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Performances of several methods currently used for detection of discordant observations are reviewed, considering a set of 
absolute measurements of gravity acceleration exhibiting some peculiar features. Along with currently used methods, a criterion 
based upon distribution of extremes is also relied upon to provide references; a modification of a simple, broadly used method is 
mentioned, improving performances while retaining inherent ease of use. Identification of distributions underlying experimental 
data may entail a substantial uncertainty component, particularly when sample size is small, and no mechanistic models are 
available. A pragmatic approach is described, providing estimation to a first approximation of overall uncertainty, covering both 
estimation of parameters, and identification of distribution shape. 
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1.  INTRODUCTION 

ECORDS OF MEASUREMENT results and 
experimental data often include discordant 
observations, that is outliers, bad data, mavericks. Their 

treatment implies choice among such options as 
incorporation along with bona fide values, outright 
rejection, and accommodation by adopting more 
comprehensive models; robust methods shielding estimated 
terms from adverse influences may also be adopted [1]. 
Identification of discordant observations, initially left to 
subjective evaluation, became the goal of a number of 
methods based upon some sort of statistical approaches [2], 
whose plurality caters for a variety of premises, and 
personal orientations. A model is usually assumed, covering 
among other aspects data distribution; should discordance 
from expected value either exceed some limit assessed in 
terms of sample statistics, or estimated probability of 
occurrence of some extravagant result fall below a given 
threshold, the observation concerned is conventionally 
tagged as discordant. A special cause may actually have 
produced the discordant observation, or it may correspond to 
a distribution tail, unlikely to show up but by no means less 
legitimate than the central mound of more frequently 
observed results.  

Outlier treatment implies, as a support for decision 
making, assessing how unlikely observing such a deviation 
would be, owing to chance variation only. Features of 
underlying distribution are estimated in terms of those of a 
sample, whose size may entail getting a fairly good 
evaluation of central tendency, a reasonable one of spread, 
at least around middle values, and but a hazy picture of 
shape, particularly towards tails. Predicting probability of 
discordant values on such shaky foundations may be an 
awkward undertaking. Two approaches are sometimes 
practicable, one whenever a substantial data base affords 
modeling distribution adequately over a comprehensive 
range, and another when background information on the 
phenomena under examination provides theoretical support  

 
 

for selection of a distribution, regardless of size of the data 
base. Often, however, neither is available.  

Admittedly, there is a yawning gap between knowledge 
provided by a scanty amount of experimental evidence, and 
capability of making meaningful predictions concerning 
discordant values. Expert knowledge may be called upon to 
provide what is needed to complement statistical evaluation 
of experimental data, in the process of drawing a realistic 
conclusion from less than compulsory evidence, following 
the logical lines successfully developed for evaluation of 
measurement uncertainty [3], see also [4], [5]. All that is 
required is a mechanism allowing smooth blending of 
information provided by the sample at hand, and the body of 
specific knowledge accumulated and agreed upon by 
experts. Families of empirical distributions may provide an 
algebraic coat if required. Furthermore, combining together 
information gathered from both statistical evaluation and 
case specific knowledge may lead to inferences 
provisionally acceptable to qualified observers, until 
substantial additional information is added to the existing 
body, in the incremental, never ending sequential learning 
process typical of experimental science. Such an approach 
may well be disputed as arbitrary, a legitimate criticism. No 
less arbitrary is, however, a fairly popular axiomatic modus 
operandi, consisting in assuming on shaky evidence of a 
convenient distribution shape, and then dealing with it as 
revealed truth.  

When dealing with distributions fitted to experimental 
data, the latter providing estimates of parameters, 
uncertainty is often assumed as affecting such estimates 
only, disregarding what pertains to identification of 
underlying distribution, whose shape may be tentative only 
for want of cogent evidence. Taking explicitly this into 
account, in the overall uncertainty evaluation process, also a 
component pertaining to identification of shape appears to 
make sense, as it may turn out to account for a substantial 
contribution. An empirical approach might first try to locate 
approximately the candidate distribution on the skewness-
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kurtosis plane in terms of sample statistics ([6], [7]), and 
then assess bounds of a reasonable joint confidence region 
in the mean-standard deviation-skewness-kurtosis space, 
based upon estimates of the first four moments and relevant 
uncertainties. Should, e.g., symmetry be taken for granted, 
the confidence region on the skewness-kurtosis plane would 
shrink down to a segment on the ordinate, including 
Student’s t distribution when the normal one is the first 
candidate. In the general case, an assumed array of 
candidate distributions may be modeled resorting to 
subgroups of empirical distributions such as Johnson’s or 
Pearson’s type families ([8], [9]), with a range of parameters 
consistent with bounds of confidence region.  

An example is presented concerning treatment of a 
substantial set of measured values of free fall acceleration, 
recently obtained with a rise-and-fall absolute gravimeter 
[10] at Istituto Nazionale di Ricerca Metrologica (INRIM); 
several discordant observations were also recorded, due to a 
peculiar pattern of parasitic effects. The physical model 
considered takes into consideration, as main influence 
factors, gravity acceleration gradient and residual air drag, 
experiments being carried out in a vacuum chamber. 
However, other disturbances appear to affect flight pattern 
and motion-time measuring system, particularly rotation of 
the flying reflector and residual movement or vibration of 
interferometric system’s stationary reference, provided by a 
reflector carried by a seismometer’s pseudo-inertial mass, 
exploited to filter out the vertical component of parasitic 
motion imparted to the gravimeter’s supports. Identification 
of the statistical distribution of effects induced by such 
disturbances, and estimation of relevant parameters, is 
affected by a number of hardly predictable factors, such as 
floor vibration induced by human activity, vehicles, 
machinery and small/remote earthquakes. Self-induced 
vibrations occurring during launch may also produce 
parasitic movement of the pseudo-inertial mass, and residual 
friction on the moving stage of the launch system may 
impart rotation on the flying interferometric reflector. 

Application of some criteria currently used for outlier 
detection - and exclusion – is shown to lead to a fairly broad 
range of results, some of them implying sizable distortion of 
experimental distribution. A simple, two distribution model 
was found adequate for describing the pattern of results 
observed, enabling estimation of parameters pertaining 
either to substantially disturbance free operation of the 
gravimeter, or affected by parasitic influences as 
summarized above. 
 
2.  METROLOGICAL PROBLEMS IN ABSOLUTE MEASUREMENT 

OF GRAVITY ACCELERATION 
In a modern absolute ballistic gravimeter, major 

contribution to data scatter is due to floor vibration, 
amounting typically to some tens of microgal 
(1 µGal = 1×10-8 ms-2), according to gravimeter, and 
measurement site. Therefore, the estimate of the measurand 
(the free-fall acceleration) is routinely obtained by averaging 
some hundreds of individual measurement results. The 
present accuracy limit, due to reproducibility of results, is 
believed to lie at the microgal level, corresponding to about 
one part in 109 of the Earth’s gravitational acceleration. An 

absolute measurement of a physical quantity requires a 
detailed understanding of the influence factors affecting its 
realization. Special attention should be given to those effects 
that remain almost constant during the experimental activity 
and therefore are difficult, or almost impossible to identify 
and correct. A proper uncertainty evaluation should include 
also these effects, which do not contribute to data scattering. 
In ballistic gravimetry, the two dominating effects besides 
floor vibrations are the centripetal, and the Coriolis 
acceleration [11]. 

These effects are evaluated in the case concerning the 
ballistic gravimeter IMGC-02, developed and tested at 
INRIM [10]. Absolute ballistic gravimeters are based on the 
reconstruction of the vertical trajectory followed by a test 
body in vacuum; IMGC-02 instrument adopts the 
symmetrical rise and fall method, where the test body is 
thrown vertically upwards (Fig.1). Laser interferometry is 
used to determine the trajectory of the flying body, which 
acts as the moving reflector M in a vertically oriented arm of 
a modified Mach-Zehnder interferometer, whose reference 
reflector R is supported by a seismometer’s inertial mass. 
Optical fringes at the interferometer are converted to 
electrical signals by a photodetector, while time values 
corresponding to selected positions of the test body during 
its flight are obtained by timing a recurring phase of the 
signal oscillation. 
 

  
 
Fig.1.  The symmetrical rise and fall method. Time 0, take off 
produced by the spring (as reaction floor vibration). Time 1, flight 
phase monitored in time with a rubidium clock and in position with 
a modified Mach-Zehnder interferometer with the reference 
reflector kept nearly steady on the arm of a seismometer. 

 
Relating the space-time coordinates determined in this 

way to a number of parameters, a measurement model is 
obtained, from which the law of motion of the test body, and 
hence gravity acceleration g, is determined [12]. First and 
foremost among model parameters is the measurand, i.e. 
acceleration g experienced by the moving reflector during 
free rise and fall under the influence of gravity. The law of 
motion considers main known influence factors, described 
and thoroughly analyzed in the literature ([11], [13]), such 
as gravity acceleration gradient and residual air drag, 
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experiments being carried out in a vacuum chamber; 
however, to isolate hidden systematic factors, evidenced in 
international comparisons, residual variations - mainly due 
to floor vibration and centripetal and Coriolis accelerations 
of the test body - must be accounted for, and deducted from 
result variability. An analysis of some effects on gravity 
measurements [14] was performed, applying the Monte 
Carlo method under reasonable assumptions, starting from 
possible experimental signs of effects of Coriolis and 
centripetal accelerations (Fig.2).  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
Fig.2.  Expected distribution of the Coriolis acceleration (a) and the 
relevant experimental data (b). Expected distribution of the 
centripetal acceleration (c) and the relevant experimental data (d). 

 
These effects are expected to produce a larger variability 

when compared to groups of results obtained in particularly 
favorable conditions. Experimental data exhibit the typical 
pattern shown in Fig.3. For the sake of expediency, data are 
coded by multiplication by 104, after deducting the median 
(see section 2.A). An interpretation may be in terms of a 
sum of factors as previously described, justifying variation 

of the central part in the range of about ±100 µGal. 
However, tails appear to be mainly affected by other 
unidentified accidental effects, such as floor motion, 
anomalies in projectile’s trajectory, data acquisition and 
processing, and other irregular events, producing results 
showing up as discordant observations. 

Estimation of moments of experimental distribution is 
awkward owing to the striking similarity with Cauchy 
distribution, which turns out to provide the best fit among a 
number of theoretical and empirical distributions according 
to, e.g., Kolmogorov-Smirnov and Anderson-Darling tests. 
Inclusion or exclusion of a few data lead to inordinate 
variation in estimates of moments, furthermore, no physical 
justification for Cauchy distribution of data was found 
hitherto. An alternative explanation, consistent with 
experimental results, assumes contamination of a normal 
distribution, pertaining to the vast majority of data obtained 
under favorable conditions, by a fairly smaller set of data 
apparently affected by substantially larger disturbances, 
assuming again normal distribution, Fig.3 (a) and (b). 
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Fig.3.  Normal probability plots of over a thousand measured 
values (coded) of gravity acceleration with some discordant 
observations (black), approximated in terms of a Cauchy 
distribution (red) with location and scale parameters equal to 0 and 
2.3×10-3 respectively  (a), and a mixture (in a proportion of about 
1:16) of two normal distributions (blue) both with mean equal to 0, 
and standard deviations equal to 1.5×10 -1 and 3.4×10-3 (b). 
 
Identification and treatment of outliers 

The data set referred to above deals with over a thousand 
measured values of the gravity acceleration recently 
obtained with INRIM’s ballistic gravimeter IMGC-02. 
Values ranging from about 9.80531 to 9.80538 were coded 
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by multiplication by 104 after deducting the median of 
approximately 9.80534. Some descriptive statistics are 
shown in Table1. 
 
Tab.1.  Descriptive statistics for a set of measured values of gravity 
acceleration (coded). 
 

N mean std. dev. IQR 

1192 -0.00223 0.037 0.00501 

x(1) Q1 Q3 x(n) 

-0.37329 -0.00271 0.00230 0.33432 
 

Fig.3 shows normal probability plots of values of coded 
gravity acceleration; at either tail a number of discordant 
results may be observed, mainly traceable to such anomalies 
as referred to above. Outliers are identified according to 
Chauvenet’s, Grubbs’, and IQR (interquartile range) 
methods; another based upon extreme value distribution 
[15], and a modification of IQR method were also 
considered [16], see also [2], [17].  

For both whisker limits, namely -0.0102 and 0.0098, being 
readily computed, IQR method yields 68 outliers. Modified 
IQR method yields -0.0150 and 0.0146 as limits, 
respectively, detecting 50 outliers. Applying Chauvenet’s 
criterion, the probability of having an accident is 
approximated to 0.04%, so the acceptance interval, i.e. 
[Ll, Lu] = [-0.132, 0.128], leads to identification of 30 
outliers in the first iteration. Grubbs’ test and the method 
based upon distribution of extremes are then compared 
adopting for both the risk of 0.04%, in order to make 
comparison meaningful, detecting in the first iteration 12 
outliers in either case. Acceptance intervals are: 

• [Ll, Lu]=[ -0.198, 0.194] for Grubbs’ test; 
• [Ll, Lu] = [ -0.190, 0.186] for the method of extremes. 
Both methods appear to behave similarly, detecting a 

substantially lower number of outliers than Chauvenet’s 
criterion. 

When the outlier detection process is applied iteratively, 
with a fixed risk of error of 0.04%, the following results are 
obtained: 

• both Chauvenet’s criterion and method of extremes 
stop detecting additional outliers after the fifth iteration, 
while Grubbs’ test stops after the sixth; 

• all in all, Chauvenet’s criterion detects 54 outliers, 
Grubbs’ test 49 and the method of extremes 48. 

IQR method (albeit at another level of risk), and to a lower 
extent Chauvenet’s, appear to identify as outliers a number 
of values substantially larger than modified IQR method, 
Grubbs’ test and the method of extremes. 

Evidence of rather abusive exclusion of outliers appears 
for both IQR and Chauvenet’s methods [16], suggesting an 
empirical distribution shape radically deviating from the 
original data set. On the other hand, by retaining a few 
borderline experimental values, modified IQR, Grubbs’ and 
the extreme values method manage to preserve some typical 
features of the original data set, while at the same time 
effectively shielding estimates of main population 
parameters – central tendency, and scatter - from outlier 
induced bias.  

3.  EMPIRICAL IDENTIFICATION OF DISTRIBUTION SHAPE 
When only a data set, and precious little else, may be 

exploited for identification of the shape of underlying 
distribution, substantial uncertainty applies particularly 
when a limited number of observations is available, as is not 
uncommon in experimental work. Such a component may 
account for a sizable part of type A uncertainty pertaining to 
inferences drawn in terms of that distribution, besides 
contributions pertaining to estimates, e.g., of moments. 
While the latter component is routinely estimated in terms of 
sample statistics using established procedures, the former is 
often conveniently dispended with, assuming data 
distributed according to a family conveniently shaped and 
easy to handle, without further ado. Analytical evaluation 
may be awkward if at all possible, owing to a lack of 
specific information, typical of situations where no reliable 
mechanistic models are available; a solution is presented 
addressing the statistical issue on a pragmatic basis, 
following a simple way capable of leading to quantitative 
results. A realistic estimate of that uncertainty component, 
obtained with a single significant digit, may be considered 
an improvement over gut feelings only. 

Sample size may be reasonably required to be large 
enough to allow at least crude estimation of the first four 
moments of the distribution. The first two sample moments 
lead to defining boundaries of a joint confidence region for 
estimates of parent population’s location and spread 
parameters, e.g., on the μ – σ plane; another joint confidence 
region pertaining to some features of underlying distribution 
may be mapped on the β1 – β2 plane in terms of non-
dimensional sample estimates of skewness and kurtosis ([6], 
[7]). Several theoretical distributions may then be found to 
fit the bill, as well as a range of empirical ones such as 
Johnson’s or Pearson’s type families ([8], [9]), within a 
parameter range consistent with the relevant confidence 
region at the level considered. Irrespective of whether a 
theoretical distribution is eventually fitted to data, or an 
empirical one, the goal is to find out expeditiously how to 
obtain realistic confidence bands, taking into account 
uncertainty in estimates of parameters as well as in 
identification of distribution shape. 

According to the information available, and properties of 
the problem considered, one may end up in the simplest case 
with a three dimensional confidence region – e.g., for a 
symmetrical distribution defined in terms of location and 
scale parameters, and kurtosis – or with one in k>3 
dimensions in the general case. Points on confidence 
region’s boundary surface identify distributions compatible 
with data; the envelope of their cumulative distribution 
functions defines a confidence band pertaining to type A 
overall uncertainty, comprehensive of components 
pertaining to estimation of parameters, and identification of 
model form. 

Determination of a joint confidence region for 
substantially independent parameters concerning location, 
and spread, is simple enough as long as a number of 
convenient assumptions are accepted; to a first 
approximation a trapezoidal region in the μ - σ plane may be 
adopted [18], where every apex corresponds to a limit 
condition. Similar considerations do not, however, apply to 
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measures of asymmetry, and kurtosis, whose sample values 
may offer rather poor estimates of those pertaining to 
population, particularly for small sample size. For a 
symmetrical distribution the statistical index β1 (and its 
square root, preferred in some instances) vanishes; the 
reverse is not necessarily true, as non-symmetrical 
distributions whose odd order moments vanish are known 
[19]. Sometimes γ2 = β2 – 3 is adopted as a measure of 
peakedness; while for a class of regular, symmetrical 
distributions γ2 > 0 entails a more flat topped shape than the 
normal one, and a more peaked one for γ2 < 0, such 
considerations may not necessarily apply to other 
symmetrical or skew distributions. Sample estimates b1 and 
b2 of β1 and β2 turn out to be biased and far from 
independent, particularly for moderate sample size; 
furthermore, their distribution – affected by that underlying 
experimental data – does not lend itself to be covered under 
the convenient cloak of the central limit theorem. Properties 
of estimators in terms of consistency, efficiency and 
unbiasedness being far from attractive, a pragmatic 
approach was preferred to lengthy analytical developments, 
resorting to numerical simulation performed on random 
samples drawn from normal distribution, frequently 
encountered dealing with measurement errors. 

Monte Carlo simulation supplies readily approximations to 
single and joint distributions of estimators of interest. Not 
unexpectedly, considering a normal parent distribution, 
numerical estimates of β1 turn out to be distributed with a 
reverse J shape, while those of β2 tend towards 
approximately normal shape for sample size n, at least in a 
three digit range (see Fig.4, 5, 6). Empirical corrections 
were obtained numerically in order to offset bias in 
estimates, observed particularly for small sample size (see 
Fig.7), where kurtosis is systematically underestimated. 
Peculiar patterns may be observed in the empirical joint 
distribution of numerical estimates b1 and b2, somehow 
slanted along a diagonal region over the β1 – β2 plane for 
small to medium sample size, with a slope slowly 
decreasing for larger values of sample size n (see Fig.8(a), 
8(b), 9(a)); joint confidence regions may be derived at 
specified levels. 

Coefficients of correlation between sample estimates b1 
and b2, obtained numerically for a normal parent 
distribution, are plotted versus n in Fig.9(b). 
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Fig.4.  Histograms of numerical estimates of β1 (a) and β2 (b) for 
sample size n equal to 10. 
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Fig.5.  Histograms of numerical estimates of β1 (a) and β2 (b) for 
sample size n equal to 100. 
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Fig.6.  Histograms of numerical estimates of β1 (a) and β2 (b) for 
sample size n equal to 1000. 
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Fig.7.  Empirical evaluation of bias in estimates of β1 (a) and β2 (b) 
plotted versus n. 
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Fig.8.  Empirical joint distribution of numerical estimates of β1 and 
β2 for sample size n equal to 10 (a) and 100 (b). 
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Fig.9.  Empirical joint distribution of numerical estimates of β1 and 
β2 for sample size n equal to 1000 (a); coefficient of correlation r 
between estimates of β1 and β2 plotted versus sample size n (b). 
 
 
 



 
MEASUREMENT SCIENCE REVIEW, Volume 12, No. 4, 2012 

 138

Evaluation of confidence region 
Let us consider first an example concerning measurements 

of battery capacity, with n = 10, xave = 40, s = 3.5 [20]. 
Confidence intervals at 90% level for μ and σ are readily 
obtained, leading to a joint confidence region drawn on the 
μ – σ plane with an approximately trapezoidal shape 
bounded by ordinates 2.5 and 5.7, and abscissas 38, 42 and 
36, 44, respectively. A normal distribution may be fitted to 
the set of data at hand, and a confidence belt at 90% level 
for cumulative distribution function (cdf) obtained, given 
that the distribution shape assumed is the correct one – an 
educated guess only. Now let us map a rough numerical 
approximation of an overall 90% confidence region 
corresponding to our case, further simplified by restricting 
uncertainty to kurtosis only, namely by assuming symmetry, 
β1 = 0, as consistent with the set of data at hand. Sample 
estimate of kurtosis, corrected for bias due to sample size 
(b2 = 2.6), and a confidence interval 90% level for β2 at the 
level considered (1.6 ≤ β2 ≤ 4) are readily obtained by the 
Monte Carlo simulation. For b2 = 4 a Johnson SU 
distribution would fit the bill, and a Johnson SB for b2 = 1.6; 
other families of empirical distributions might of course be 
selected, e.g., Pearson’s type I and IV. Parameters of these 
distributions are first estimated according to the procedure 
described in [7], and further refined by heuristic methods. A 
joint confidence region for the three parameters considered 
in the μ-σ-β2 space, roughly centered on point (40, 3.5, 3) 
corresponding to normal distribution, may be assumed to be 
bounded by a prism such as shown in Fig.10, whose apex 
coordinates A to H are listed in Table2. 

A
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B
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G

Hμ

σ

β 2

 
 
Fig.10.  Prism enclosing a joint confidence region at 90% level in 
the μ-σ-β2 space for location, spread and peakedness of 
distributions. 
 
Tab.2. Apex coordinates of prism shown in Fig.10 for 
measurements of battery capacity based upon sample parameters. 
 

apex mean st. dev. b2 distr. type 
A 38 
B 42 

2.5 

C 36 
D 44 

5.7 
1.6 SB 

E 38 
F 42 
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G 36 
H 44 

5.7 
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(b) 

 
Fig.11.  Cdf of the eight distributions corresponding to apexes A 
through H of prism shown in Fig. 10; normal probability plot of 
battery capacities with 90% confidence region pertaining to 
assumed normal distribution (inner curves), and envelope of 
distributions (dotted) corresponding to points A through H (b). 
 

Cdf’s of the eight Johnson distributions corresponding to 
coordinates A to H listed in Table2 are plotted in Fig.11(a), 
their envelope defining to a first approximation a joint 
confidence region for the cdf of parent population, taking 
into account uncertainties associated both with estimation of 
parameters and identification of distribution form. The latter 
contribution appears by no means negligible, as for the case 
at hand it does substantially exceed the former, as shown in 
Fig.11(b), where the comprehensive envelope is plotted 
along with the confidence belt corresponding to 
unquestioning acceptance of normal distribution hypothesis. 

In comparable instances, when little information is 
available besides sample values, the wider confidence 
region would be a sensible choice. In the light of expert 
knowledge, and specific, detailed information concerning 
expected shape of parent distribution, realistic confidence 
limits may get closer to those derived in terms of joint 
confidence region for estimates of parameters.  

Coming back to INRIM’s gravimetric data, the empirical 
procedure described above was applied to the mixture 
model. Data were centered since comparison among average 
values – e.g., corresponding to data sets obtained on 
different sites, or on the same site under different conditions 
– would, as a rule, be considered apart from issues 
concerning scatter. While normal distribution is 
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substantially confirmed for the well-behaved data, sizable 
uncertainty concerns distribution underlying the subgroup 
more affected by scatter. A joint confidence region for the 
latter subgroup for scatter and kurtosis may be approximated 
by a rectangle on the σ-β2 space, derived from the projection 
of the prism shown in Fig.10. The apexes, which identify 
four Johnson empirical distributions - two SB and two SU - as 
mandated by symmetry considerations ([7], [21], [22]), 
listed in Table3 along with their coordinates, lead to the 
90% confidence region shown along with experimental 
values in the half-normal plot of Fig.12.  

 
Tab.3.  Apex coordinates of rectangle (derived from prism of 
Fig.10) for INRIM’s gravimetric data, based upon sample 
parameters.  

 
apex st. dev. b2 distr. type 

A 0.132 
C 0.175 
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G 0.175 
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Fig.12.  Half-normal probability plot of (coded) gravity 
acceleration with envelope of limiting empirical distributions 
identifying a 90% confidence region. No outlier was discarded. 
 

Inclusion of uncertainty components covering estimation 
of parameters, and identification of distribution, may cater 
for more realistic estimation of type A contributions to 
uncertainty budget, thereby affecting evaluation of 
compatibility among data sets. 
 

4.  DISCUSSION 
Handling discordant observations is affected by statistical 

and technical evaluation of the case at hand, as – but for 
gross blunders – the outcome of evaluation process is 
affected by personal orientation, and specific knowledge. No 
automatic procedure may completely substitute expert’s 
judgment [23], just as in uncertainty evaluation [24]. Some 
measurement tasks exhibit a particular combination of 
sources of scatter, which may be modeled as a 
contamination of the bulk of “good” data by a small 
proportion of “bad” ones, or alternatively as a single, heavy 
tailed underlying distribution, the latter sometimes liable to 
entail peculiar problems.  

Lacking dependable theoretical basis and proper 
mechanistic models, empirical identification of distribution 
underlying observed data implies a substantial uncertainty 
component, which may well exceed that pertaining to 

estimation of parameters, routinely accounted for. A 
comprehensive evaluation may, however, be performed in a 
straightforward way, exploiting numerical simulation to 
supply information as required to obtain results with up to 
two significant digits, consistent with GUM guidelines [3].  

Realistic confidence regions thus obtained may turn up 
broad enough to suggest adopting less conservative levels 
than usual to make appearance palatable, as not unusual in 
some applications of extreme value statistics [15]. In the 
case concerning measurements of battery capacity [20], for 
instance, the width of a 90% confidence band for cumulative 
distribution accounting also for uncertainty in identification 
of form is found to range between over twice that of 
confidence band accounting only for uncertainty in mean 
and standard deviation, normal form being taken for 
granted, to as much as three times as large. For the set of 
gravimetric measurements considered, whether identified 
outliers are discarded or not hardly affects a minor, yet 
substantial subset of data affected by a much larger scatter 
than the bulk. That subset, admittedly influencing but 
marginally the average value and its related confidence 
intervals, must, however, be taken into account if 
uncertainty in empirical identification of underlying 
distribution is to be accounted for.  

Overly optimistic estimates of precision being of little if 
any use, it makes sense to face squarely the fact that data 
sets of finite size, routinely handled in the course of 
experimental work, particularly concerning underlying 
distribution carry but a limited amount of information, on 
whose basis only rather hazy predictions may be formulated. 
Realistic evaluation may afford some protection against 
such misfortunes as underestimating uncertainty by some 
two orders of magnitude [25].  
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