(k’Cllk) /0-2) = 2v. From that we directly
geto? = E(K C11k) andy = Z(E(k/éllk))z /Var(k'C11k). As E(k'C11k) and
Var(k’éllk) depend on unknown parameters they should be estimated. So, , X'X XZ

we get the natural estimatora&”z(k/éllk) /@(k/éllk). Ho = (X.2)'(X.2) = ( 7Z'X 7’7 )

whereHg is given by

(26)
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Consequently, ak'b is a special case of (b’,u’)’ = k’'b+ and consequently, based on unbiasedness of EBLUP and its
I"'uwith 2 = Ag = (k’,O;)’, so we can use2f) also for evalu- independence on BLUP, se27], [28], [20], and [21], we get
ation ofgy by replacingt with A = CA. the MSE matrix ofwin the form
3.2. DDF estimated by the Fai-Cornelius method My = Mg + Mg, (31)
Fai and Cornelius in1[3] proposed a generalization of thevhere Mgy = E((W—W) (W-W)') = Var(W-w), and thus,
Satterthwaite’s method for multivariate linear functiaishe Mw > M.
fixed and randomfEects to approximate the (null) distribution The MSE of the first component of the prediction error,
of the statistic {5) by the Fisher-Snedecé&rdistribution with My, is given by (2). The MSE of the second component of
v1 =qandv, = 7, i.e. with the estimated denominator degrede prediction errorMsy, is not expressible in closed form,
of freedom (DDF). except for very simple special cases. Kackar and Harville in
As a straightforward generalization of the Fai-Cornelidg8], see also29] and [30], suggested approximation 8y
approach, it is natural to approximate the distribution bfsed on first-order Taylor series approximation. In paldic
the F-statistic (6), based on the multivariate functiom= a Taylor series expansion fa—Win 5% = (&f,...,é—%,&él) ,
A (b/,u) = K’b+L’u and its empirical predictav = K’b + as e.g. REML, about? 2

/, ives approxi-
L’0, by the Fisher-Snedecdt-distribution withv, = q and S”) g PP

_ 2 2
—(0'1,...,0'5,0'

- mation
v = v degrees of freedom, where where

s+l o~

= I U oW /.

oo 2k ’ 27 W-W) =~ (w—w)+21:?(ai2—o-i2)
— 1= |
E q 1 s+l s+l 62\7v
: ~2  2\(~2 2
2 Vi i=1 j= i7]
E= Z m 1{vi>2} . (28)

i=1 Then taking expectation of the square of the first-order term
Here,1;, denotes the indicator function and fori=1,...,q, and using the results ir2g] and [21], we get the first-order
are the degrees of freedom, estimated by the Satterthwai@@proximationMsgs of My as
method @3), of thet-statistics £8) for w; = (b, 0’)', where

n 1 _ . oW _ oW
Ai,1=1,...,q, are the columns of the matrixrc given by Msiw = 302 “ 552
Arc = AU, (29) _ ii“ W oW
- . . . i £ : 90?2 do?
andU denotes the unitary matrix of a spectral decomposition i=1j=1 Pl
of a matrixA’CA, i.e. such matrix thaf)’ A’CAU = S, where ~ RS s A(W-w) d(W—w) 33
S is a diagonal matrix. - Zl: Z; ij 0 g2 902 | (33)
i=1 j= i i

4. SrATISTICAL INFERENCE ON FIXED AND RANDOM EFFECTS BASED ~WhereZjj are elements of the variance-covariance matrot
ON ADJUSTED ESTIMATOR OF THE MSE MATRIX OF THE the estimatorr2. _
EBLUP For derivation of the approximation ofs; see Sec-
tion A.4. The second component of the EBLUP’s MSE matrix
As argued by Harville in22], usage of the MSE matrix of My, in the simple LMM (L0) can be approximated by
the BLUPW, sayMy, (or its estimated version, sdy), in-
stead of the correct MSE matrix of the EBLWP sayMy, (or . srlsl
its estimated version, sayly), is inadequate, as the estimator Msw = Z ZEijCi} (34)
Mg = A’CA can severely underestimate the true MSE of the =1 =1
EBLUPW. As wiII.be explained bellow, there are two ma"@vherecij, i,j=1,...,s+1, are given by&7), or alternatively
sources of such bias. For a comprehensive discussion onbtpe

problem and proposed solutions see a&,[[28], [20], [25], _ g slsl N
[41], [21], [26], [50Q], [53], [54], [10], [29], [30], and [1]. Mo =~ My, (35)
i=1 j=1
4.1. Decomposition of the EBLUP prediction error and ’(/%/here the matrices ) are given by 79), (80), (81), and
MSE 82) w
The first source of the bias can be observed if we decom-Consequently, we get the approximatidvly of the
pose the prediction error of the EBLUR Ih particular, EBLUP’s MSE matrixMy, in the form
(W—w) = (W—w) + (W—W), (30) Ma = Mg+ Msa
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Sttt Kenward and Roger in30]. Kenward and Roger derived
- MW"’ZZZ”C” Taylor series approximation for the bias of REML estima-
e tor, i.e.E(62—c2), and proved that in linear mixed models
= Meo— 1 YIS 36) With linear parametrization of the variance-covariancerina
W ij Vg s (36) , . L L
2 = V =Z'GZ+R, like e.g. in simple LMM (0), its first-order

approximation is equal to zero.
whereZjj are elements of the variance-covariance matrix of Hence, by combining37) and @8), we get the adjusted,
the REML estimatorr?, andM{') represent the second parbias-corrected estimator of the EBLUP’s MSE mathik,,
tial derivatives of the BLUP’s MSE matri¥y with respect given by _ _
to the variance components® and ch2, ij=1,...,s+1,in Mya = Mg + 2Mgq. (39)
simple LMM (10). The explicit form of the estimatoi3@) in simple LMM (10)

is given by 92) in SectionA.5.
4.2. Bias-corrected estimator of the EBLUP’s MSE matrix

M 4.3. Generalization of the Kenward-Roger method for sta-
As the EBLUP’s MSE matrisMy, as well as its approxima- tistical inference on fixed and randorfterts based on

tion My, (which is a function of£), depend on the unknown adjusted estimator of the MSE matrix of the EBLUP

variance componenis® = (0 Lo §+1) ’ forjurther appli-  For statistical inference about the vector of linear fuortsi

cations it is necessary to use its estimator, Mgy A natural Of fixed efectsK’b based on its empirical BLUE, Kenward

option for such estimator would be and Roger suggested i2q] to use the Wald-type statistic as a
_ . pivot, with adjusted covariance matrix of the empirical BEU
My = My + Mg, (37) of the functionK’b.

Here we suggest to consider a generalization of the

i.e. by using 86), where the true (unknown) vector of varianc&enward-Roger method for the inference about the vector of
components- is replaced by its estimater?” Notice thats, functions of fixed and randomffectsw = A’(b’,u’)’ (which
the true variance-covariance matrix of the REML estimatyuseful for testing hypotheses about the fixéeeis and for
&2 also depends on?. So, the estimator3() functionally constructing the prediction regions for functions of thedix
depends oaij, the elements of estimated variance-covarianaad the randomfeects simultaneously), based on its EBLUP
matrix . and the adjusted MSE matrix. For that we shall consider the

Based on similar arguments as given by Alnosaierlin [Wald-type pivotF-statistic
for the special case of empirical BLUE of the fixeffeets, 1 _
we can assume thad sy, is approximately unbiased estimator F=—(W-w) (MW,A)
of Myw, for another formal justification see alsél] and [10]. q

However, as pointed out by Harville and Jeske 21][ \yhereMy,4 is given by 9), or (in its explicit form) by 92)
Prasad and Rao im]], and in special case of fixedfects from sectionA.5, respectively.
estimator by Kenward and Roger i8q and [30], additional | accordance with9] and [1], we suggest to approximate
bias will appear if the estimatdvl, is used as an estimatorgne (null) distribution of the scaled Wald-ty|Festatistic ¢0)

of the MSE matrixMy, in (37). In order to show that, let USpy the Fisher-Snedecérdistribution withq andy degrees of
expandMy, in 62 abouts?, and then take expectation of thisreedom. In particular,

approximation, so

1
(W-w), (40)

kF PR, (41)
_ s+l M
E(Mw) A Mw+z E(é'iz—aiz)—;" where the unknown parametersand v should be estimated
i=1 oo from the data.
1378 a2 (a2 v 0°Mg In analogy with derivation of the estimators presented by
*3 Z E (UI — Ui )(‘TJ _O—i» 902002 Alnosaier in 1] for the fixed dfects problem, here we suggest
=1 J:1 o1 . the following estimators of the scaleand the denominator
~ w+% Zz” M\%j) degrees of freedom )
“i=1j=1 . v
= Mgy — Msw, (38) ko= é()';_z)’
; : - 2+q
where we have assumed that the first-order term could be ig- v o= 4+ q@——l (42)
nored, andMyy, is given by 85). This could be informally
justified by the assumption thaq2 s approximately an un- Where
biased estimator oﬁriz, as was suggested i29]. However, R v
formal justification was provided by Alnosaier it)][and by e = SE2’
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E = 1+ &
Vo= gl(u B).
é = ZZ] (Al + 6A2) , (43)

iij tl’(m\;vl M\g))tr(ﬂ/l\\;vl M\\%)) R

S (VA MORAND).  (a4)

By tr(A) we denote the trace of a matrix, i.e. tr(A) =
i ZiAj, My = A’CA denotes the estimated versionM;, pivot statistic is not unique. As pointed out by Alnosaier
and I\Wé\i,), i =1,...,s+1, denote the estimated versions of the [1], there are several other alternative solutions available
first partial derivatives oMy, defined by 78). For more de- however, such modifications have not been considered here.

tails and explicit forms of the estimatofg and A, see Sec-

tion A.6, (107) and (L08).

In order to match the exact values for the soalnd the readily implemented in practically any (statistical) sedte
denominator degrees of freedonfor testing hypothesis on€nvironment. Based on the results presented in Seétjon
fixed efects in two special cases, in particular in the balancidstraightforward to get explicit expressions also forrtiere
one-way ANOVA and the Hotelling2 models, Kenward and general LMM with linear parametrization of the variance-
Roger in P9 suggested the modified estimatarsand v*,
which can be analogically generalized and used to apprc¥ice components and its estimated variance-covariance ma-
mate the (null) distribution of the scaled Wald-typestatistic trix is available. The situation with nonlinear parametdtian

(40
where
é*
and
C1
C2
C3
g

)’}*
E*(&;—Z)’
vto= 4+ A+q

et (45)

v
ZE*Z: .
3

a .
g( 1+c,B )
a\(1-cB)2(1-c3B))’

(46)

g
39+2(1-9)’
q-g
39+2(1-9)
q-g+2
3g9+2(1-9°
(@+1)A1-(g+4)A2
(a+2)Az

; (47)

5. CONCLUSIONS

Here we have presented a brief overview of the conven-
tionally used methods for making statistical inferencedbo
linear functions of the fixedféects ang¢br about the fixed and
random éects simultaneously, in conventional simple linear
mixed model, by using the elements of the solution of the
Henderson’s mixed model equations. Further, we have also
presented some improvements, based on the adjusted MSE
matrix of the EBLUP, as well as a generalization of the stan-
dard Kenward-Roger method (suggested for making statisti-
cal inference about the fixedfects) for derivation of the ap-
proximate distribution of the Wald-type pivot statistiajgs
gested for making statistical inference about the fixed and
random éects simultaneously. Notice that this method for
derivation of the approximate distribution of the Wald-¢yp

The presented (explicit) expressions are valid in the ssmpl
LMM defined by (L0). They are rather simple, and can be

covariance matrices andR, provided that the REML of vari-

of the matricess andR requires more specific approach.
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APPENDIX

A. DERIVATIVES OF THE MSE MATRIX WITH RESPECT TO THE
VARIANCE COMPONENTS

with B,A;, A; given by @3) and @4). For more details see Here we shall assume th@t?, the inverse of5 = Var(u),

Section 4 in 1].

does exist, and thus we can use the MMEs as defined by
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(4). Although the subsequent derivation of the derivatives N o o N
of the matrixC is general, finally we shall consider only a D) (A B) = A(BVABD + BVABY -BMD)A, (57)
special case, based on the covariance structure of theesimpl
Iiljear mixed mode_l 10), with the variance—_cova;iancg ma- ik (A B) = _A(B(i)AB(i) +BMABRD — B(i’j))AB(")A
trices of the fOlIOWIng form:G = Var(u) = dlag{0'i lri}’ | = —AB(k)A(B(l)AB(J) + B(J)AB(I) _ B(I’J)>A
1,...,s, andR=Var(e) = o2 In, SOV = Var(y) = ZGZ + R = S\ . . o . .

S 251, 2 +A(BVABH 1 B ABD + BDABM + BIWABD -
Zi:lo'i Z.Zi +o's+1|n. y ) ] ) ) _ e

Moreover, as we consider methods for statistical infer- ~ —BYABYABY - BWABWABYA+BI)A (58
ence for estimable linear functioms= A’(b’,u")’ = K’b+ L'y,

i.e. such thakK = X’A for some matrixA, further we shall as- From that we directly get

sume, without loss of generality, that the inverse of the MME cO = 20 H)
matrix H (the matrix on the left-hand side of the equatid)) ( = -CHOc, (59)
does exist, in p_articular we shall assume that the inverse of @) _ g (C.H
X’R™1X does exist. Recall that _ C(H(‘)C HO) £ HOCHD H(i,J))C’ (60)
H=(X2/RYX2)+(0,1;)G0,1), (48) ctiv = ik (c H), (61)
and so, fori,j,k=1,...,s+1,
C=H"! or H=C, (49) Further, based o), we directly get the derivatives of the
matrixH. Fori, j,k=1,...,s
Further, we shall denote , ,
HO = (01,6 10(0,1,), (62)
Ao = (0,11)(0,1y), (50) HED = (X,2YR (X, 2), (63)
A= (0.(0.....1.....0)) (0.(0.... Ir,.....0)) HED = (0,1,YG 2D (0,1,), (64)
= (6 daguy ) 61 HELED o (xZyRAEDXZ), (o)
0 diagfly,} HR (0,|r)/G_1(I’J’k)(0, 1), (66)
Asi1 = (X2)(X,Z) = Ho, (52) H(stlstlstl)  _ (X’Z)/R—l(s+1,s+1,s+1)(x’z)’ (67)

fori=1,...,s, where diagly} is (r x r)-matrix with itsi-th where
diagonal block equal t&,, otherwise with zero elements.

oy N
Further, for arbitrary matriXA we shall denote its partial G _(f) = D(f)_(G ’G)
derivatives with respect to the components of a vector param G = ptl(GG)
eterd = (01,...,0s.1) as Gk — ik (G—l,G)
2 3 —1(s+1) — (s+1) (p-1
AD = OA iy OA piig o _OA (53) R DED(RLR)
06;” 86,00, 86,0006’ RSLS = plertsi(RLR)

—1(s+1,s+1,s+1) _ (st+1,5+1,5+1) (p-1
fori,jk=1,...,5+1. R = D (RLR).  (68)

Here we shall derive explicit expressions for derivatives Riotice that
the matrixC, i.e.C1), C(-)), andC(-i¥, which depend on the . . N
derivatives of the matrice8 andR, i.e. onG®, G-, G(-:K)| HOs = HELD =0, i, j#s+1 (69)
andR®, R0-D, andRE-i%). HOW = o, (70)
Recall that the derivative d&1, the inverse of a symmetric

matrix A, with respect to some scalar parametds given by whenever one index is equal &+ 1 and some of the other

indices is dfferent from fors+1, fori, jk=1,...,s+1.

ﬁA—l _ _A—la_AA—l

06 06 4)

A.1. Derivatives of the MME matrixd in simple LMM

and the rule for computing the derivative of a symmetric ma- In the simple LMM (L0), we get

trix ABAwith respect to some parameteis _ 1
P IA A 9B HO = - (71)
— (o
aeABA_ AB(%’ +>5 BA+A69A (55) ) (2 i )
_ _ _ HED = 2 A, (72)
Let A be an inverse of a symmetric mati i.e. A= B (0.2)3
Then, based orb@) and 65), we define the following matrix ' 6
operators: . _ HLD) ——— A, (73)
DO (A B) = —-ABVA, (56) (o?)
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. . 2 ., .
fori=1,...,s+1. Notice that _ ( 2)4 (Ai{c}iiAi — 2N Ai), (79)
I

fori=1,...,s andin fori = s+ 1 we get

H0D =0, and HO =, (74)
for any combination of unequal indiceg,k=1,...,s+ 1.
2 -, N
M\(Tvs+1,s+1) - X (As+1CAs+1 _a—élAsﬂLl)A, (80)

A.2. Derivatives of the MME matri€ in simple LMM (o-§+1)4
By combining 69), (60), (71), (72), and {4), in simple Fyrther,
LMM (10), we directly get . .
M(J’J) — M(Js')
. 1 W Wl
c® ——CAC, (75) - A’ (AICAj+A[CA)A
(0--2 2 2 2\2 I
|2 (O-i i])
cl ZC(ACA - o?A)C, (76) = S (A/ICljAj+ Aj(ChiA).  (81)
(o) (7%
i
cli) = —ZC(AiCAJ-+AJ-CAi)C, i#j, (77) fori#j,i,j=1,...,s and
(“i (sz) (i.s+1) (s+1)
MEsD = et
fori,j=1,...,s+1. - ;[\' AiCAc1 +Aci1CADN A
The explicit expression fo€(-¥ j.e. the third partial (0_202 3/ (AiCAs1 + s CADA,
derivative ofC for i, j,k=1,...,s+1, is not presented here, ' f+1 - -
however, it can be similarly evaluated based 6)( (71), R (Ai/{C}i~As+1A
(72), (73), and (74). (Cr)

+ N Asia{CLiAi),  (82)
A.3. Derivatives of the MSE matri¥y, in simple LMM fori=1...s
Recall thatMy, the MSE matrix of the best linear unbiased
predictor ofw, is given byMg = A’CA, whereA is ((p+r)x A.4. Approximation of the second component of the
a)-matrix of given coéicients. EBLUP’s MSE matrix in simple LMM
Let A be a solution of a system of linear equations

HA = A, i.e. A = CA, and letA be decomposed into block- According to 83), let us defineMsy, by

matrice; such that = (A_’ ,1\'1,~-~,A.'s)', whereAg is (pxQ)- _ sl stl OF—w) (F—w)

dimensional block-matrix, and, i =1,...,s, are (i xd)- Msiy = ZZZH C > — |-

dimensional block-matrices of. Similarly, let{C};; denote i=1 j=1 o o

the (, j)-th block of the matrixC, and let{C};. denote theé-th stlstl

row-block and(C}; thei-th column-block of the matric. = i Cij (83)
Then, based on the derivatives of the ma@ixve directly i=1j=1

get the first partial derivatives of the MSE mattlity with

. 5 o whereX;; denote the elements of the variance-covariance ma-
respect to the variance components...,o%,02,; as

trix  of 52. Then, by using

Mg = : SN AA = L SAAL =158 W-w=A'C(X,ZYR(y-Xb)-A'(0.1;)'u, (84
(of) (o)
i . \ we get
MG — SR AR, (78) D)
(02,,) \(;V_ZW ~A'CHOC(X,z)R(y— Xb)
lox
where the matrices; are defined byg1) and 62). The sec- I ~AN'C(X,2)RROR(y—Xb). (85)

ond partial derivatives ofly are given by:
and then, by taking the covariances of the vectors with:
i = 2 R (aca—o?a) A 1,...,s+1, we get,
W Y i i i A
loa
|

Cij = A'C(H(i>C(x,Z)'R-1VFr1(x, Z)CHW
2Notice that fori, j=1,..., sthe block{C}ijj = {C22}jj, i.e. itis the {, j)-th ) .
block of the matrixC,2, which can be, based oif)( efficiently computed as + H(')C(X, Z)'R_lv R_lR(J)R_l(X, Z)

Ca2=02,G(02,41r + MG) ", whereM = Z'Z - Z/X(X'X)"X'Z. + (X 2'RIRIRIVR (X, Z2)CHY
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. o s $
+C(X,Z)’R‘lR(')R‘1VFF1R(J)R‘1(X,Z))CA, > 4 — (62A/Ai - A{{C)iA)
(1~
(86) (%)
435 a A aa A
whereV = ZGZ +R. - Z%(A (Cli HoA + A"HofCiA)
Notice that in the simple LMM10) we haveR") = R) =0, i=1 (0—| ‘Ts+A)
fori,j=1,...,s andRD = |,. From that we geR *R(S") = O i A r x, A
R(s+1)1|¢1 RI1__1 I andn g - AzAuz Z(Ai{C}ijAj+Aj{C}jiAi), (92)
o2y " i<] (o-i (Tj)
Ci‘jz;z ’C(AiCHVCAJ- where A = CAAA, Ho = Asii = (X2)(X.2), and %,
(o202 (with elementsZij, i,j = 1,...,s+ 1), is the estimated
—Ljizss1) 5+1HVCA]_1] s+1) s+1A CHy vgglancei-é:ovgrlance rpa_trle/ofAEhe RFI\{IL estimatof =
(0’1,...,0' 1) . Here, A = (AO,Al,...,AS) is decomposed
ey (02,,) H)CA, 87) S .0 ) =
into block-mgtrlces such that is (px g)-dimensional block-
fori,j=1...,s+1, where Ji=s;1), Lj=s+1), Li=j=s+1y @re matrix, andA;, i = 1,...,s, are (j x g)-dimensional block-
the indicator funct|0ns andly = (X,2) R‘1VFF1(X Z) ful- matrices ofA. Slmllarly, {C }., denote thei(j)-th (ri xrj)-
fills the property dimensional block of the matrig, and{C}i. denote the-th
(rix (p+r))-dimesional row-block an{C}, thei-th ((p+r) x
CHVC=( Cél G OC ) (88) ri)-dimesional column-block of the matr{x.
—C22

Hence, the approximation of the second component of #é. Generalized Kenward-Roger method for statistical in-
EBLUP’s MSE matrix, i.e Mgy, in simple LMM is ference on fixed and randonftects based on adjusted

P estimator of the MSE matrix of the EBLUP in simple

: LMM
M5W:ZZEijCij. (89)
i=1 j=1 Here we shall consider the scaled Wald-typstatistic de-
With Cjj, i, ] = 1....,s+ 1, given by 67). - fined by @0), in particular
By recognizing that in simple LMMIO) we haveM\%',") = K . =\ approx
-2C;; andm{-) =—(Cij+Cji).i.j=1....,s+1, seealsod2] KF. = a(W_W) (MW’A) (W=w) "> Fay, (©3)

eq. (4.6), we get the alternative expresswn for the appraxi
tion of the second component of the EBLUP’s MSE matrix whereMwA is given by 02).
simple LMM, given by The moment based estimators of the parametarsly are

ol sl based on comparing the first and the second moments of the

: 1 @i.}) scaledF-statistic ©3) with the moments of th&-distribution
Msw = —= i My . . .
W=T5 ; J_Z;Z” Ma ™ (90) with g andv degrees of freedom, i.e. by solving the system of
o equations
where the matricet{"? are given by 79), (80), (81), and
@2 w are given by 19, (80). (8 EGF.)=«E, = E=E(Fq),
Var(kF,) = k?V, = V=Var(Fg,), (94)

A.5. Bias-corrected estimator of the MSE matrix of EBLURIhereE* — E(F*) andv* — Var(F*) Based on the properties

in simple LMM of the F-distribution we get
In simple LMM (10), the bias-corrected estimator of the v
MSE matrix of the empirical BLUP ofv= A’ (b’,u’)’, i.e. My, E = y=—2’
is given (based or39) and ©0)), as N 22(v+q-2)
. _ Qv -2P(v-4)
Mv”v,A = Mg+ 2Mgg 2E2 V+q—2
o (ssa = o o1 (95)
= — ZZZUM\%’J) s (92) a v
i=1 j=1 provided that > 4. By denoting
and in particular, by usindlg = A’CA and (9), (80), (81), Y 96
and 82), we get 0= 552 (96)
— .43 - A we get
M= A'A+—=LR (52, Ho — HoCHo) A q+2
~2 y=4+ , (97)
(a-s+1) go-1
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and consequently, the moment estimators afdy are given V* _ §(1+|§), (105)
as q
~ v with
K = =
E*(V_Z) ~ 1 ~
;- 4. 0t2 (©8) B = E(Al+6A2),
-1 s+l s+l ) i)
A, — S ~1i( ~135 (]
where A= ZZZ”U(M Mg )tr( Mg )
.V i=1j=1
Q:ZEZ (99) ~ lS+1A PN
- 2 = Sijtr(Mz*MP Mzt M) (106)

The expectation and the variance of the statBtidefined by
(93) can be estimated by using

E. = E(F*)=E;,2(EW<F | )) get
V. = Var(F.)=E(Vara(F.|6 s s ) ,
N ~2 A _ ii AN PR
+Varss (Ea(F.167)). (100) A = ; = tr((A A) AiA.)
Alnosaier in [l] derived approximations fdE. andV.. in the s 2%
special case, when the-statistic @3) is restricted on fixed +ZZ L
effects only. The derivation of the approximatidBsandV, < (&IZ&JZ)
in the general case, (i.e. for tiestatistic defined by9Qd)), is ( - ) ( , )
not presented here. However, in analogy with the derivation X ([} A> A Ju (A A) AJA]
of the approximations presented ij,[we suggesE. andV,, S 2% s
as the approximations @&, andV., in the following form YT o, 2
1 (O’i 0's+1)
. AN=1 ~ A
E, = 1+&, xtr((A’A) A{Ai)tr((A’ ) A’HOA)
. ) ~
V. = 2a+B). (101) + S+21 st ((A A) A’HOA) , (107)
a ("'s+1>
where
s -
. o O TN V4
B = - (AL+6AY), = ((A'A) lAi’Ai)
2q - ( 5_2)4
s+1 s+l () 0 = si A
— 1 ! -1 J ..
A = > sitr(MgtMY)r (Mgt M), 5% 2%j
=1 1-1 i (6262)°
s+l s+l _ ' ! N .
A= Y Y mitr(MgtMOMEtmMY).  (102) xtr((A’f\)_ RIA(NA) A;.Aj)
i=1 j=1 S
1,5+
The suggested approximations depend on the unknown +le (6-26-2 )2
variance components? = (0'%,...,0';1)’. Consequently, the Sy
suggested estimators of the parameteasidv, based on the xtr ((A'A) A{A; (A'A) A'Ho/\)
estimated versions 098), are Seton TR
) oo tr(((A’A) A’HOA) ) (108)
kK = ,\; (0-§+1)
E.(v-2) R R R
R 4+ q+2 103 as before, A = CA, Hp = Asi1 = (X2)'(X2), and %,
v qg—l (103) (with elementsj, i,j = 1,...,s+1), is the estimated
variance—cov/ariagce matrix of tAhe/ REML estimaiof £
where _ (62.....6%,,). A= (ApAL....AL) is decomposed into
o= V_*2 (104) block-matrices such thaho is (p x q)-dimensional block-
ZE* matrix, andAj, i = 1,...,s, are (; x g)-dimensional block-
and matrices ofA. S|m|IarIy, {C }II denote thei(j)-th (rj xrj)-
dimensional block of the matriC, and {C};. Adenote the
E -1 Ay i-th (ri x (p + r))-dimensional row-block andC}; the i-th

((p+r)xri)-dimensional column-block of the matré
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B. ESTIMATION OF THE VARIANCE COMPONENTS BY SOLVING THE The Fisher information matrix (which is in fact the inverse
MMEs of the asymptotic variance-covariance matrix) of the Mli-est
mators of the variance components, s@y(c2), can be eval-
The presented iterative procedure for estimation of thie vafated at the ML estimates® as
ance components by solving the Henderson’s mixed model| 52 1
equations has been suggested by Searle, Casella and McCulV'L( )= 2 ) o
loch in [49], see pp. 275-286. The MATLAB version of the [ { oulri- 2tr(\M.)]+tr(vvi,-Wji)}|SJ o W}S

“2-2 7~ .

algorithm has been implemented by Witkovsky &8]; mat trOI\I..)(TZUtr(W.JWJ.) col ‘T;]:r i =11, 113)
Here we use the same notation as 49][ In each step {mm}.zl i)

of the suggested iterative procedure, we shall dehéie= .

A0 L 77760 GO = diag(a.z(t)l ) The algorithm starts wheredij = 1if i = |, otherwisejjj = 0, andWi; is the ¢ xr)
1 o A : lock of the matrix.

with the choice of the starting values for variance compamefock of the ma

20 = ai(o) o-iiol and setting = 0. In thet-th step of

the procedure the algorithm solves the system of mixed mo&ef- REML estimates of the variance components

equations:

54
(7'3+1

Similarly, the REML estimates of the variance components
are calculated iteratively as

XX xzGcW \( b® X'y
( Zx VO )( v )_( Z’y ) (109) g’ g®
2(t+1) i Y :
O'i = —(t)’ | = 1,. .., S
andd® = GO, ri—tr(Ti")
y (y—Xb® - Za®
o2, = ( ), (114)

B.1. ML estimates of the variance components n-—rx

The ML estimates of the variance components are calevhere byrx we denote the rank of the matri ﬁi(t) is thei-th
lated iteratively as ri-dimensional subvector of%* and T{" is thei-th diagonal
block of the matrixT®, where

GO o
0-.2(t+l) = —ul ul | = 1 S, t t -1
| norw®) T0=62,0(e2,% +mMa®) , (@15)
—Xb® —zg®
o2, = vy ) (110) whereM =Z'Z~Z'X(X'X)"X'Z.
n

The log-likelihood function for REML estimation evalu-

wheredf is thei-th ri-dimensional subvector af® andwW." ated at the REML estimates’,"say loglikeg ., is

is thei-th diagonal block of the matriw®, where . 1 1 e
9 loglikgemy =~ (n-rx)log(2) - 5 log(|BV )
-1 , -1 -
WO = 2OV = %0 (0291, +272G0) 7. (a11) _%y B(B'VB) By,

1 N
The iterative procedure should be stopped aftet-thestep —E(n— rx) Iog(27ra§+1)

if [|52® _ ;2D for the ch ision limit, and 2 )
i “0' o H < g, for elc osen precision limi, an ——(—Iog(|T|)+(n—rx)), (116)
2(t) 2(t) 2 () 2
WheI’EO' = 0-1 ’~~"O-r+1 . .
The final solutions of the iterative procedure are denot@’@ere B is annx(n-rx) matnx,Asuch thatABBA - Ifl_
by b, 0 = (0’1,...,0’5)', ande? = (o“-i,... ) Similarly, we X(X’X)”"X"andB'B = Inr,. FurtherT = ('r +MG/52,

A The Fisher information matrix of the REML estlmators of
denoteW and use the adequate notat@nR, andC for the the variance componentiew(c2), can be evaluated at the

estimated versions of matric€ R, andC. REML estimates-2 as
The log-likelihood function for ML estimation evaluated at

the ML estimate® ando?, say logliky, , is |REML(&2) = %x
1 1 { (iij[ri—2tr(f..)]+tr(fij'fii)}S { tl’(f“) Z tr(-i;ijfji)}S
loglik = —Znlog(2r)- = log(|V mat  oref  Jij=1 el 676%, i=1
gifmL 2 9(2r) 2 g(| |) {U(Tu) th(TujTii)}s n—ry—r+tr(f?) - (A1)
row 6262 i=1 &t

i s+l s+l

3-8 L),
1 - wheredij = 1if i = ], otherwisesij =0, andT;; is the ¢ xr)
= _§<n|°9(2’m 1)~ log(IW) +n).(112) block of”the matrixT . ! ! o

. Similarly, the final solutions of the procedure are denoted
whereV = ZGZ +42, 1, andW = (Ir +Z'ZC§/6—§+1)_ . by b, (i = (0’1,...,0’3)', andg? = (6—%,...,6—31)'. Further, we
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denoteT, and use the adequate notat@nR, andC for the i,j=1,...,s+1, and by usingX17) we get
estimated versions of matric€ R, andC.
For more details on ML and REML estimators see the Hwy = 2lrem (). (125)
Chapter 6 in Searle et al. (1992).
Note that the MINQE-2, defined by 118) or by (123), is

not given uniguely unless the MINQE matrix is of full rank.

In fact, one version of the solution to the MINQE equations is
For completeness, here we present procedures to calcuidte: H*q, whereH* denote the Moore-Penrogenverse of

the MINQE(I) and the MINQE(U,I) estimators of the variancthe appropriate MINQE matrix.

components at given (prior) values of the variance compo-The MINQE of unbiasedly estimable vecter-?, whereF

nentso-20) — 0-1(0) 02(0)) Here we assume thaf(0)> 0 is such matrix thaF’ = HA for some matrixA, is F6-2, and is

B.3. MINQE'’s of the variance components

s+l
foralli=1,...,s+1. For more details on minimum normunique. _ _ .
quadratic estimation of the variance components see3gly. [ In particular, under given assumptions, the MINQE(U, 1)
[42], and [43]. F&2, with F such thatF” = Hyy)A for some matrixA, is the

The MINQE(l) of o2, say¢?, at the prior valuer?© is 0'2(0) Iocally minimum variance unbiased invariant estimator
defined as the solution of the foIIowmg system of equation®f Fo? with

H(|)5’2 = q’ (118) E(F&Z) = FO—Z,
. . Var(F6210?%) = 2FHg,,F’
where by Hg) we denote the + 1 x s+ 1)-dimensional = 2AHuHA. (126)

MINQE(l)-matrix andq = (qs,...,0s+1)” denotes the vector

of MINQE quadratic forms. The matrik(;) is defined by its  On the other hand, the MINQE(P4-2 is a biased estimator
elements as of Fo? with

{H(|)}ij=tr(v(0)*1viv(0)*1vj), (119) E(F6?) = FHgHuno?
Var(F&?| @) 2FH  HunHy F'. (127)

Lj=1,...,s+1, whereV; = ZZ, fori = 1,...,s, Vsi1 = I,
andVv© = 2GO7’ + 52O, ZS” 2(O)V The matrixH)
can be easily evaluated by usmk;lB) namely
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