
10.2478/v10048-012-0032-7

MEASUREMENT SCIENCE REVIEW, Volume 12, No. 6, 2012

Algebraic Frameworks for Measurement in the Natural Sciences

Invited paper

Zoltan Domotor∗

Departments of Philosophy, Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA

The goals of this paper fall into three related areas: (i) we presentan overview of a universal algebraic paradigm in which
measurement specialists can construct formal models of measurement in a unified manner and systematically reason about a large
class classical measurement operations, (ii) we construct convenient von Neumann quantity algebras and quantity-channels between
them to represent measurements, and introduce the dual framework of state spaces and state-channels between them to investigate
the statistical structure of measurements, and (iii) we provide several detailed examples that illustrate the power and versatility of
algebraic approaches to measurement procedures.

Keywords: Discretization, duality, measurement operation, pointer quantity, quantity algebra, quantity-channel, state-channel,
state space

1. Introduction and general background

The main purpose of this paper is to study a large class
of classical measurement procedures in the frameworks

of quantity algebras and quantity-channels, and in a dual
measure-theoretic setting of state spaces and state-channels.

Measurement procedures are modeled at different levels of
abstraction, reflecting the variety of options in isolatingthe
empirical and statistical structures of interest that effectively
characterize various measurement operations from a given
perspective. In view of different conceptualizations, there are
many competing models of measurement, and each model is
limited by the assumptions made in its design. In this sec-
tion we briefly describe three major theoretical approachesto
measurement that enjoy significant prominence in various dis-
ciplines of applied science and engineering, and then move on
to present the algebraic paradigm on which this paper is based.

In some ways, the most natural place to start is with the
oldest representational theory of measurement(acronymed
RTM), systematically developed by Krantz et al. in three
volumes, starting with the expository volume [8]. In the
tradition of empiricist methodology, the core idea of RTM
is to treat measurement as a process ofassigningnumbers
to certain qualitative attributes – instantiated by a givendo-
main of stereotype empirical entities (objects, events, etc.)
– in such a way that the comparative relation characteriz-
ing the attribute under consideration is faithfully represented
by a corresponding order relation on numbers. In technical
terms, measurement procedures are captured by various (em-
bedding)homomorphismsfrom given empirical order struc-
tures to selected numerical order structures.1 This kind of

∗Corresponding author: zdomotor@sas.upenn.edu
1For example, the length attribute of rods is characterized bythe associ-

ated “shorter than” comparative relation or by its converse,the temperature
of objects comes with the obvious ”colder than" binary relation, and so forth.
Here the important illustrating point is that upon introducing the mathemati-
cal shorthandx<y for “object y is colder than objectx”, the definition of an
embedding homomorphismQ for temperature can be stated quite simply in

measurement-theoretic representation is shown in Figure 1
below, in which the homomorphismQ between an empirical
relational structure〈O ,<〉 and a numerical relational struc-
ture〈R,<〉 is also known under the uninspired name“scale of
measurement”.
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Q

< <

Q
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Fig. 1. Visualization of measurement as an order-preserving map
from a given domain of objectsO to that of numbersR.

The assignment of numbersto degrees, levels or amounts
of attributes instantiated by objects or events is fundamen-
tal, since it justifies the use of real numbers and real-valued
functions in science. A crucial critical remark here is thatthe
enlisted help of mathematics does not come to significantly
more than the study of various types of scales of measure-
ment, transformations between them, and some related cri-
teria for empirical meaningfulness. Crucially, RTM’s cen-
tral measurement problem lies in ensuring themeasurability
of attributes or in other words the numericalrepresentabil-
ity of their empirical order structure. Recall that for an at-
tribute to be measurable, it is necessary to provide a list of

the form of equivalencex< y ⇐⇒ Q(x) < Q(y) for all objectsx andy. In
this way, the natural ordering of numbers faithfully emulatesthe temperature-
based ordering of objects. Reflecting this fact,Q(x) is the temperature of
objectx in the “scale” described byQ. An unfortunate aspect of RTM’s ho-
momorphisms is that they exist (in a strictly nonconstructive sense) only if
the comparative relation< satisfies certain nontrivial axioms, such as the fa-
miliar transitivity condition: (x<y & y<z) =⇒ x<z for all entitiesx,y and
z. This general picture can be extended by adding compatiblecomposition
operations on objects and events or by considering an empirical ordering of
pairs of objects.
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conditions (a.k.a. axioms), governing the attribute’s compar-
ative relation, that is sufficient for the existence of an em-
bedding homomorphism from the empirical order structure
to the numerical order structure. It is disenchanting to learn
that in many practical cases the decisive axioms (e.g., the so-
called Archimedean axiom that excludes infinitesimals) areof
a highly theoretical nature, known to be difficult to test in the
attribute’s domain of instantiating objects. Moreover, insome
applications of RTM it is truly hard to find the correct list of
empirical conditions that grants the existence of a represent-
ing homomorphism. For example, it is far from clear what
axioms should a measurement specialist choose for measur-
ing the level of violence depicted in TV movies, in order to
grant the existence of a homomorphism that provides mean-
ingful and usable numbers for the occurrence of violent acts
in motion pictures.

As practical mathematical tools, RTM’s models of mea-
surement tend to operate at a lamentably high level of ab-
straction. For example, RTM’s axiomatic formulation of
an equal-arm balance measurement cannot distinguish mass
from weight. Along similar lines, RTM’s setup developed
for the traditionaldirect-comparisonbased measurement of
length of rods by placing alongside a ruler and stepping it off

against the rod under consideration, does not single out this
collinear type of measurement from some other, say, nonstan-
dard orthogonalmeasurements, employing the Pythagorean
theorem. This tells us that incorporating specific modes of
measurement into RTM’s models is an extremely problem-
atic enterprise. Since extensive quantities are axiomatized ba-
sically in the same way, it is not clear exactly which quan-
tity is being measured. Another important practical point
is that in measuring length, RTM relies on the existence of
highly idealized straight-linerigid bodies, yet the length at-
tribute is instantiated also by ropes, rubber bands, and a host
of other curved real-world nonrigid objects. RTM’s measure-
ment models do not make a sharp distinction between es-
tablishing the value of a given attribute by measurement vs.
by theory. For example, since temperature is a theoretical
thermodynamical quantity (defined by the partial derivative
of the system’s internal energy over entropy) governed by
thermodynamical laws, its values cannot be determined ef-
fectively by fundamentalmeasurement, based on the “colder
than" qualitative relation. Instead, temperature is commonly
measuredindirectly, say, by a thermometer with a mercury
column, whose length is linearly related to temperature. The
point here, of course, is that a realistic measurement of a tar-
get attributeQ (instantiated by an object) employs a second
(directly observable)pointer attributeQ� of a measuring in-
strument, whose values are nomologically related to those of
Q by an equation of the formQ� = F(Q).2 Thus, to obtain
the value ofQ from a theory is one thing and to acquireQ’s

2For example,resistance temperature devicesrely on the simplified em-
pirical resistance lawR = R0(1+α ·T), stating that a platinum wire’s resis-
tanceR linearly varies with its ambient temperatureT, whereR0 denotes the
wire’s resistance in a melting ice andα stands for the platinum’s material
constant.

value bymeasurementis yet another. Because the attributes
of scientific interest stand in crucial lawful relationships with
other attributes, their measurements are practically always in-
direct or derived. It must be recognized that RTM is not able
to serve the complex needs of engineering applications, sci-
entific model development or theory validation. Therefore,
despite its prominence in philosophy of science, mathemati-
cal psychology and economics, RTM finds itself in a minority
position within the natural sciences.

The strongest criticisms of RTM concentrate on the limited
applicability of RTM’s measurement models in engineering
and applied sciences. For example, RTM typically does not
include in its measurement models the all-important cause-
effect and other law-like relations between measurable at-
tributes, it lacks concrete representations of measuring pro-
cedures, instruments and their dynamical interactions, and it
is not tailored for a statistical description of measurement er-
rors, noise, and uncertainties in general. Additional critical
analysis of RTM may be found in [2].

The second approach to measurement processes is pro-
vided by the combined resources of mathematicalsystemsand
signal theories or more concretely, by the conceptual frame-
work of algebraicsignal processing theory of measurement,
hereafter abbreviated as STM. As a by-product of classical
systems and signal theories, STM is built around temporally
(and spatially) varying smooth physicalsignals3 and their
transformations thereon by man-made physicalsystems, in-
cluding but not limited to sensors, transducers, filters, am-
plifiers, analog-digital converters4, and signal reconstruction
(inversion) modules. At the heart of STM rests the reduction-
ist idea that measurement processes are merely special cases
of other processes studied in mathematical systems and sig-
nal theories. In engineering science, measurements of a tar-
get system’s signal are described by joint families of differ-
ential equations with constant coefficients in a time or state
domain. As is well known, the traditional input-state-output
framework of systems theory is extremely well developed and
is widely accepted in the engineering community. The basic
formal modeling methodology of STM consists of associat-
ing with each physical system a suitabletransfer operatoror
a transfer matrix(obtained from the representing differential
equations) that sends the system’s input signals to its output
signals, mirroring – modulo admissible errors – the system’s
actual signal processing behavior in a designated range.

Within STM, measurement is understood to involve a
continuous-time detection, processing and presentation of in-
formation carried by the signals of interest that are fed by
the target system into a serially connected chain of several
separate elements. In simple situations, a measuring instru-
ment consists of a front-endsensorand a cascaded tail-end

3Intuitively, signals are understood to be temporally or spatially varying
physical quantities, used to convey information about designated physical
phenomena. Signals are represented by functions on a time, space or related
domains. The most prominent examples of variation are smooth, continuous
and discrete temporal changes in signal values.

4For practical estimation algorithms in signal sampling see [5].
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signalinversionor reconstructionunit.5 A sensor is a system-
instrument interface hardware, serving as a crucial component
of most measuring instruments. It converts the informationof
interest (e.g., about the degree of temperature, pressure,and
so forth) carried by the target system’sunknownoutput sig-
nal (i.e., time-dependent measurand)Q(t) into a correlated in-
formation, carried by the sensor’s electrical, optical or some
other kind of output signal. Since the design of sensors is
based on fairly well-established physical principles, thede-
scription of their behavior is given by the technical resources
of applied physics.

It is not generally realized that in STM the sensor’s output
signalQ′(t) is just a raw intermediary that has to be fed into
a reconstructor (inversion) module in order to be able to
obtain the terminal signal̂Q(t) of interest which optimally
estimatesor approximatesthe system’s unknownmeasurand
Q(t) with measurement errorEQ(t) =d f |Q̂(t) − Q(t)|. In
fact, in ideal measurements the estimateQ̂(t) is obtained
from the measurandQ(t) by the composite transformation
Q̂(t) = F−1 ◦ F

(
Q(t)
)
, whereF denotes the sensor’s transfer

operator andF−1 stands for the reconstructor’s input-output
operator. Although in the majority of measuring devices
the representing transfer operatorF is not invertible, here
we assume that the reconstruction unit is designed in such a
way that its transfer operator can be viewed as a generalized
left inverse ofF that solves the so-calledinverse problem.6

Figure 2 shows the block diagram of a signal flow from the
target system to a measuring instrument and the physical
arrangement of instrument modules.

S ignal
S ystem Q

S ensor Reconstruction Q̂

Fig. 2. Signal flow diagram of a simple measurement

In most commercial instruments, the reconstructor is just
an analog or digital information processing module that is
programmed or calibrated to generate the “reconstructed” sig-
nal Q̂(t) from the sensor’s output signalQ′(t). It is important
to bear in mind that in the sensory and reconstruction trans-
formations of signalsthere is no reference to numbers. The
measuring instrument’s output signalQ̂(t) is usually fed auto-
matically into a feedback control system or is transmitted to a

5Here the notion ofreconstructionis similar to the one introduced by R.
Z. Morawski in [9].

6For example, if the information carried by the signals is described by
a Gaussian probability density function, then the inverse problem is usu-
ally solved by the method of least squares that determines the signal’s least
squares estimator. For concrete applications see [7]. It is easy to see that if an
incrementally linear sensor is described by the equationQ′(t) = 2 ·Q(t)+3,
then the inversion module is characterized by the equationQ(t)= 1

2 (Q′(t)−3).

remote place, where it is recorded in a computer for additional
processing or storage, without any direct (human) observerin-
tervention. There is also a less common option in which the
signal is sent to a display unit.

Not surprisingly, STM has not been the subject of much
cirtitical scrutiny, because (i) signals and systems theories
possess solid mathematical foundations and enjoy an uncom-
monly wide range of applications (see in particular [11]), and
(ii) measurement engineers and practicing scientists are sel-
dom concerned with foundational issues in spite of the fact
that the study of measurement has always been impeded to
various degrees by inadequate treatments of its foundational
aspects. We shall now move on to provide a brief assessment
of STM that is limited to (a) the nature of STM’smodels of
measurement, and (b) to STM’sinterpretationof measure-
ment.

First, one unfortunate aspect of traditional systems theory
(and its applications in STM) is that it treats inputs and outputs
asintrinsic features of systems. As noted earlier, in the input-
state-output systems-theoretic framework, the typical interac-
tion between two systems is handled by placing the systems in
series between input and output signals, forming appropriate
signal algebrasA andA′ respectively, as shown schematically
in Figure 3.

A
T T′

A
′

Fig. 3. Traditional transfer operator (matrix) description of
cascaded systems.

Since the resulting transfer operator representing the cas-
caded total system is given by the compositionT′ ◦T of op-
erators modeling the respective component systems, we can
quickly conclude that STM’s measurement models have the
equational operator form̂Q(t) = Fn◦ · · · ◦F2◦F1

(
Q(t)
)
, where

the sequenceF1,F2, · · ·Fn refers to the the transfer operators
representing the measuring instrument’s serially connected
components with input measurandQ(t) and its output esti-
mateQ̂(t).

Second, since STM’s models of measurement rely on spe-
cial representations of signals, using Fourier, Laplace, bi-
lateral Z and other transformations that do not automati-
cally generalize to noncommutative signal algebra frame-
works, there are no readily accessible formal tools for model-
ing quantum measurement.

We end our assessment of STM’s models with a brief di-
gression in which we consider an alternative to classical sys-
tems theory that is adual or a mirror image of theinput-
output transfer operatorapproach, recalled above.7 It is
widely known that the dynamical behaviors of most systems
encountered in physics, chemistry, biology and engineering

7The formal framework for measurement advocated in this paper is avari-
ant of this dual perspective.
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can be effectively characterized by (ordinary, partial, time-
delay, etc.) differential or difference equations,without sep-
arating the pertinent signals intointrinsically given ‘input’
and ‘output’ types. The reader is urged to consider the dy-
namical behavior of a simple pendulum or that of a planet
in our solar system on which various measurements are reg-
ularly performed and ask “What is the intrinsic input signal
of a pendulum and what is the standard output signal of the
planet Mars?” Although everybody recognizes that the input-
output framework of systems theory enjoys wide ranging ap-
plications, for the purposes of measurement it is necessary
to cast systems-theoretic models in a considerably more gen-
eral setting that is capable of a highly flexible representation
of any measurement operation whatsoever, performed on any
target system studied in the natural sciences and engineering.
A big step in this direction came with the developments of
algebraicandbehavioralsystems theories that are based on
signalalgebras (or signal spaces).

The essential idea is to proceeddually to the traditional
systems theory and associate with each system an appropriate
signal algebraA that provides a formal ambience for all possi-
ble law-like relations between temporally varying signalsand
for the target system’s possible dynamical behaviors.8 The
dual algebraic approach to systems is not limited to systems
lacking inputs or outputs. As shown in Figure 4, with the help
of tensor product algebras, the algebraic framework can also
handle systems that require a decomposition of signals into
input and output types.

A

J
A⊗A′

Dt

E
A
′

Fig. 4. Signal algebra description of cascaded systems.

In the case of two interacting systems, say, a target sys-
tem and a measuring instrument, each constituent system is
described by an appropriate signal algebraA andA′ respec-
tively, and the combined system is characterized by the prod-
uct signal algebraA⊗A′, generated by coupled or entangled
signals. We know that for a dynamical measurement to take
place, there must be a physical interaction between the mea-
surand’s system and the measuring instrument that outputs a
measurement result at the end of the joint dynamical evolu-
tion of the total system, given suitable initial conditions. Such
interactions are modeled by tensor product signal algebras.
Now, the signal algebra-based approach recovers the input-
output relations from the tensor product signal algebra with
the help of (i) a naturalembeddingalgebra homomorphismJ,
and (ii) a product-typeexpectationmapE. The time evolu-
tion of the joint system-plus-apparatus signal is represented

8Note that the boxes are now annotated with the names of signal algebras.
In many engineering applications, signal algebras are usually specified by
structured sets of smooth real-valued functions defined on a time domain,
e.g., the algebraC∞(R) of smooth (i.e., infinitely differentiable) real-valued
functions on the continuum time domainR of reals.

by law-based time-indexed automorphismsDt of the product
signal algebra.

Finally, notice that the algebraic framework capitalizes on
ideas that make it suitable also for modeling passive and static
measurements, in which the interaction is passive and time or
space parameters are not included. As widely known, the sim-
plest types of static deterministic measurements (e.g., length
measurement by meter sticks, volume measurement by grad-
uated measuring cups, granularity measurement by reference
materials, etc.) are based on the principle of direct compar-
ison, in which the quantity or signal to be measured is di-
rectly related to a measuring device’spointer quantity, which
is carefully calibrated against the measurand’s sampled val-
ues, without any explicit reference to dynamical interaction
or temporal changes. As sketched in Figure 5, in elemen-
tary nonideal measurements, a measuring instrument’s alge-
bra (usually generated by its pointer quantity)A is mapped by
a homomorphismM to the target system’s algebraA′ in such
a way thatM sends the pointer quantity to the measurand’s
best estimate inA′.

A
M

A
′

Fig. 5. Algebraic description of a static measurement, involving a
target system and a measuring device.

It should be carefully noted that the homomorphismM
goes from the instrument’s algebraA to the system’s alge-
braA′, because of the fact that the measurand’s estimate is
inferred from meter reading.

Returning from our digression on algebraic systems the-
ory, we now make a few comments regarding STM’sinter-
pretationof measurement. On STM’s signal-theoretic inter-
pretation, measurement is basically a dynamical signal pro-
cessing enterprise, whose purpose is to output the measured
signal’s estimate that meets the needs of intended applications
in the world of control systems. Since the numerical values of
signals are of secondary importance, measurement is not di-
rected at making a contribution to the design and validation
of scientific theories. Moreover, because STM is confined
mainly to continuous-time dynamical measurements of sig-
nals, static and passive measurements do not play any role in
it. Related to this, pointer quantities and their relationships to
measurands are not included in STM’s measurement models.
In contrast to the above, classical measurement is commonly
thought of as an empirical procedure, involving the measur-
and’s target system that is dynamically coupled with a mea-
suring instrument in a such a way that after having reached
their stable joint entangled state, the instrument’s needle will
point to an ink mark of a numeral on its scale that is strongly
related to the measurand’s value. Last but not least, STM’s
measurement models do not exploit the mathematical duality
between quantities and physical states that is of the highest
importance in all approaches to measurement. Indeed, the
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simultaneously-present quantities (signals) are necessary for
reasoning about the underlying target system and one-at-a-
time states render the possible ways in which the system fixes
the values of its quantities.

The third approach to measurement we shall advocate here
investigates measurement procedures by the powerful concep-
tual tools of algebraic analysis, such as normed linear algebras
and quantity-channels between them, and their dual coun-
terparts, formed by state spaces and state-channels.9 These
algebraic-analytic structures will enable us to provide explicit
descriptions of a large variety of measurements. In keeping
with the terminology adopted above, we shall refer to the third
approach as analgebraic theory of measurement(or simply
ATM).

For the approach we are going to adopt in this paper, it
is appropriate to view measurement as a physical operation
performed on a target natural system that yields partial infor-
mation about the extant value of the system’s selected quanti-
tative property. As mentioned in less detail earlier, measure-
ment operations are implemented by physical interactions be-
tween a natural system under consideration and a measuring
instrument, involving a calibratedpointer quantitythat en-
ables the experimenter to deduce the best estimate or approx-
imation (limited by its accuracy, sensitivity and resolution)
of the extant value of the system’s quantity to be measured,
commonly called themeasurand, to which the pointer quan-
tity is dynamically correlated during the interaction. Simply,
known dynamical changes in the instrument are used to es-
timate (within a specified range) the unknown values of the
coupled target system’s measurand. In this way, certain (usu-
ally man-made) designated systems are used to tell us some-
thing informative about some other systems in the world. The
amount of information provided by a measurement procedure
depends on the strength of the underlying deterministic or
stochastic linkage, specified by the dynamical coupling be-
tween the target system and measuring instrument.

Within ATM, a (physical, chemical, etc.)quantity10 is a
formal entity ascribed to the target system’s attribute of in-
terest, whose numerical values encode the attribute’s quali-
tative degree or amount possessed by the system at various
moments of time. Epistemically, quantities are the observer’s
decisive information-gathering entities about the system’s be-
havior. Therefore, as a quantity deployer, the experimenter
queries the target system with various measurements of quan-
tities. Importantly, as was mentioned before, the result of
measurement of a target system’s measurand depends on the
system’s extantphysical state, and of course the system is pre-

9A linear algebraover the scalar fieldR of real or complexC numbers is
a set which is both a ring and a linear (vector) space. Anormed algebrais an
algebra which is also a normed linear space. A norm is needed for the limit
properties of certain sequences of quantities.

10Since in practice measurement involves several processing stages, start-
ing with sensors, amplifiers and transducers, and ending withreconstruction,
display and storage units, signal theorists have replaced the termquantityby
the termsignalthat serves well in STM’s approach to measurement. We shall
use the termquantitybecause it is more general and is well established in the
natural sciences.

sumed to have the capacity to be in different states without
losing its systems-theoretic identity.

States encapsulate the totality of the system’s internal con-
ditions, i.e., the way the system is at various instants of time.
As alluded to earlier, the most important feature of quanti-
ties is theirdual relationshipto states. The target system’s
state fully determines the values of the system’s characteriz-
ing quantities and conversely, at any given time the quantity
values collectively specify the system’s state, i.e., the system’s
physical mode of being at that time. In the case of systems
studied in statistical mechanics such state specificationsare
unmistakably statistical in nature.

Since at each time the target system is in a definite state,
by the above-mentioned duality any quantity associated with
the system must have a concrete numerical value, even if the
experimenter does not know what it is. The nonempty set
of possible valuesof a quantityQ is commonly referred to
as itsspectrumor value spaceand is accordingly denoted by
Spec(Q). The simplest nontrivial quantities are Boolean or
two-valued, meaning with “no” and “yes” values, formally
specified by the numerical doubleton set Spec(Q) = {0,1} and
observed in binary measurements, such as green/red alarm
system lights, circuit testers, and other one-bit detectors. A
considerably larger subset of the set of real numbersR is used
for the values of mass, charge, energy and other quantities
associated with physical systems. Crucially, by classicalide-
alization it is assumed that the a quantity’s continuum spec-
trum remains meaningful also at the Planck scale, even if most
of the spectral values can never be identified exactly by any
actual measurement procedure. Speaking philosophically,in
view of measurement errors, limited sensitivity and resolu-
tion, thermodynamical fluctuations in the measuring instru-
ment and quantum uncertainties, measurement-based episte-
mology provides strictly less information about the targetsys-
tem than available in the presumed ontology of quantities. Put
another way, in general, experimenters are not equipped to
know the precise values of the target system’s quantities and
the system’s actual states. Simply, measurement results come
in finite bits, expressed by rational numbers. What is usually
known about the target systems are some reasonableapproxi-
mationsor interval-estimatesof certain quantities and values,
and likewise states. It should also be mentioned that in con-
sidering the value of a quantityQ, e.g., the target system’s
magnitude of energy, by ‘value’ we mean thenumerical value
of the algebraic objectQ that encodes the amount of energy
that exists objectively in the system, independently of whether
or notQ is measured.

We propose to model measurement procedures by relying
on the following two basic conceptual ingredients: (i) ado-
main of realitycomprised of systems and measurement pro-
cedures thereon, and (ii) adomain of algebraic modelsto-
gether with quantity-channels between them, intended to rea-
son about the chosen domain of systems and associated mea-
surement procedures. We now turn to a general investigation
of systems, measuring instruments and their involvement in
measurement operations.
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2. Monoids of systems and channel structures of
measurement

In the domain of realitywe have a class natural systems
of interest (e.g., various pendulums, electric circuits, gases or
fluids in vessels, particles, elastic solids, and so forth) that are
at any instant of time in various modes of being (e.g., being
in a state of equilibrium, being heated, being accelerated,and
so on), classically referred to asstates. In general, anatu-
ral systemis any part of the physical world that can (at least
in principle) be separated from its ambience, and treated as
an empirically meaningful and autonomous object of inves-
tigation. For us, a system is an objectively existing physical
thing-in-itself that can be accessed by observation and mea-
surement. The temporal evolution of systems is investigated
in terms of quantity changes, reflecting the changes in the tar-
get system’s states.

On the basis of past experience we assume that systems of
the same physical type can becombinedinto larger systems
by suitablecoupling. Thus, by takingS andS′ to be two sys-
tems of interest in a given class of systemsS of the same (or
compatible) physical type, the expressionS+S′ denotes the
compositesystem inS of systemsS and S′. For example,
two pendulums can be coupled to form a double pendulum,
an electric circuit can be coupled with a voltmeter or with an-
other electric circuit, and so on. Depending on the type of
systems, the composition operation may be realized in several
physically different ways, including (but not limited to) the
most familiar parallel and series configurations. The classof
systemsS also includes copies of thetrivial systemO (e.g., a
perfect wire in the class of electric circuits, a pendulum with
negligible arm size in the class of simple pendulums, etc.).
We must immediately recognize the difficulty in specifying
the composite systemS+S. We ask bluntly, how does the
experimenter realistically compose a system with itself? The
answer: with an acknowledged element of idealization it is as-
sumed that each system inS has an unlimited number of phys-
ical copies. If two systemsS andS′ are copies of each other,
i.e., if they are physically similar in all relevant respects (in-
cluding behavior and quantitative properties of interest), then
we say that they arephysically equivalentand writeS ≈ S′.11

Now it seems reasonable to set the composite systemS+S to
be physically equivalent toS+S′ with S≈S′ for some system
S′ and treat the composition operation in ageneralizedway.
That is to say, the compositeS+S′ is meant to be unique
modulothe congruence relation≈. In particular, for all sys-
temsS,S′ andS′′ in S the following conditions are assumed
to hold:

(i) Commutativity:S+S′ ≈ S′+S.

(ii) Associativity:(S+S′)+S′′ ≈ S+ (S′+S′′).

(iii) Identity: S+O ≈ S ≈ O+S.

11From an empiricist point of view, in this case no experiment addressing
the behaviors under consideration can be used to distinguish S from S′.

Physical equivalence is definable in terms of a subsystem
relation. We say thatS is a subsystemof S′ and write
S 4 S′, provided thatS is a physically meaningful part
of S′ with its local states and quantities, satisfying the
Monotonicity

(iv) S 4 S′ =⇒ S+S′′ 4 S′+S′′, and
Nullity

(v) O 4 S conditions.

In this way, systems of the same physical type form a general-
ized partially ordered monoid〈S,O,+,4〉, in which the phys-
ical equivalence relationS ≈ S′ is defined by the conjunction
S 4 S′ & S′ 4 S. The simplest example of a partially ordered
monoid of systems is given by the sequence

O 4 S 4 S+S 4 S+S+S 4 · · ·
of composite systems and their copies, whereS is any system,
say, a simple pendulum or a single Newtonian particle mov-
ing in a spatial region. The notion of physically analogous
systems is captured by suitable homomorphisms between par-
tially ordered monoids of systems that uphold a physically
meaningful transformation of quantities from one class of sys-
tems to another. There are several other operations on systems
(e.g., the join of two systems), but we shall not consider them
here.

In order to be able to effectively reason about systems and
measurements thereon, ATM moves from a domain of real-
ity of interest to the domain of algebraic models by associ-
ating with each systemS in S an suitable quantity algebra
AS

12 and its accompanying convex spaceS(AS
)

of states.13

Although the technical discussion in the preceding paragraph
may seem off our informal track, it does point us in the right
direction. Concretely, it tells us that investigators can model
the dynamical behaviors of systemsuniversally, in terms of
appropriately chosen quantity algebras and state spaces. We
have already emphasized that a target system’s quantity alge-
bra determines and is determined by a state space. The type
of duality we have in mind is captured by the 2-level channel
diagram below.

Next, we extend the foregoing modeling idea of systems
and their behaviors to modelingmeasurement actionsthat are
also elements of the objectively existing domain of reality.
For our present purposes we shall use the mapping symbol-
ism M : S _ M to denote a given elementary measurement
operationM that transfers information from the target system

12Here it seems appropriate to ask: Why should measurement specialists
associate an entire algebra of quantities with each system under consider-
ation? Because the system’s possible behaviors cannot be satisfactorily de-
scribed by a frugal list of basic characterizing quantities(e.g., voltage, current
and resistance in the case of classical electric circuits).Complete descrip-
tions of system behaviors require longer lists of derived (defined) quantities
together with law-like relations between them, scale changes and limit op-
erations. These constructions on quantities are naturallyaccommodated by
normed algebras.

13These and other related mathematical notions are discussed inmore de-
tail in the next section.
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S to a selected measuring instrumentM. In the case of a joint
measurement procedure (involving a transfer of information
to two designated instruments) we writeM : S _ (M+M′).
A measurement operation involving a target system that is dy-
namically coupled with an instrument is symbolized by the
mapM : S+M _ M, and so forth. This notational system
handles remarkably well all classical measurement operations
arising in engineering and applied sciences.

By analogy with the above, we associate with each (static)
elementary measurement operationM : S _ M, belonging
to the domain of reality under consideration, a suitablestate-
channelof the form

S(AS)
M∗−−−−−−−−→ S(AM)

that represents theinformation transfer from the target sys-
tem’s state spaceS(AS to the measuring instrument’s state
spaceS(AM). In classical situations, a state-channel is basi-
cally a transition probability (a.k.a. Markov kernel) thatsends
each probability distribution in the system’s state space to a
unique probability distribution in the measuring instrument’s
pointer state space. This model of information transfer readily
extends to vastly more general state spaces.

Since in a large part of this paper we shall be concerned
with a dual methodology that models systems both in terms of
their physical states and quantities, it is also important to bring
quantity-channels into the picture. Henceforth, ifM denotes
a quantity-channel, we shall adopt the habit of marking the
associated state-channel with an asterisk, as inM ∗.

In an exact parallel to state-channels, the crucial idea now
is to associate with each (static) elementary measurement op-
erationM : S _ M aquantity-channelof the form

AM
M−−−−−−−→ AS

that represents theinferential transfer of data from the mea-
suring instrument’s quantity algebra to the system’s algebra.
Formally, a quantity-channel is a unit-preserving positive lin-
ear map between quantity algebras that sends the instrument’s
pointer quantity to the measurand’s bestestimatequantity.
A question can now be raised: Why are we using quantity-
channels instead of algebra homomorphisms? Because alge-
bra homomorphisms are unnecessarily too restrictive in mod-
eling many measurement procedures. Moreover, all known
measurement operations and all known temporal evolutions
of dynamical systems are universally representable by ap-
propriate quantity-channels between quantity algebras. The
problem is that homomorphisms do not preserve the gen-
eral quantity-state duality we need. However, as it turns out,
quantity-channels (specified by unit-preserving, positive lin-
ear maps) uphold the duality requirement.

In order to bring the full force of quantity-state duality
into play, we close this section by recalling a couple of
diagrams that elucidate the intimate relationship between
quantity-channels and state-channels. A parallel accountof
inference-to-the-best-estimator and information transfer is

illustrated in the diagram of maps below:14

· · · A A
′ · · ·

· · · S(A) S(A′) · · ·

quantity−channels M

S S

state−channels M∗

Experimenters investigating measurement methods can ana-
lyze and interpret measurement procedures in two comple-
mentary ways, based on

(i) State semantics: State-channels representing mea-
surement operations are systematically interpreted in
information-theoretic terms. For example, an ideal state-
channel, bridging the target system and measuring in-
strument, transfers a maximal amount of information that
faithfully determines the measurand’s extant value or the
probability thereof. On the other hand, nonideal state-
channels obliterate the information transferred from the
observed system to the instrument.

(ii) Quantity semantics: Quantity-channels, modeling mea-
surement operations, are interpreted ininverse-problem
inferential terms, where inferences from measurement
data to the measurand’s best estimates are viewed as
estimation-algorithm results traversing the channel be-
tween the respective algebras of the measuring instru-
ment and target system.

As one might guess from the foregoing semi-formal treat-
ment of quantity-state duality, a quantity-channelM is one-
to-one (injective) if an only if its corresponding state-channel
M ∗ is onto (surjective). Likewise, a quantity-channelM is a
surjective map precisely whenM ∗ is injective. These and a
large number of other properties of channels follow directly
from a category-theoretic duality between quantity algebras
and state spaces.

Unfortunately, since the preceding diagram is based en-
tirely on general principles, it reveals very little information
about the exact nature of state-quantity duality. For this
reason, we need a commutativeChu space transformation
diagram15

14To get the full picture of duality and to gain insight into theempirical
meaning of the diagram of channels, we introduce a tensor category Qalg of
quantity algebras (consisting of, e.g., Banach algebras orvon Neumann alge-
bras, discussed in Section 4) and quantity-channels between them. Next, we
note that the opposite categoryQalgop with its arrows reversed is equivalent
to the categorycProb of convex spaces of probability measures and transi-
tion probabilities between them. Now, the quantity-state duality is captured
by the state functorS : Qalgop −→ cProb and its left adjoint. By choosing
quantity-channels as maps (and not algebra homomorphisms) we have im-
plicitly imparted a crucial probabilistic structure to the objects ofQalgop.
What this means is that the objects ofQalgop are representable by concrete
probability spaces.

15Chu spaces are specified by pairs consisting of quantity algebras and
state spaces of the form

(
A,S(A)

)
, belonging to a single category. Likewise,
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S(A′)×A S(A′)×A′

S(A)×A R

I ′×M

M∗×I BC′

BC

that serves perfectly well as a general description of the
quantity-state duality we are using in this paper. In the dia-
gram above, theevaluationmapBC : S(A)×A −→ R, defined
by the standard functional evaluationBC(S,Q)=d f S(Q) for all
statesS and quantitiesQ, occupies a pivotal position in treat-
ing states and quantities as counterpart notions. Here ‘com-
mutativity’ means that in the foregoing Chu space transforma-
tion diagram the two possible ways of composing maps along
the arrows give the same result. That is to say, theadjointness
condition

[
BC′ ◦ (I ′×M )

]
(S,Q) =

[
BC◦ (M ∗× I )

]
(S,Q)

holds for all statesS in S(A′) and for all quantitiesQ in A.
Upon applying theevaluationmapsBC andBC′ to their ar-
guments, the foregoing adjointness condition reduces to the
equalityS(M (Q)) = [M ∗(S)](Q), showing how the quantity-
channelM and the state-channelM ∗ are related.

We have not yet considered how observers are to fit into
the algebraic framework just outlined.16 Although we in-
tend to study the structure of measurement operations in a
strictly observer-independent manner, it must be recognized
that measurement is more than just an exclusively physical
process. A human observer’s conscious mind wittinesses and
receives information from the measuring instrument’s dial
through the eyes (or other organs) by reading (detecting) the
finite-resolution values of the instrument’s pointer quantity.
Of course, there is nothing sacrosanct about this, since any
good mechanical robot can accomplish practically this much.
But there is more. We also have to consider how human
observersinterpretvarious measurement operations and how
their subjective sensations of instrument dials result inbeliefs
about the measurand’s values. And last but not least, in view
of their powerful sense for effective idealization, human ob-
servers are amazing formal model builders with special abil-
ities to recognize “interesting” dynamical behaviors. In con-
formity with our commitment to algebraic approaches to mea-
surement, in this paper we shall not be concerned with the
intriguing structure of mental states and the associated per-
ceptual processes charactering pointer readings.

Since the physical content of a target system’s algebraic
model is largely contained in the quantity algebra associated
with the system, we must first review some important facts

maps are also given by pairs, consisting of quantity- and state-channels. For
more details, see [10].

16Signal processing theory of measurement (STM) treats the notion of ob-
server systems-theoretically as a generalized measuring instrument that eval-
uates the difference between the target system’s controlled input and mea-
sured output signals.

about algebras and state spaces thereon. Another recurrent
theme we shall take up later is the representation of measure-
ment and other operations by suitable channels between quan-
tity algebras.

3. Algebraic frameworks for measurement

In this section we present a universal algebraic paradigm,
in which various models of measurement can be formulated in
a unified manner. Although the basic framework is easy to de-
scribe, unfortunately, the conceptual building blocks require a
number of definitions.

3.1. Quantity algebras

Quantity algebras generalize the familiar elementary oper-
ations on numbers. Specifically, a quantity algebra is a set
A with two basic binary operations on abstractly conceived
quantities, namely theadditionoperation, writtenQ+Q′ for
two elementsQ and Q′ in A, the multiplication operation
symbolizedQ•Q′, and the respective associatedzero0 and
unit 1 elements ofA. It is also important to include ascalar
multiplicationfor scale change, denotedc ·Q for any “scalar”
c in the field of realsR or complex numbersC.17 These opera-
tions satisfy certain axioms similar to those reserved for rings
and modules. It is important to bear in mind that a quantity
algebra does not say what quantities really are, only how they
behave, relative to the algebra’s operations. Algebras give
specifications but do not determine implementation. Quantity
algebras are also furnished with powerful topological or norm
structures that are used in defining the limits of convergingse-
quences of quantities, approximations, and the all-important
continuity property of maps between algebras.

Clearly, length, mass, energy and all the other so-called ex-
tensive quantities can be combined additively. Furthermore,
length can be multiplied with itself to get an area, volume, or
an arbitrary high-dimensional hyper-volume. As an applica-
tion of Occam’s razor, in any quantity algebra we allow all
kinds of quantities expressed by polynomials that may lack
physical significance.18 It must be emphasized that a given
quantity may be introduced as abasic(primitive) or as ade-
rived (defined) notion. For example, the concept of energy re-
mains unspecified in mainstream algebraic models of classical
mechanical systems without the introduction of length, mass

17In the ambience of complex scalars, quantity algebras are usually
equipped with a special complex conjugation-based unary operation Q†,
called involution, forming †-algebras or∗-algebras, needed in modeling the
behavior of quantum systems.

18In opting for the conceptually simplest and most economic algebraic
model, it is standard to admit certain mathematical elements in the model
that are devoid of physical meaning, as long as the model also possesses a
rich supply of empirically significant elements in its applicable subdomain.
For example, the classical pendulum equation physicists regularly use admits
infinitely many solutions that are specified by physically meaningless super-
luminal velocities. In the case of quantity algebras, there is a choice between
complexpartial algebras, riddled withad hocconstraints thatexcludeall
empirically insignificant quantities and traditional normedalgebras that are
likely to include quantities ruled out by applications.
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and time quantities. In contrast, in algebraic models of quan-
tum systems the notion of energy is usually specified indepen-
dently of the mass quantity. Of course, it is always possibleto
introduce the energy quantity as basic. Upon amalgamating
the structure of quantity algebras and the definitional or law-
like relations between quantities, we find that the description
of the target system’s behavior cannot be said to be complete
without additional (usually equational) constraints, provided
by special maps (operators) between quantity algebras. We
shall give further details later.

The so-called intensive quantities that are often defined
(e.g., via differentiation) in terms of pairs of extensive quan-
tities (including density, pressure, and electric, chemical and
gravitational potentials) tend to arise asparametersof the tar-
get system’s states and extensive quantities, and often form a
convex subspace of the underlying quantity algebra or that of
the algebra’s conjugate or (pre)dual space.

Quantity algebras are blessed withpositivequantities, sym-
bolized by the inequalityQ ≥ 0 and having the formQ =
Q′ •Q′ for some quantityQ′ in B. It is elementary to verify
that positive quantities form a convex cone and thus induce
a natural linear partial ordering, denotedQ ≥ Q′ and defined
by Q−Q′ ≥ 0. To increase the applicability of quantity alge-
bras, we are striving for additional operations on quantities.
Curiously, each positive quantityQ of B has a square root,
symbolized

√
Q and is given by the unique quantityQ′ such

that the equalityQ= Q′ •Q′ holds. Obviously, positive quan-
tities have positive numerical values. Of primary importance
for us is the notion of an invertible quantity. A quantityQ
in a given algebraA is said to beinvertibleprovided that the
equalitiesQ•Q′ = 1= Q′ •Q hold for a unique quantityQ′ in
A, symbolizedQ−1 and called theinverseof Q. For future
needs, we denote the multiplicative group of invertible ele-
ments of quantity algebraA by A−1. We can now define the
spectrum(i.e., the set of possible values) of quantityQ strictly
algebraicallyas follows:

Spec(Q) =d f
{
c ∈ R

∣∣∣ c ·1−Q < A−1}

We remark in passing that the spectra (i.e., value spaces) of
variousderivedquantities are obtained by the following al-
gebraic specifications: Spec(1) = {1}, Spec

(√
Q
)
= { √c | c ∈

Spec(Q)}, Spec(Q•Q) = {c2 | c ∈ Spec(Q)}, and Spec(Q−1) =
{c−1 | c ∈ Spec(Q)}, if Q−1 ∈ A−1. In the case ofexponential
quantities (defined by the familiar convergent series) we have
Spec(etQ) = {etc | c∈ Spec(Q)}, and likewise for logQ, sin(tQ)
and the other elementary functions.

3.2. Construction and design of quantity algebras

How should quantity algebras be constructed? In prac-
tice, the choice of a quantity algebra for the target system
involves a well-informed judgment and the algebra’s correct-
ness and that of accompanying physical laws are experimen-
tally checked by comparing the system’s measurement results
with the predictions generated by the algebra and laws. Any
significant discrepancy between algebraic model-generated

predictions and measurement results renders the model in-
adequate and prompts its replacement by a more detailed or
altogether different algebra. The choice of quantities and the
size (or degrees of freedom) of the generated algebra depend
on the desiredlevel of description (from coarse-grained to
fine-grained), and on the stipulated predictive accuracy and
resolution of the target system’s behavior. Stated differently,
the quantities for the target system should be selected in such
a way that from the knowledge of their values and laws the
experimenter can reliably determine the system’s behavior
to within an antecedently specified degree of accuracy. Un-
fortunately, model-based computations and instrument-based
measurements cannot be accomplished without some form of
approximation– dictated not only by the required accuracy,
but also by mathematical and instrumental tractability. Al-
though it may seem correct to think that the higher the desired
accuracy, the larger the modeling algebra of quantities (car-
rying more information), this relationship fails epistemically,
when tractability becomes an issue (e.g., high-accuracy mod-
els of classical macroscopic systems based on noncommuta-
tive quantum system algebras are hopelessly complex and in-
tractable).

Importantly, even if the initial choice of a particular quan-
tity algebra may be subjective and some values of some quan-
tities are not determinable by measurement, thevalidity (or
invalidity) of the accepted algebraic model is an objective
property and so is the system’s state. Needless to add, the
measured value of a measurand (read off from the calibrated
instrument’s dial) is the measuring instrument’s property.

To capturequantity entanglementsassociated with two (or
more) systemsS and S′, the representing algebrasAS and
AS′ are combined into theirtensor productalgebraAS ⊗AS′ ,
generated by elementary tensor quantities of the formQ⊗Q′

with Q inAS andQ′ inAS′ . Since tensor products tend to lack
canonical projection and diagonal maps, they are significantly
more general than the usual direct (Cartesian) products. Ten-
sor product algebras are needed in modeling physical interac-
tions between coupled systems that allow entangled states.As
with many other algebraic constructions, tensor product alge-
bras are unique only up to an algebra isomorphism relation
between them. We denote the isomorphism relation between
quantity algebrasA andA′ byA � A′.

3.3. Quantity-channels

It is high time we had the precise definition of a quantity-
channel from the duality-based algebraic point of view we
have been advocating. A map of the form

A
M−−−−−−−→ A′

from quantity algebraA to quantity algebraA′ is called a
quantity-channelprovided that the following conditions are
satisfied for all quantitiesQ,Q′ and sequencesQ1,Q2, · · · in
A, and for all scalarsa,b ∈ R:

(i) Linearity: M (aQ+bQ′) = aM (Q)+bM (Q′).
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(ii) Unity: M (1) = 1.

(iii) Positivity: Q≥ 0 =⇒ M (Q) ≥ 0.

(iv) Weak continuity: If wlim n→∞Qn =

Q, thenwlimn→∞M (Qn) = M (Q), where the so-called
weak limitin the algebraA is defined by

wlimn→∞Qn = Q ⇐⇒ lim
n→∞
S(Qn−Q)) = 0

for all statesS in state spaceS(A). We shall encounter
the formal definition of the notion of state shortly.

In typical applications to measurement, it is helpful to think
of quantity-channels as mappings that send instrument quan-
tities to various estimates or approximations of measurands.
Clearly, some quantity-channels are better than others in this
respect.

3.4. Determining the values of quantities

We now move to the next conceptual issue of how theval-
uesof quantities at any particular time are specified (deter-
ministically or probabilistically) by the target system’sinter-
nal conditions at that time, referred to as the system’s physical
state. As far as the nature of physical states is concerned, it
can be as simple as a particle’s position coordinate and mo-
mentum value or as complex as the “statistical mode of be-
ing” of a material body made up of an enormous number (e.g.,
greater than 1020) of interacting particles, investigated in sta-
tistical mechanics. In this connection it is revealing to look
at the state as a snapshot ofthe way the system isat each
moment of time that gives rise to a snapshot of the current
values of quantities. Bear in mind that these snapshots tendto
havestatisticalcontent, requiring a probabilistic encoding in
terms of suitable probability measures. We know that a sin-
gle reading of a pointer is subject to several kinds of errors
that cannot be eliminated. In realistic settings, repeatedmea-
surements of measurandQ under identical or exchangeable
conditions result in a probability distribution (approximated
by a histogram) on Spec(Q) rather than in a sharp value, con-
centrated at one point in the value space. Even if the target
system’s state is prepared in the laboratory in a maximally
precise way, due to random noises the result of measurement
of Q will generally not be a single point, but a nontrivial prob-
ability distribution on Spec(Q).

To obtain a sufficiently general framework for representing
the variety of physical states and quantity values discussed
above, we shall suppose that a target system is always in some
kind of a statisticalstate (including deterministic limit-case
situations) that is responsible (probabilistically or determinis-
tically) for the extant values of quantities.

The question now arises as to how did the system get to
be the way it isnow? Empiricists have an answer and it is
the following: The system has beenpreparedto bethat way
by its past interactions with other systems. From this point

of view the system’sstatecan be thought of as an equiva-
lence class of potentialpreparation proceduresapplied to the
system which gives the same probability distribution for all
measurement outcomes. In a dual setting, a quantity may be
viewed as an equivalence class of possible measurement pro-
cedures which gives the same probability distribution for all
preparations. This is all very suggestive, but we find the op-
posing objectivist approach to classical measurement not only
ontologically more meager but also more effective. Specif-
ically, earlier we have assumed that the system’s quantities
possess their values independently of whether or not they are
measured. From this perspective, the system is in its current
state, irrespective of whether or not the experimenter knows
anything about the system’s preparatory history.

3.5. State spaces and state-channels

In accord with the accepted algebraic paradigm, we next
introduce special spaces, calledstate spaces, the elements of
which arealgebraic states(or statistical statesas they are also
commonly known), representing the possible physical modes
of being of systems at various moments of time. It is evident
that there are three basic options in the mathematical formula-
tion of algebraic states. One alternative is to declare algebraic
states as basic (undefined) notions, paralleling the indepen-
dently introduced concept of quantity. Another viewpoint is
to start with algebraic states and treat quantities as statefunc-
tions of some kind. The view we shall adopt in this paper is
to define algebraic states with reference to the target system’s
quantity algebra. Proceeding in this manner means that quan-
tities are viewed as primary, while algebraic states are in some
sense complementary, encoding the decisive dual (statistical)
structure of quantities.

The upshot of all of this is that we may introduce algebraic
states in terms of quantities or view quantities as functions on
states. For us, it is the power of the algebraic approach that
motivates our preferred way of defining states as special func-
tions on quantity algebras. So what is the conceptual signifi-
cance of algebraic states in measurement theory? Unquestion-
ably, the most significant import of algebraic states in model-
ing measurement operations is a structural enrichment needed
for (i) thestatisticaldescription of quantities in terms of prob-
ability distributions of their possible values and the accompa-
nying statistical indicators, such as averages and variance, (ii)
state-channels, representing information transfers frommea-
surands to their pointer quantities, and for (iii) deepening the
interpretation of measurement models. We address this topic
in more technical detail below.

We have already indicated that with quantity algebrasA
and quantity-channels in the picture, in the dual setting ofthe
algebraic approach to measurement the investigator associates
with each systemS in the given domain of reality a convex
spaceS

(
AS
)
of algebraic statesonA, belonging or extendable

to the algebra’s dualA∗, i.e., we haveS(A) ⊂ A∗.
By a faithful normal algebraic state, henceforth simply

state, we mean a real-valued linear function of the form
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S :A−→R that satisfies the following conditions for all quan-
tities Q and sequencesQ1,Q2, · · · in A:

(i) Unity: S(1) = 1.

(ii) Positivity: Q≥ 0 −→ S(Q) ≥ 0.

(iii) Continuity: limn→∞‖Qn−Q‖ = 0 =⇒ limn→∞ |S(Qn)−
S(Q)| = 0

(iv) Faithfulness:If Q≥ 0, thenS(Q) = 0 =⇒ Q= 0.

Since in classical measurement we encounter mostlyfaith-
ful and normal algebraic states, and because these natural
states are required by quantity-state duality, in what follows
we shall always work with faithful normal states. Accord-
ingly, unless the contrary is explicitly stated, the state space
S(A) will always be specified by the set of all faithful normal
algebraic states on quantity algebraA. Here, the numerical
valueS(Q) is interpreted as theaverage(or expectation) of
quantityQ, given that the target system is in a physical state
represented byS.

Turning to the structure of state spaces, perhaps the most
important one is their closure under the familiarmixingoper-
ation that is widely used in probability calculus. Specifically,
if statesS,S′ are inS(A), then their convex mixture defined
by c ·S+ (1− c) ·S′ (with 0 ≤ c ≤ 1 is also inS(A). Thus,
states form aconvexspace. Each state space comes with its
lattice of faces and other related structure, but we will not
pursue the details. A state is said to bepure (extreme or de-
terministic) provided that it is not a proper mixure of any pair
of other states. Formally, a stateS is pure just in case for any
pairS1 andS2 of states and a scalar 0< c< 1 the following
conditional

S = c ·S1+ (1−c) ·S2 =⇒ S = S1 = S2

holds. Since pure states play a crucial role in deterministic
measurement, for future needs, we denote the subset of pure
states bySex(A). Importantly, for any pure stateS the average
S(Q) is actually the extant value of quantityQ.

Next, we need to recall some facts from information the-
ory about state-channels, arising (by duality) from quantity-
channels. We begin with the pertinent formal definition. By a
state-channelwe mean a map from an input state spaceS(A′)
to an output state spaceS(A) of the form

S(A′)
M∗−−−−−−−−→ S(A),

defined by the compositionM ∗
(
S
)
=d f S◦M for all statesS

in S(A), whereM is a previously specified quantity-channel.
It is important to appreciate a converse definition, statingthat
the quantity channelM can be specified in terms of a given
state-channelM ∗ as follows: M (Q) =d f Q′, whereS(Q′) =
M ∗
(
S)
)
(Q) for all S.

Returning to the general case, astate-channelis any map
of the formM ∗ : S(A′) −→ S(A) that satisfies the following
conditions:

(i) Positivity: M ∗ sends input states to output states.

(ii) Convexity:M ∗ has the so-calledaffineproperty

M ∗
(
c ·S+ (1−c) ·S′) = c ·M ∗(S)+ (1−c) ·M ∗(S′)

for all statesS andS′ in S(A′), and for all scalars 0≤
c≤ 1.

The foregoing affine (convexity) property captures the
familiar randomizationor stochastic equivalenceprinciple:
Any target system in stateS with probability c and in state
S
′ with probability 1−c cannot be empirically distinguished

from the system in statec ·S+ (1−c) ·S′.
There are special conditions investigators regularly impose

on state-channels in various contexts. We mention just three
of them to standardize our terminology:

(i) A state-channelM ∗ of the form above is calledpure just
in case the inclusionM ∗

(
Sex(A)

) ⊆ Sex(A′) holds. Intu-
itively, pure state-channels map pure states to pure states.
A channelM ∗ is pure if and only if [M ∗(S)](P) = 1 or
0 for all two-valued (projection) quantitiesP and pure
statesS.

(ii) The state-channelM ∗ referred to above is calledor-
thogonalprovided that it preserves the orthogonality of
states, i.e. we haveS⊥S′ =⇒ M ∗(S)⊥M ∗(S′), where
the orthogonality relationS ⊥ S′ is satisfied just in case
the statesS andS′ belong to a disjoint pair of faces of
the state spaceS(A′).

(iii) A state-channelM ∗ is calleddeterministicif and only if
it is one-to-one (bijective) and orthogonal. Deterministic
state-channels send pure states to pure states in a one-to-
one fashion.

In applications involving static measurement operations,
state-channels take as an argument the target system’s extant
state and send it to the measuring instrument’s current state.
The physical significance of state-channels is the following:
Channels transmit input information carried by the system’s
extant state to the instrument, where it arrives in the form of a
(generally) reduced or corrupted information, encoded by the
instrument’s state.

In sum, the central point of algebraic theories of measure-
ment we will explore via examples can now be stated very
simply as follows:

1. To each systemS belonging to a partially ordered
monoid of systems〈S,O,+,4〉 we associate a quantity
algebraAS

19 in such a way that the following conditions
are satisfied for all systemsS andS′ in S:

19The associated quantity algebraAS together with its dynamical structure,
discussed in [3], is intended to capture the target system’s basic behavioral
features of interest. Additional structures are needed to describe the system’s
perturbation and interactions with other systems.
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(a) AS+S′ � AS⊗A′S.

(b) AO � R.

(c) If S 4 S′, then there exists an embedding algebra
homomorphism
J : AS −→ A′S.

2. To each elementary measurement operationM : S _ M
we associate a quantity-channelM :AM −→AS that rep-
resents theinferentialtransfer of data from the measuring
instrument’s quantity algebra to the system’s algebra.

In parallel with the above, there is also a dual association
of state space and state-channels. A quantity-channelM and
its associated state-channelM ∗ are two complementary repre-
sentations of the same measurement operation.

In the universe of algebraic models we adopt there are three
major kinds of quantity algebras of measurement-theoretic
interest, earmarked specifically forsmooth, continuousand
measurablequantities (measurable in the sense of classical
measure theory), which have been given appropriate names.
One further feature of quantities should be mentioned: the
spectrum (value space) of each quantity in an algebra can be
a subset of the fieldR of real numbers or that of the fieldC of
complex numbers. Although complex numbers greatly sim-
plify various technical problems and support the correct level
of generality, known to be essential for the construction of
quantity algebras ofquantumsystems andquantumfields, in
this paper we find it convenient to work over the base field of
reals. Since smooth (i.e., infinitely differentiable) quantities
are continuous and continuous quantities are measurable, we
shall discuss only the algebras of measurable quantities.

4. Von Neumann algebras of measurable quantities

Next to Banach algebras of continuous quantities, the sim-
plest and most widely used class of quantity algebras is given
by real and complexvon Neumann algebrasof measurable
quantities. Unfortunately, von Neumann algebras can be char-
acterized in many ways, some abstract and others concrete,
based on Hilbert-space operator algebras, but none of them
seems sufficiently intuitive. Importantly, von Neumann alge-
bras are Banach spaces20, just like Banach algebras. However,
the main difference between Banach algebras and von Neu-
mann algebras is a large supply ofidempotent(two-valued)
quantities in the latter, satisfying the idempotence lawQ•Q=
Q, also known asprojectionquantities. Projection quantities
will play a fundamental role in much of what follows. Specif-
ically, each quantity in a von Neumann algebra is canoni-
cally representable by a weighted sum or integral of projec-
tion quantities. We shall give some specifics below. Von Neu-
mann algebras are also important for their intimate relation-
ship to their conjugate (predual) Banach spaces. As we shall

20Recall that aBanach spaceis a normed vector space that is complete
with respect to the metric induced by the norm.

see next, von Neumann algebras (as Banach spaces) are al-
ways duals of something, namely, they are duals of Banach
spaces.

By definition, a normed algebraA is said to be avon Neu-
mann algebraprovided that it is thedualBanach space of an-
other uniquely given Banach space, symbolizedA∗ and called
thepredualor conjugateof algebraA, so that the algebra iso-
morphismA � (A∗)∗ holds.21

4.1. Measure-theoretic representation of commutative von
Neumann algebras

It is well known that every probability space〈X ,B,P〉 de-
termines a unique real unital commutativevon Neumann alge-
bra – traditionally denoted by the Lebesque space symbolism
L∞(X ,B,P) – of all essentially boundedreal-valued random
variables of the formf : X −→ R, where this time two ran-
dom variablesf and f ′ on X are identified, whenever they
are equalP-almost everywhere, meaning the induced equiva-
lence relationf ∼ f ′ holds. As anticipated, the equivalence is
defined byf ∼ f ′ if and only if P

(
~ f = f ′�

)
= 1. Here and in

what follows we use the notation~ f = f ′� for the measurable
set{x | f (x) = f ′(x)} in B.22

Essential boundedness inL∞(X ,B,P) means thefinitenessof
the canonicalessential supremumnorm‖ f ‖∞, defined by the
supremum formula

‖ f ‖∞ =d f sup
{
c> 0

∣∣∣∣∣ P
({x ∈X

∣∣∣ | f (x)| > c}) > 0
}
.

The definition says that the absolute value of each measur-
able quantityf is bounded by a positive constantP-almost
everywhere. Boundedness allows to work with arbitrar-
ily long multiplications of quantities. As usual in analy-
sis, the algebra’s operations are defined pointwise by set-
ting [ f + f ′](x) =d f f (x)+ f ′(x) and [f • f ′](x) =d f f (x) · f ′(x)

21Banach algebras do not have a predual Banach space and they need not
have any projection quantities, other than0 and1. From a category-theoretic
perspective, thedual construction leading from spaceA to its dual spaceA∗

(defined by the space of bounded linear functionals onA), is a contravariant
functor from the category of Banach spaces to itself. Along similar lines, the
predual construction is given by a contravariant functor from the category of
von Neumann algebras to the category of Banach spaces.

22Strictly speaking, the elements ofL∞(X ,B,P) are not functions, but
equivalence classesof functions that happen to agreeP-almost everywhere,
i.e., everywhere except on the physically unimportant subsets of P-measure
zero. For this reason, the spectrum of a measurable quantityf is defined in
terms of itsessential range

Spec(f ) =d f

{
c
∣∣∣ ∀ε > 0

[
P
({x ∈X

∣∣∣ | f (x)−c| < ε}) > 0
]}
.

In words, a numerical valuec belongs to the essential range off (and hence
to f ’s spectrum) if and only if every neighborhood ofc has a strictly posi-
tive probability measure. The idea of equivalence classes ofquantities can
be circumvented by viewing quantities as measurable functions of the form
f : X0 −→ R, defined on aP-conegligible subset (obtained fromX by sub-
tracting all sets ofP-measure zero)

X0 = {x ∈X | ∀B∈B[x ∈ B=⇒ P(B) > 0]}.
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for all x in X . We also need the usual scalar multiplica-
tion, defined by [c · f ](x) =d f c · f (x). The essential supre-
mum norm turns the algebraL∞(X ,B,P) into a Banach
space with its predual (conjugate) Banach spaceL1(X ,B,P)
of absolutely integrable functions (containing all density
functions) with a finite norm‖ f ‖1, defined by the integral
‖ f ‖1 =d f

∫
X
| f (x)|P(dx) < ∞. The following important pre-

dual and dual algebra-isomorphisms hold:L∞(X ,B,P)∗ �
L1(X ,B,P) andL1(X ,B,P)∗ � L∞(X ,B,P).

It is well known in operator theory that any abstractly given
unitalcommutativevon Neumann algebra23 is isomorphic to a
concrete von Neumann algebraL∞(X ,B,P) for some proba-
bility space〈X ,B,P〉 with its to-within-isomorphism unique
predual Banach spaceL1(X ,B,P). Remarkably, the algebra
L∞(X ,B,P) depends only on the sigma ideal ofP-null sets
andnoton the specific choice of the measureP. Therefore, for
notational convenience we introduce the abbreviationL∞(X )
for L∞(X ,B,P).

Because the objective of classical measurement is to iden-
tify the extantvalueof the target system’s selected measur-
and, it is important to understand which other quantities (de-
termined by the measurand) will also acquire known values
upon completing the measurand’s measurement. Put another
way, suppose the experimenter measures measurandQ and
obtains its value, say,c∈Spec(Q) or the best estimate thereof.
Evidently, the experimenter does not have to perform another
measurement to know the value, say, of the squared measur-
andQ2 = Q•Q, because (s)he already knows that the value of
Q2 will be c2 or its best estimate, obtained by easy (approx-
imate) calculation. Needless to add, we can quickly general-
ize the foregoing idea ofderived measurementto any ‘scale-
changing’ real-valued measurable functionf on Spec(Q), giv-
ing the value f (c) (or its approximation) off (Q). Simply,
by measuring measurandQ the experimenter automatically
“measures” in aderived (computational) fashionall quanti-
ties of the formf (Q).

4.2. Measurable function calculus

The so-calledspectral mapping theoremallows us to say
considerably more about how to move between the measur-
and’s abstract von Neumann algebra and the associated con-
crete measurable function algebra. For the general case, let Q
be a measurand of interest in a von Neumann algebraA and let
A(Q) be the von Neumann algebragenerated(within A) by Q
and the algebra’s unit1. It is not hard to see that the resulting
commutative von Neumann algebraA(Q) (i.e., the smallest
unital von Neumann subalgebra ofA containing measurand
Q and unit1) is given by the norm closure of all polynomials
in indeterminateQ. Simply, the generated algebra includes all
quantities whose values can be obtained via derived measure-
ment, based onQ. An important consequence of the spectral

23Noncommutative complex von Neumann algebras are reserved for quan-
tum systems. Since our interest is in classical measurement, inthis paper
we shall focus only oncommutativevon Neumann algebras, satisfying the
commutativity lawQ•Q′ = Q′ •Q.

mapping theorem which will be regularly used later in vari-
ous measurement examples is the existence of a unique von
Neumann algebra isomorphism

L∞
(
Spec(Q)

) I Q−−−−−−−→ A(Q)

between the algebraL∞
(
Spec(Q)

)
of essentially bounded

Borel measurable functions of the formf : Spec(Q) −→ R
(where Spec(Q) is furnished with a unique probability mea-
sureP on the Boolean sigma-algebra of Borel subsets, modulo
measure class equivalence,24, and the von Neumann algebra
A(Q) generated by the measurable quantityQ and the unit1
of A.

The isomorphismI Q sends the canonicalidentity func-
tion ℑ : Spec(Q) −→ R (defined byℑ(x) = x for all x in
Spec(Q)) directly toQ= I Q

(ℑ), it maps theconstantfunction
/c1 : Spec(Q) −→ R (having the same value 1) to the algebra’s
unit 1, it assigns to the square function on Spec(Q) the quan-
tity Q2, and so forth. Here the main technical point is that
the foregoing isomorphism ensures that we can locally ma-
nipulate the abstractly given quantities and representingmea-
surable functions in the same way. For a detailed account of
algebra representation results, the reader is referred to [12].

To mirror the algebraic and metrical properties of measur-
able functions in the generated quantity algebraA(Q), it is
customary to setf (Q) =d f I Q( f ) to be the image of the mea-
surable functionf : Spec(Q) −→ R under isomorphismI Q.25

Although the foregoing notation does not seem natural at first
sight, it does make good sense after showing that the follow-
ing linear and structural conditions hold for all real-valued
measurable functionsf , g, and ft on Spec(Q) and scalars
c, t ∈ R:

(i) [ f +g](Q) = f (Q)+g(Q).

(ii) [ f •g](Q) = f (Q) •g(Q).

(iii) [ c · f ](Q) = c · f (Q).

(iv) If f ≤ g, then f (Q) ≤ g(Q).

(v) If ft(x) = e−tx, then ft(Q) = e−tQ.

(vi) If lim n→∞ fn = f , then limn→∞ fn(Q) = f (Q).

(vii) [ h◦ f ](Q) = h
(
f (Q)
)
, whereh ∈ L∞

(
f (Spec(Q))

)
.

(viii) ‖ f (Q)‖ = sup
{| f (c)|

∣∣∣ c ∈ Spec(Q)}.

(ix) Spec
(
f (Q)
)
= f
(
Spec(Q)

)
= { f (c) | c ∈ Spec(Q)}.

Basically, as alluded to above, there are two mathemat-
ically equivalent ways to reason about a measurand and

24As was mentioned above, the probability measureP is needed only for
ensuring appropriately many null sets.

25Becausef (Q) denotes the quantity that corresponds to the measurable
function f under the algebra isomorphism, mathematicians working in spec-
tral analysis often refer to this type of correspondence as themeasurable func-
tion calculus.
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its derived quantities, (i)algebraically, and (ii) measure-
theoretically. In the algebraic approach, the measurand’s
spectrum Spec(Q) automatically specifies the spectrum of
any derived quantity, having the polynomial formc0 ·1+ c1 ·
Q+ c2 ·Q2 + · · · + cn ·Qn or a limit thereof with respect to
the norm-induced topology. From a measure-theoretic per-
spective, all calculations of values of derived quantitiesare
performed on the corresponding measurable functions of the
form f : Spec(Q)−→R. Since the measure-theoretic approach
is equivalent to the algebraic method, why bother with the al-
gebras of abstract quantities at all? Because the algebraicap-
proach is particularly well-suited to modeling not only classi-
cal measurement, but also measurement procedures arising in
quantum mechanics and quantum statistical mechanics, where
(due to noncommutativity requirements) concrete measure-
theoretic representations are not available. In particular, al-
gebraic models provide (at the right level of generality and
simplicity) a unified mathematical framework for the study of
all known types of measurement operations, including but not
limited to classical and quantum, static and dynamical, deter-
ministic and probabilistic, direct and indirect, discrete-time
and continuous-time, joint, repeatable, parallel and sequen-
tial, biased and unbiased, invasive and noninvasive, demoli-
tion or nondemolition, and model-based measurements.

Since for any measurable setB∈B, its characteristic func-
tion 1B is automatically a (2-valued, idempotent) projection
quantity inL∞(X ), the set of projection quantities forms a
Boolean sigma algebra, mirroring the underlying Boolean al-
gebra of propositions.26 We have thus established that all ex-
ternally given (data) propositions are automaticallyinternal-
ized in a von Neumann algebra in terms of projection quan-
tities.27 Evidently, all linear combinations of characteris-
tic functions (i.e., the so-called simple or step-functions) of
the form

∑
i≤nci · 1Bi with measurable setsB1, · · · ,Bn in B

and scalarsc1, · · · ,cn in R are also members of the concrete
von Neumann algebra. The other measurable functions in
L∞(X ,B,P) are obtained as (essential norm-based) limits of
converging sequences of simple functions.

In the same spirit, it is easy to see that any measurable
function f ∈ L∞(X ) with finitely many values has aspec-
tral decomposition, represented by the weighted sumf =∑

i≤nci ·1~ f=ci� of projection quantities, induced by the mea-
surable partition

{
~ f = c1�,~ f = c2�, · · · ,~ f = cn�

}
of X .28

The foregoing spectral representation of quantityf readily
extends to a countable spectral resolution, also having the
form of the weighted-sumf =

∑
c∈Spec(f ) c · 1~ f=c�, where

26In general, the set of projectionsAp in a von Neumann algebraA is a
complete lattice under the partial orderingP ≤ Q iff P•Q = Q•P = P, and
lattice operationsP∨Q = P+Q− P•Q and P∧Q = P•Q in the commu-
tative case. The latticeAp of projections of the von Neumann algebraA
is Booleanif and only if the algebra is commutative. In particular, the al-
gebra of projections inL∞(X ,B,P) is isomorphic to the quotient Boolean
sigma algebra, obtained fromB by quotienting with the equivalenceB∼ B′

iff P
(
(B−B′)∪ (B′ −B)

)
= 0.

27In quantum measurement theory this is the most compelling reasonfor
replacing propositions by projections.

28Here, as before, the expression~ f = ci� denotes the measurable set of all
pointsx satisfying f (x) = ci with 1≤ i ≤ n.

∑
c∈Spec(f ) 1~ f=c� = 1. This leads at once to derived-quantity

representations encoded byg( f ) =
∑

c∈Spec(f ) g(c) · 1~ f=c� for
any real-valued Borel measurable functiong on Spec(f ) and
to joint representations of the formg( f , f ′) =

∑
c,c′ g(c,c′) ·

1~ f=c, f ′=c′� .

4.3. Spectral representation of measurable quantities

Based on the spectral mapping theorem, we can now clar-
ify how projections can be used to represent any measur-
able quantity whatsoever. LetQ be a quantity in a unital
commutative von Neumann algebraA. Appealing to mea-
surable function calculus, we may define a canonical projec-
tion quantityΠQ(B) =d f 1B(Q) for any Borel measurable set
B in the Borel sigma algebraBSpec(Q) of measurable subsets
of Spec(Q). Clearly, since the characteristic function1B is
a projection, the quantityΠQ(B) (encoding algebraically the
proposition “Q takes its extant value inB”) is also a projec-
tion, belonging to the von Neumann algebraA(Q).29 It is
assigned to the projection function1B by the isomorphismI Q.
We have now constructed a crucial projective representation
mapΠQ : BSpec(Q) −→ A(Q)p, called theprojection-valued
measure(acronymed PVM)associatedwith quantity Q that
allows us to look at quantities from a new point of view.

In general, a PVM is any mappingΠ : B −→ Ap on a
measurable space〈X ,B〉 that assigns to each measurable set
B in B a unique projection (i.e., two-valued quantity)Π(B)
belonging to the algebraA in such a way that the follow-
ing measure-theoretic conditions hold for all measurable sets
B,B′ in B and for all sequences of pairwise disjoint measur-
able setsB1,B2, · · · in B:

(i) Π(∅) = 0 andΠ(X ) = 1.

(ii) B⊆ B′ =⇒Π(B) ≤Π(B′).

(iii) Π(B1+B2+ · · · ) =Π(B1)+Π(B2)+ · · · , where the count-
able sum on the right-hand side is interpreted as the limit
of the sequence of partial sums in the so-called weak
topology ofA.30

(iv) Π(B∩B′) =Π(B) ·Π(B′).

(v) B∩B′ = ∅ =⇒Π(B) ·Π(B′) = 0.

Note that projection-valued measures behave like special
probability measures, except that their values are not numbers
but projection quantities in a von Neumann algebra. More
significantly perhaps, PVMs are not only important and inter-
esting in their own right, one can actually integrate functions
with respect to them. Specifically, the so-calledspectral rep-
resentationtheorem states that to each quantityQ in a von

29Note that forf ∈ L∞(X ), we haveΠ f (B) = 1~ f∈B�, where the expression
~ f ∈ B� denotes the measurable subset

∑
c∈B 1~ f=c� = f −1(B) = {x | f (x) ∈ B}

of Spec(f ).
30Recall that in commutative settings, theweak topologyis defined by the

weaklimit wlim n→∞Qn =Q if and only if limn→∞S(Qn−Q)= 0 for all states
S.
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Neumann algebraA there corresponds a unique projection-
valued measureΠQ such that the followingspectral integral
representations hold

Q=
∫

Spec(Q)
x ·ΠQ(dx) and f (Q) =

∫

Spec(Q)
f (x) ·ΠQ(dx)

for any essentially bounded measurable functionf :
Spec(Q) −→ R. In a function algebra setting, the foregoing
spectral integral is defined in the usual way, starting from sim-
ple functions and then moving up to all measurable functions
by a limit construction. In particular, the characteristicfunc-
tions satisfy the following conditions:

(i)
∫
Spec(Q) 1B(x) ·ΠQ(dx) =ΠQ(B).

(ii) The constant function/c1 gives the resolution of the unit∫
Spec(Q)ΠQ(dx) = 1.

(iii) For the simple functionf =
∑

1≤i≤nci ·1Bi with pairwise
disjoint measurable subsetsB1,B2, · · ·Bn we have∫
Spec(Q) 1B

(
f (x)
) ·ΠQ(dx) =

∑
1≤i≤nci ·ΠQ(Bi).

So what are these spectral representations of quantities good
for? The single most important consequence of writing quan-
tities in their canonical spectral form is in relating quantities
to their associated measurement operations. For example, by
appealing to the spectral representation result the physicist
may view the position quantityQ of a free Newtonian par-
ticle moving in a straight line in terms of its corresponding
projection-valued measureΠQ that outputs valueΠQ(B) = 1,
when the particle is in regionB and value 0 when it is not, for
any measurable spatial regionB. Thus, to measure the parti-
cle’s exact position means asking and answering all questions
of the form “Is the particle in regionB?” at the same time and
then moving on to perform the corresponding binary yes-no
measurements. In concordance with the spectral representa-
tion of the position quantityQ, exactly one answer will be
“yes”, when the particle is actually in regionB. However, it
is important to realize that the particle’s position at any given
moment depends on its actual physical state, and therefore
one cannot tell tell ahead of time where the particle really
is. Nevertheless, as we shall see shortly, measurement theory
predicts that the particle will be in regionB with probability
S
(
ΠQ(B)

)
, given that at that time it will be in the physical

state represented byS. Now, since classical mechanics treats
particles as deterministic systems, its stateS is determinis-
tic, specified by the particle’s position and momentum values,
and therefore the probability value will be 1 precisely when
the position coodinate falls into regionB.

In this manner, PVMs explain how sharp measurements
are possible in terms of ideal binary measurements. On this
scenario, any quantityQ can be looked at from the point of
view of its (infinitely long) disjunction~Q= c� or ~Q= c′� or
· · · propositions, algebraically represented by a weighted sum
(or integral) of projection quantitiesΠ{c},Π{c′}, · · · , assigned

to singletons{c}, {c′}, · · · .. The question now arises as to how
can we make the PVM approach more realistic.

Because the exact values of quantities (and states) are gen-
erally inaccessible to direct observation, that is to say, the ex-
perimenter is denied knowledge of sharp propositions of the
form ~ f = c�, a crucial epistemic strategy is a passage from
the underlying point set Spec(Q) framework to its higher-
level Borel algebraBSpec(Q) setting. Owing to this concep-
tual move from equational propositions~ f = c� to more gen-
eral and less informative set-theoretic propositions of the form
~ f ∈ B�, the experimenter will certainly know whether or not
~ f ∈ B� holds for appropriately large Borel setsB. Unfor-
tunately, stochastic systems possess behaviors in which the
experimenter does not strictly know the propositions of the
form ~ f ∈ B� either, but (s)he may know that the outcomec
is more likely to be in some parts of SpecQ than others. As
we will see later, in this context the experimenter’s epistemic
access to measurement outcomes is encoded by probability
values of the formP

(
~ f ∈ B�

)
, thought of as the probability

that the extant value off is in the Borel setB.
As a matter of fact, in quantum theory of measurement it

has become customary to go one step further in the direc-
tion of fuzzifyingor smearingthe measurement results by re-
placing all measurandsQ with spectral measures of a highly
general formΠ : B −→ A on an arbitrary probability space
〈X ,B,P〉 with values in the target system’s quantity alge-
braA. These so-called (normalized)positive operator-valued
measures(with a generally accepted acronym POVM) satisfy
the following conditions for all measurable setsB∈B and for
all countable sequences of pairwise disjoint setsB1,B2, · · · in
B:

(i) Π(∅) = 0 andΠ(X ) = 1.

(ii) Π(B) ≥ 0.

(iii) Π(B1+B2+ · · · )=Π(B1)+Π(B2)+ · · · , where the sum on
the right-hand side is again interpreted as the limit of the
sequence of partial sums in the weak topology ofA.

In quantum physics, positive operator-valued measures are
regularly used in modeling the (tail-end) statistical aspects
of outcomesof quantum measurement procedures, indepen-
dently of the physical structure of measuring instruments.The
probability that the measurement outcome belongs to a Borel
set is given by the expectation value of the POVM’s quantity.
In the class of discreteprojective(binary) measurements, each
quantityQ has a spectral decompositionQ=

∑
c∈Spec(Q) c·Πc,

so that the probability of obtaining outcomec is given by the
expectationS(Πc) with respect to the system’s extant stateS
in S(A). We hasten to add that the foregoing POVM-based
statisticalmodel of measurement says nothing about the tar-
get system’s post-measurement state, i.e., the system’spos-
terior state, conditioned by the observed measurement out-
come. Not surprisingly, the statistical model provides theleast
detailed characterization of measurement in that it accounts
only for the target system’s measurement outcomes that can
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be manipulated and fed into various postmeasurement proces-
sors.

Next, we shall need to understand how abstractly given
states of a system under consideration may be interpreted
probabilistically. The state space framework provides a fun-
damental theorem that addresses this issue. In detail, each
quantityQ in a von Neumann algebraA determines an affine
mapping of the form

S(A)
Π
∗
Q−−−−−−−−−→ IP

(
Spec(Q)

)
,

defined byΠ∗Q(S) =d f PQ,S for all statesS in S(A), where the
unique probability measurePQ,S satisfies the classical expec-
tation formula

S
(
f (Q)
)
=

∫

Spec(Q)
f (x)PQ,S(dx)

for all measurable functionsf : Spec(Q) −→ R. The equality
PQ,S = S ◦ΠQ (in which ΠQ is the projection-valued mea-
sure associated withQ) gives a direct definition of the above-
specified probability measure. In particular, for any a Borel
subsetB of Spec(Q) we have theprobability

PQ,S(B) = S
(
ΠQ(B)

)
= S
(
1B(Q)

)

stating thatQ’s extant value is in the subsetB, given that the
system is in a physical state encoded byS. Actually, the
above-mentioned fundamental theorem says more: To each
state-channelM ∗ there corresponds a unique transition prob-
ability (Markov kernel)TM giving a commutative diagram

S(A) S(A′)

IP
(
Spec(Q)

)
IP
(
Spec(Q′)

)

M∗

Π
∗
Q Π

∗
Q′

TM

with Π∗Q′ ◦M ∗(S) = TM ◦Π∗Q(S) for all statesS in S(A) and
hencePQ′,M∗(S)(B) = [TM (PQ,S)](B) for all Borel subsetsB
of Spec(Q′).

The reader will surely notice that in parallel with the earlier
discussed passage from abstract measurable quantities to clas-
sical random variables we have just introduced the dual idea
of reasoning about abstract states in terms of concrete prob-
ability measures. Thus, the earlier posed question is taken
up again: Why bother with abstract states, when probabili-
tiy measures seem to suffice? Because states occupy a uni-
fying position in the representation of all kinds of physical
states, including those of quantum systems, where the funda-
mental theorem about mapping states to classical probability
measures fails. In particular, quantum measurement relieson
noncommutative probability theory, which is formulated ex-
clusively in the language of algebraic states. For a systematic
treatment of transition probabilities in a rather general setting
see [6].

The abstract framework of states includes the following
general versions of basic statistical indicators for all state
statesS:

(i) Expectation of Q:S(Q) =d f

∫
Spec(Q) xPQ,S(dx).

(ii) Variance of Q: VarS(Q) =d f S(Q2)−S(Q)2. By def-
inition, the so-calledideal measurement operationM
satisfies the conservation law of variance: VarS(Q) =
VarM∗(S)(Q�). Variance is particularly useful in assess-
ing the fidelity of state-channels.

It is time we had some concrete examples of measurement
models.

5. Algebraic models of elementary measurement
procedures

In this section we survey a number of concrete examples of
classical measurement, alluded to in the previous sections. We
emphasize at the outset that we do not have space to present
a complete analysis of all examples. Each example merits
considerable study in its own right and we intend to pursue
such studies in the future. Here our goal is to show how alge-
braic constructions capture the decisive structures of measure-
ment operations. The examples of elementary measurement
we shall cover in this section fall naturally into three relatively
disjoint classes: direct, indirect and joint measurements.

The simplest and earliest types of direct measurement (e.g.,
length and mass measurements) are based on the principle
of direct comparison. A direct-comparison process relies on
comparing the measurand’s values with those of its associated
pointer quantity of the same dimension and in a comparable
range. It is convenient to begin with the basic idea of a static
measurement of length.

5.1. Classical comparison-based length measurement

In this example the measuring device is the familiar meter
stick or ruler with a calibrated equally-spaced mark for, say,
each millimeter along the ruler’s total length of one meter (i.e.,
103 millimeters). We know that the (approximate) length of,
for example, a flagpole is found by placing the meter ruler
alongside it, starting from one end and then repeatedly step-
ping it off, until the flagpole’s other end is reached. At that
point the scale mark that is closest to the flagpole’s other end
is read and added to the millimeters obtained from the total
number of collinear ruler steppings along the flagpole’s entire
length. An earlier version of the length measurement struc-
tures presented here is discussed in [3].31

31Today’s technology is blessed with many types of non-contactlength
measurements, including ultrasound, laser and radar-based instruments.
These technologies have taken over the task of length measurement from
simple-minded meter stick devices. In the algebraic approach to follow we
will discuss only the simplest cases of measurement, where a suitable instru-
ment scale must be read to obtain the measurement result.
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Suppose we wish to measure the lengthℓ of a flagpole with
a meter ruler. Soℓ is a measurable quantity (representable
by a random variable), where we take the closed real interval
Spec(ℓ) = [0,L] to be its value set with a sufficiently largeL.
Now the basic modeling idea is to regard the flagpole as our
target system and associate with it the von Neumann algebra
L∞([0,L]) of quantities, isomorphic to the abstract von Neu-
mann algebraA(ℓ), generated byℓ and1.32 Since this alge-
bra contains all quantities that arederivablefrom the length
quantity ℓ, it follows that their values can automatically be
calculated from the extant value ofℓ.

Having assigned a quantity algebra to the flagpole, we now
construct an algebra for the ruler. We know that in order to ob-
tain information about the flagpole’s actual length, the exper-
imenter will have to get it from stepping off the ruler against
the flagpole and from reading the numerals at the ruler’sdis-
crete markings. Clearly, the fidelity of this measurement
operation depends on the ruler’sresolutionand accuracy.33

One of the most intuitive ways to proceed is to introduce a
discrete-valued pointer quantityℓ� that characterizes the ruler,
so thatℓ�’s spectrum Spec(ℓ�) is specified by the ruler’s read-
ing scale, i.e., by the set of points in [0,L] corresponding to
the millimeter marks, encoded by parameterε > 0:

Spec(ℓ�) = [0,L]ε =d f εN∩ [0,L],

where the discrete latticeεN = {0, ε,2ε,3ε, · · · } denotes the
uniform grid of equally spaced points one millimeter apart
(i.e., the step-sizeε represents the distance of one millime-
ter), capturing the ruler’s discrete length structure. We are
now able to introduce the ruler’s finite-dimensional von Neu-
mann algebraL∞([0,L]ε), isomorphic to the von Neumann al-
gebraA(ℓ�), in which the pointer quantity corresponds to the
canonical identity functionℑ, defined byℑ(x) = x for all x in
[0,L]ε.

The measurand’s values are related to those of its pointer
quantity by theround-off mapℜε : [0,L] −→ [0,L]ε, defined
by ℜε(c) =d f kε, if kε − 1

2 ≤ c < kε + 1
2 for all k ≥ 1, and

ℜε(c) = 0 for all c < 1
2ε. Intuitively, the round-off mapℜε

assigns to each possible valuec of measurandℓ the unique
pointℜε(c) in [0,L]ε that is closest to it.34. We also have
the obviousinclusionmapℑε : [0,L]ε −→ [0,L] that sends the
points of the discrete subset [0,L]ε to the continuum value
set [0,L]. We know from functional analysis that the above-
defined round-off and inclusion maps induce two quantity-
channels

32As discussed in Section 4, the interval [0,L] is conveniently viewed as
a probability space, where the Boolean algebraB is generated by the open
subsets of [0,L] and in simple cases the probability measureP is just the
standard Lebesgue measure thereon.

33Even in the most general context of measurement, reading the measure-
ment results relies on being able to discriminate between a finite or a count-
able set ofpossible pointerquantity values, defined by a coarse-grained vari-
ant of the measurand’s spectrum. Due to the discrete nature of most measure-
ments, the hallmark of the algebraic approach is to assigndiscretemodels
to measuring instruments and try to represent the target system by acontin-
uumstructure. In many applications, continuum models can be viewed as
category-theoretic inverse limits of directed sequences ofdiscrete models.

34A concrete analysis of rounded data may be found in [1].

L∞([0,L]ε)
L∞(ℜε)−−−−−−−−−−−−→←−−−−−−−−−−−−
L∞(ℑε)

L∞([0,L])

defined by the injective algebra homomorphism
L∞(ℜε)(h) =d f h ◦ ℜε for all functions h on [0,L]ε) and
by the surjective homomorphismL∞(ℑε)(g) =d f g◦ℑε for all
functionsg on [0,L]. Since the first channel represents length
measurement, we introduce the simplified notationM ε for
L∞(ℜε). The second channel is just a left-inverse projection
map of norm one, also known as a statistically significant
transition expectationE(·|ℜε).

Note that in the foregoing definitions of quantity algebras
we did not include any details of exactly how the ruler inter-
acts with the flagpole. Instead, we considered only the way
propositions of the form~ℓ� = k� about the pointer quantity
values might be translated by the quantity-channel into propo-
sitions of the form~ℓ = c� = {x | ℓ(x) = c} about the measur-
and’s values.

As an intermediate translation step, we rephrase these
propositions in terms of projection quantities1~ℓ�=kε� and
1~ℓ=c� respectively. It is easy to see that the pointer quantity
has the spectral representationℓ� = ε ·1~ℓ�=ε�+2ε ·1~ℓ�=2ε�+

· · · and similarly, the measurand’s estimate is given by the res-
olution ℓ̂(c) =

∑
k≥1ℜε(c) ·1

~kε− 1
2≤c<kε+ 1

2�
for all c≥ 1

2ε, and
0 otherwise.

Now we can immediately conclude from the foregoing
analysis of length measurement that the quantity-channelM ε
sends the ruler’s projections (representing pointer proposi-
tions) to the flagpole’s projections (encoding the measurand’s
approximation) as follows:

M ε(1~ℓ�=kε�) =M ε(1{kε}) = 1[kε− 1
2 ,kε+

1
2 )

for all k. It is clear that a ruler-based length measurement
is far from being ideal. Indeed, based on the assignment
M ε(ℓ�) = M ε(ℑ) = ℓ̂, ruler-reading provides only a step-
function approximation̂ℓ of ℓ, constant on half-open inter-
vals [kε− 1

2 ,kε+
1
2). In general we haveM ε(h) =

∑
k≥1h(kε) ·

1[kε− 1
2 ,kε+

1
2 ) for all h : [0,L]ε −→ R.

Of course, if an alternate meter ruler is marked at everyhalf
millimeter along its length, then its resolution becomes signif-
icantly better and therefore the measurand’s step-function ap-
proximationM ε

2
(ℓ�) will also be correspondingly more fine-

grained. In the limit, when the distanceε goes to zero, a
maximally “good” resolution characterizes anideal measure-
ment with M0

(
f (ℓ�)
)
= f (ℓ) for all functions f defined on

Spec(ℓ). Measurement results based on these two meter rulers
are shown in Figure 6. The diagonal line in the schematic di-
agram indicates the ideal measurement of length and the two
step-functions correspond to the measurand’s approximations
obtained by a ruler having a mark for each millimeter and an-
other ruler having a mark for each half millimeter.
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Fig. 6. Ruler-based step-function approximations of length quantity
ℓ.

Length measurement can also be reasoned about in terms
of state-channels, having the form

S
(
L∞([0,L]ε)

) M∗ε−−−−−→←−−−−
ℑ∗ε

S
(
L∞([0,L])

)

whereℑ∗ε is anextensionmap that, roughly speaking, extends
discrete probability distributions on [0,L]ε to optimally ap-
proximating continuous distributions on [0,L]. This process
is actually a special case ofprobability kinematics.

Recall from the end of Section 4 that all states in the state
spaceS

(
L∞([0,L])

)
are representable by probability measures

belonging toIP([0,L]). Importantly, the state-channelM ∗ε is
represented by a unique transition probability of the form

IP([0,L])
T∗ε−−−−−−−−→ IP([0,L]ε)

that sends all probability distributions on [0,1] to some proba-
bility distributions on [0,L]ε. It is well known that the above-
displayed transition probability is equivalent to thechan-
nel distributionT′ε

∗ : [0,L] −→ IP([0,L]ε), where the num-
ber
{
[T′ε
∗](c)
}
({kε}) denotes the probability that the flagpole’s

length measured by the ruler iskε millimeters, given that its
actual length isc.

In deterministicsituations it is natural to assume that the
flagpole’s extant stateS is pure, meaning the flagpole’s ac-
tual length is a definite (albeit unknown) real number, sayc,

in that state. Thus,S may be represented by a Dirac proba-
bility measureδc. In this case we haveS(1~ℓ=c�) = Pℓ,S

(
~ℓ =

c�
)
= 1 precisely when the flagpole’s length is actuallyc, and

S(1~ℓ=c�) = 0 otherwise. Intuitively, a pure state ensures a
probabilistic certainty about the extant value ofℓ. Now, since
the state-channelM ε is also pure (in view of being deter-
mined by the discretization mapℜε), it transfers the flag-
pole’s deterministic state to the ruler’s deterministic state, so
that the ruler’s readout is exactlyℜε(c) in that state, captured
by δℜε(c). Thus, by the fundamental state representation the-
orem we have

S
(
1~ℓ�=ℜε(c)�

)
= Pℓ�,M∗ε(S)(~ℓ

� =ℜε(c)�)

=
[
T∗ε
(
Pℓ,S
)]

(~ℓ� =ℜε(c)�) = 1,

if Pℓ,S(~ℓ = c�) = 1, and 0 otherwise.
We mention in passing the case ofrepeatedlength mea-

surement. For example, if the flagpole’s length is measured
twice, then the representing state-channel has the form

S
(
L∞([0,L])

) M∗(2)
ε−−−−−−−−−−→ S

(
L∞([0,L]ε× [0,L]ε)

)

where in deterministic situations the channelM ∗(2)
ε sends

each Dirac stateδc (representing the flagpole’s actual length)
to the average distribution12[δℜε(c) + δℜ′ε(c)] obtained from
two independently performed measurements for all valuesc.
Clearly, in this measurement there are two probabilistically
independent pointer quantitiesℓ�1 andℓ�2 together with two in-
dependent around-off maps. The situation ofn-fold repeated
measurement processes is treated similarly, where the prob-
ability distribution of measurement outcomes has the form
P=
∑

k≥1δkε.
As for nondeterministic cases, when the flagpole’s actual

length is uncertain (due to various perturbation factors),we
can safely assume that there is a normal probability distribu-
tion that correctly describes the flagpole’s geometric condi-
tion. As expected, flagpole states characterized by normal
distributions are transformed by the state-channelM ∗ into
ruler states, having the form of binomial distributions that
discretelyapproximate the continuum input distributions. A
state-channel transfer from a continuum distribution to anop-
timal discrete distribution is illustrated in Figure 7.

c ℜε(c)

M ∗

Fig. 7. State-channel transfer of normal ditributions to
approximating binomial distributions.

States represented by normal distributions usually arise from
measurements that are repeated arbitrarily many times under

230



MEASUREMENT SCIENCE REVIEW, Volume 12, No. 6, 2012

the same or exchangeable conditions. In this case the mea-
surement process involves an infinite sequenceℓ�1, ℓ

�

2, · · · of
probabilistically independent random variables, whose Carte-
sian product value space [0,L]Nε =d f [0,L]ε× [0,L]ε×· · · with
its sigma Boolean algebra of cylinder sets induces a quantity-
channel of the form

S
(
L∞([0,L])

) M∗Nε−−−−−−−−−→ S
(
L∞([0,L]ε)⊗L∞([0,L]ε)⊗ · · ·

)
,

sending, roughly speaking, the flagpole’s probability distribu-
tion (representing its extant state) to a joint probabilitydistri-
bution on [0,L]Nε .

For the balance of this subsection we wish to emphasize
that the algebraic formalism presented above is also applica-
ble to direct measurements of mass on an equal-arm balance
scale. The target system is any small-size object with an un-
known mass that is placed on the balance scale’s right pan and
a suitable set of standard weights with known masses is added
to the left pan and adjusted until a perfect balance is achieved.
For concreteness, we can assume that a balance scale can mea-
sure objects with masses up to 1000 grams and the smallest
detectable mass for which there is a standard weight is 0.01
grams. As in the case of length measurement, instruments of
this type provide only an optimal approximation of the mea-
sured object’s actual mass. The theoretical limit for the reso-
lution of a balance is set by the fact that, due to perturbations,
the measuring instrument cannot be brought to absolute rest.
In practice, the instrument’s resolution is determined by the
smallest mass of available standard weights.

5.2. Indirect temperature measurement

Microscopically, temperature is understood to be the av-
erage kinetic or thermal energy of a targetthermodynami-
cal system’s atoms or molecules. Unfortunately, the temper-
ature of thermodynamical systems cannot be measured di-
rectly. However, since higher degrees of temperature cor-
respond to motions with greater amplitudes, thermometric
property-based measuring instruments can record a certain
manifestation of the increased energy of atoms or molecules.
The most used macroscopicthermometricproperties in ther-
mometry are the volumetric expansion and electrical resis-
tance of certain materials. Naturally, thermometers employ
physical principles that link temperature changes to certain
easy-to-measurethermometricproperty changes. In this way,
thermometric quantities can be profitably utilized in measur-
ing temperatureindirectly. It is well known that indirect mea-
surements have largely taken over the task of measurement
from the basic and less effective direct measurement methods.

Perhaps the most popular physical principle used in ther-
mometry is the expansion of liquids with increasing tempera-
ture. All of us are familiar with mercury-in-glass thermome-
ters. Liquid mercury is encased in the glass bulb of a narrow
glass capillary that expands to a greater volume when it gets
hotter. The length of the mercury’s expansion is measured by

using a calibrated scale, etched in the stem of the thermome-
ter. Importantly, the relationship between the temperature and
the mercury column’s height is linear over a limited tempera-
ture range, having the empirical law form

ℓ = ℓ0(1+αT),

whereℓ denotes thelengthof the liquid mercury column in
the thermometer’s capillary at temperatureT, ℓ0 is the nomi-
nal height of the column at zero temperature of Celsius, and
α is the mercury’s coefficient of linear expansion. Note that
mercury-in-glass thermometers arepassiveinstruments in that
there is noexternalenergy source needed for obtaining the
measurement outputs.

Fundamental to mercury-in-glass thermometers and re-
lated measuring instruments is thethermometricmap £ :
Spec(T) −→ Spec(ℓ), defined by£(τ) = ℓ0(1+ α · τ) for all τ
in Spec(T), that assigns in a law-like manner to each tempera-
ture degree of the ambient thermodynamical system a unique
mercury column length, realized by the measuring instrument
after the two systems reach a thermal equilibrium.35 Along
usual lines, the thermometric map£ induces the von Neumann
algebra homomorphism

L∞
(
Spec(ℓ)

) L∞(£)−−−−−−−−−−→ L∞
(
Spec(T)

)

that models temperature measurement, based on reading the
mercury column’s length values. In particular, the homomor-
phismL∞(£) sends projection1~ℓ=c� (representing proposition
~ℓ = c�) to the projection1

~T=
c−ℓ0
αℓ0
�

(representing proposition

~T = c−ℓ0
αℓ0
�). In ideal temperature measurements, the temper-

ature quantity is fully determined by the length quantity, i.e.,
we haveT = L∞

(
£
)(

1
αℓ0

(ℓ− ℓ01)
).

Since most real-world measurements are nonideal, the
foregoing continuum model of measurement remains in-
complete without its discretized counterpart. A complete
model of indirect temperature measurement is given by
the commutative diagram as shown below that includes the
continuum part and the associated transformation of discrete
readings of column length values to the correlated discrete
values of temperature:

L∞
(
Spec(ℓ)

)
L∞
(
Spec(T)

)

L∞
(
[0,L]ε

)
L∞
(
[0,T]ε′

)

L∞(£)

L∞(ℜε) L∞(ℜε′ )

L∞(£ε,ε′ )

It is easy to see that the discrete homomorphismL∞(£ε,ε′)
sends the earlier discussed half-open intervals [kε− 1

2 ,kε+
1
2)

35The dynamics of mercury-in-glass thermometers in terms of heat trans-
fers from system to thermometer is treated in [4].
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of column length to half-open intervals [kε′ − 1
2 ,kε

′ + 1
2) of

temperature. Crucially, because thermometer readings pro-
vide only an estimate of the mercury column’s actual length,
the length-based derived measurement of temperature is also
just an estimate of the ‘true’ values ofT. Formally, we have
T̂ = L∞

(
£
)(

1
αℓ0

(̂ℓ− ℓ01)
).

A second common derived temperature measurement is
performed byresistance temperature devices. Their design is
based on the familiar principle that the electrical resistance of
certain metals (e.g., platinum and nickel) increases with their
increasing temperature. For a smaller range of temperature,
the usual polynomial model relating resistance to temperature
is safely approximated by the linear empirical law

R = R0(1+αT)

in which R is the conductor’s resistance at temperatureT,
R0 denotes the metal’s nominal resistance at zero tempera-
ture (when it is immersed in melting ice), andα denotes the
metal conductor’s resistance-temperature coefficient. Impor-
tantly, resistance temperature devices areactivemeasuring in-
struments, since the energy in the output signal comes from an
external power souce, needed for measuring resistance. Typ-
ically, resistance thermometers consist of a coil of platinum
wire wound on a ceramic insulator mounted into a steel tube,
and connected to one arm of a Wheatstone bridge furnished
with a small power source and a calibrated meter. Resistance
temperature measurement is doubly indirect in that tempera-
ture changes are linearly related to resistance changes that are
measured by a calibrated ohmmeter.

Today there is a large variety of thermometers that are
based on considerably more sophisticated physical principles
than the ones recalled above, such as bimetal thermometers,
infra-thermometers, and pyrometers.

5.3. Joint measurement of quantities

We now move on to consider simultaneous measurements
of several quantities. In ajoint measurement of two quantities,
information about their values is received from the respective
pointer-quantities of two measuring instruments. A simple
example is a simultaneous measurement of the position and
angular velocity of a pendulum’s bob. Here we are interested
in the algebraic representation of measurements of this type.

Any pair Q and Q′ of measurands of a target system –
generating the von Neumann algebraA(Q,Q′) ⊆ A – can
be viewed, thanks to the spectral mapping theorem, as ran-
dom variables taking their values in their respective valuesets
Spec(Q) and Spec(Q′). As one of the basic conclusions of the
algebraic paradigm we note that thejoint measurementof two
measurands is meaningfully represented by the state-channel

S
(
A(Q,Q′)

) M∗−−−−−−−−→ S
(
L∞(Spec(Q))⊗L∞(Spec(Q′))

)
,

defined by the averaging integral

[M ∗(S)]( f ⊗g) =
∫

SpecQ

∫

SpecQ′
f (x) ·g(y)PQ,Q′,S(dx,dy)

for all real-valued functionsf on Spec(Q) andg on Spec(Q′),
wherePQ,Q′,S denotes the probability measure on the product
value space Spec(Q)×Spec(Q′) representing stateS. Intu-
itively, the state-channelM ∗ of a joint measurement takes the
system’s stateS as input and gives the probabily distribution
PQ,Q′,S on the measurand’s values as output. As before, the
identity mapsℑ andℑ′ on value sets are the respective pointer
quantities forQ andQ′.

There is an alternate equivalent representation of joint
measurement that uses the dual quantity-channelM . It
renders the following diagram of marginal channels commu-
tative:

L∞
(
Spec(Q)

)

L∞
(
Spec(Q)

)⊗L∞
(
Spec(Q′)

)
A

L∞
(
Spec(Q′)

)

M Q

M

LQ

M Q′
LQ′

As expected, the marginal quantity-channelsM Q andM Q′ in-
cluded in the diagram represent the measurements ofQ and
Q′. By exactly the same reasoning as used in the previous
section we obtainM ( f ⊗ 1) = f (Q), M (1⊗ g) = g(Q′), and
henceM ( f ⊗g) = ( f ⊗g)(Q⊗Q′) for all real-valued functions
f ,g defined on the value sets ofQ andQ′. In particular, we
haveM (ℑ⊗ 1) = Q andM (1⊗ℑ) = Q′, suggesting that the
joint measurement ofQ and Q′ is treated as a case of ideal
measurement. We already know that channels fornonideal
joint measurements are based on discretizations of value sets
Spec(Q) and Spec(Q′), determined by the resolution and sen-
sitivity of the measuring instruments selected forQ andQ′,
respectively.

In joint measurements often it is of interest to deter-
mine how quantitiersQ and Q′ covary jointly. Recall
that thecovarianceof Q and Q′ at stateS is defined by
CovarS(Q,Q′)=d fS(Q•Q′)−S(Q)·S(Q′). We know that covariance
might be positive, negative, or zero – giving a idea of how
quantitiesQ andQ′ are related. An important special case is
given by probabilistically independentmeasurements ofQ
andQ′, defined byS

(
f (Q) •g(Q′)

)
= S
(
f (Q)
)
•S
(
g(Q′)

)
for

all statesS.
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