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The presented study focuses on a confrontation of the theory of regression models and theory of experiment with the real situation
of determining properties of magnetic (nano)materials. Their magnetic properties can be deduced by measuring their magnetiza-
tion, being the fundamental magnetic quantity of an arbitrary (nano)material. The results of the magnetization measurements deter-
mine the unknown parameters of a known nonlinear function that characterizes the (nano)material under investigation. Knowledge
of the values of the uknkown parameters enables to decide whether the (nano)material is suitable or not for a particular application.
Thus, in this work, we present a possible approach how to estimate the unknown parameters of the nonlinear function by the re-
gression models, taking into account a relevant linearization criterion. Then, we suggest an appropriate design for the measurement
to get better estimators of the parameters.
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1. INTRODUCTION

DUE TO their high application potential, magnetic materi-
als raise a significant attention of the scientific commu-

nity [5]. It turns out that if the size of the magnetic material is
reduced, below its characteristic size, new physico-chemical
properties emerge that are totally different from those exhib-
ited by the material’s bulk counterpart [5, 12]. This is caused
by a fact that in the nanoworld, the magnetic behaviour of ma-
terials is governed by other physical laws than at the macro-
scopic scale [2]. In almost all cases, we observe a magnetic
behaviour that is very promising and attractive for its subse-
quent practical application.

From the application viewpoint, iron- and iron-oxide-based
compounds constitute one of the most important types of
magnetic materials [8, 14, 15, 18]. If these compounds are
synthesized as nanoparticles they can be utilized in a broad
variety of practical branches of human activity (e.g., con-
trast agents in nuclear magnetic resonance imaging, carriers
of drugs, heat mediators in magnetically-induced hyperther-
mia, tools in cell labelling, magnetic pigments in information
storage industry, etc.).

In general, we distinguish two approaches how to syn-
thesize magnetic nanoparticles, i.e., top-down (physical) and
bottom-up (chemical) approach [12]. As a result of both
synthetic ways, we can prepare various systems of magnetic
nanoparticles differing in their sizes, size distributions and
shapes and may affect their degree of agglomeration.

Once such a system of nanoparticles is synthesized, it is
necessary to study its magnetic properties on which basis we
can decide whether the as-synthesized nanoparticle system
meets requirements imposed by a given application. From
this viepoint, we look for magnetization (denoted asM) of the
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system which represents the basic physical quantity of every
magnetic material and/or nanomaterial. The magnetization
can be measured in two ways. We recognize temperature-
dependent magnetization when the external magnetic field
is kept constant and the magnetization is measured within
a given temperature range, or field-dependent magnetization
when the temperature is kept constant and the magnetization
is acquired within a given interval of the magnetic induction
(denoted asB) of an external magnetic field. The result of the
second approach is the so-called hysteresis loop, being oneof
the main magnetic characteristics of a magnetic material used
for its classification into a group of soft or hard magnetic ma-
terials [10]. From the measured hysteresis loop, it is possible
to determine several parameters that unambiguously charac-
terize the studied material. On the basis of the values of these
parameters, one can decide if the material is suitable or not
for the intended application.

Nanosized magnetic materials exhibit one remarkable phe-
nomenon that is known as superparamagnetism and is charac-
terized by a zero value of the coercivity and remanent magne-
tization [2]. When the magnetic nanomaterial is in the super-
paramagnetic state, the corresponding hysteresis loop crosses
the origin of the M vs. B plot and the upper and lower branch
of the hysteresis loop are identical, see Fig. 1.

In most cases, the profile of the superparamagnetic hystere-
sis loop is described by the well-known Langevin function
(for another example of application see[13]) which is given
by [2]

yi = β1 ·coth(β2 ·xi)−
β1

β2 ·xi
, i = 1, . . . ,n, (1)

whereβ1 andβ2 are parameters which represent physical con-
stants unambiguously characterizing the investigated nano-
material. From the physical viewpoint, the coefficientβ1
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Fig. 1: Example of the hysteresis loop of a nanomaterial in the su-
perparamagnetic state.

stands for the saturation magnetization of a given nanomate-
rial and is a measure of strenght of the nanomaterial magnetic
response in external magnetic fields. The coefficientβ2 rep-
resents a magnetic moment of a magnetically-active ion in a
nanomaterial (i.e., magnetic element that drives the magnetic
response of the nanomaterial), divided by the Boltzmann con-
stant and the temperature at which the measurement of the
hysteresis loop is performed. The coefficientβ2 reflects the
tendency to reach the magnetic saturation; if the value ofβ2 is
high, small applied magnetic fields are needed to magnetically
saturate the given nanomaterial. Thus, in many applications,
nanomaterials exhibiting high values of both parameters are
highly required.

The aim is thus to find out the estimates of the parameters
of this function for data acquired from the physical experi-
ment. Thus, we use a regression model when the nonlinear
function is firstly transformed into its linear aproximation by
the Taylor series expansion. Concurrently, we find the locally
D-optimal design of measurement to maximize the accuracy
of the found estimators of the uknown parameters and to max-
imize the economic efficiency of the experiment [16].

In the numerical part, we apply the proposed algorithms
to analyze experimental data acquired from the magnetization
measurement of spherically-shaped nanoparticles ofγ-Fe2O3

which were synthesized by a solid-state isothermal decom-
position of iron(III) acetate dihydrate (bought from Sigma
Aldrich company) in air at 380◦C (for synthesis details, see
[4]). Prior to the synthesis itself, the iron(III) acetate was
homogenized by grinding in an agate mortar resulting in the
size distribution of the precursor particles of 1–5 mm. The
weight of the precursor powder was 1 g and the reaction time
was 1 hour. The size distribution of the as-preparedγ-Fe2O3

nanoparticles was found to fall in the range from 5 to 10 nm.

2. EXPERIMENT AND METHODS

A superconducting quantum interference device (SQUID,
MPMS XL-7 type, Quantum Design) was used for the mag-
netization measurements. Hysteresis loop was recorded at
300 K in 150 points of an external magnetic field ranging from
−70000 to+70000 Oe. Firstly, at each measuring point, three
mutually-independent measurements were carried out result-
ing in 450 values in total. To measure the hysteresis loop,
we adopted the following typical measuring procedure. Af-
ter placing the sample into the magnetometer sample cham-
ber and centering it to get the proper signal, the temperature
was set to a value at which the measurement of hysteresis loop
was performed (300 K in our case). The magnetometer waited
approximately 30 minutes to become stable. Then, each mea-
surement was initiated when a given value of the induction of
the external magnetic field was reached; this took 2–5 minutes
including multiple measurements at each measuring point. In
our case, this measuring process was repeated 150 times.

2.1. Description of a model

From the mathematical viewpoint, we have the values
of sample mean magnetization̄y = (ȳ1, ȳ2, . . . , ȳn)

′, mea-
sured in the points of the external magnetic field intensity
(x1,x2, . . .xn)

′. The symbol prime stands for the transposition.
In our case,n = 150 and ¯yi is an average of three mutually-
independent measurements in eachxi . The statistical model is
in the form of

ȳ = φ(β1,β2)+ ε, (2)

where theith component ofn-dimensional vectorφ repre-
sents the nonlinear Langevin function (1) at the pointxi ,
β = (β1,β2)

′ denotes the unknown vector parameter andε is
the n-dimensional vector of random errors. The observation
vector ȳ is normally distributed with the covariance matrix
σ2Λ−1. HereΛ stands for the diagonal matrix ofn×n order
with the valueλir(i) on the main diagonal, whereλi = 1 and
r(i) = 3, the former being the weight and the latter being the
number of replications of measurements performed at point
xi (measurement has the same weight at any pointxi , each ¯yi

is an average of 3 measurements). The parameterσ = 0.002
Am2kg−1 and characterizes the accuracy of measurement (the
value was adopted from the documentation protocol of the
measurement device).

2.2. Linearization of the model

The statistical model (2) is nonlinear. Let us consider ap-
proximationβ 0 of the parameterβ ; The initial value ofβ 0

was set with respect to the values of parametersβ1 andβ2 de-
rived for variousγ-Fe2O3 nanoparticle systems and reported
in literature. We compared the quadratic approximation with
the analytically exact course of the Langevin function. It
showed that the quadratic course approximates the real course
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of the Langevin function in a sufficiently large neighborhood
of a given pointβ 0. Since we can choose a sufficiently large
neighbourhoodO of the pointβ 0 such that the true value of
β lies in O and the third derivatives of the Langevin func-
tion can be neglected for an arbitrary pointβ ∈ O, the para-
metric space of the parameterβ can be restricted to the set
O, where the model can be approximated in terms of the
quadratic model. In particular,

ȳ−φ(β 0
1 ,β 0

2 ) = Fδβ +
1
2

κ(δβ )+ ε, (3)

where

δβ = β −β 0

F =
∂φ(β 0

1 ,β 0
2 )

∂β ′

κ(δβ ) = (κ1(δβ ), . . . ,κn(δβ ))′

κi(δβ ) = δβ ′H iδβ

H i =
∂ 2φ(xi ,β 0

1 ,β 0
2 )

∂β∂β ′ , i = 1, . . . ,n.

In our case, theith row of n× 2 design matrixF, i =
1, . . . ,n, is defined as

f′i =

(
∂φ(xi ,β 0

1 ,β 0
2 )

∂β1
,

∂φ(xi ,β 0
1 ,β 0

2 )

∂β2

)
, (4)

with

∂φ(xi ,β 0
1 ,β 0

2 )

∂β1
= coth

(
β 0

2 ·xi
)
− 1

β 0
2 ·xi

,

∂φ(xi ,β 0
1 ,β 0

2 )

∂β2
=

−β 0
1 ·xi[

sinh
(
β 0

2 ·xi
)]2 +

β 0
1

(β 0
2 )2 ·xi

.

The matrixH i , i = 1, . . . ,n, is in the form of



0, − xi

[sinh(β 0
2 xi)]

2 + 1
β 02

2 xi

− xi

[sinh(β 0
2 xi)]

2 + 1
[β 0

2 ]2xi
,

2β 0
1 x2

i cosh(β 0
2 xi)

[sinh(β 0
2 xi)]

3 − 2β 0
1

[β 0
2 ]3xi


 .

Nevertheless, the quadratic model (3) is still rather com-
plicated. If we neglected also the second derivatives of the
Langevin function, i.e., neglecting the quadratic termκ(δβ ),
we would arrive at a linear model given as

ȳ−φ(β 0
1 ,β 0

2 ) = Fδβ + ε. (5)

To assess whether the quadratic model (3) can be really
linearized it is necessary to verify the consistency between
the experimental data and the linearized model (5). More
precisely, it is necessary to test the hypothesis if “linearized
model (5) is true” against an alternative if “quadratic model
(3) is true”, at the significance levelα. One possible solution
of this problem, based on the Bates and Watts curvature [1],
leads to the so-called linearization region [6]. The Bates and

Watts intrinsic curvature of the model (3) at the pointβ 0 is
defined as [1]

C(int)(β 0) = sup
{

kM : δβ ∈ R
2} ,

where

kM =

√
σ2κ ′(δβ )ΛMΛ

Fκ(δβ )

δβ ′F′ΛFδβ
,

MΛ
F = I −PΛ

F ,

PΛ
F = F(F′ΛF)−1F′Λ.

Moreover, lettolL be a chosen tolerable increase in the signif-
icance levelα induced by model linearization. Then, the lin-
earization region for consistency between experimental data
and linearized model is given as a set defined as

Lint(β 0) =

{
β 0 +δβ : δβ ′F′ΛFδβ ≤ 2σ2

√
δmax

C(int)(β 0)

}
, (6)

whereδmax is the solution of the probabilistic equation given
as

P{χ2
n−2(δmax) ≥ χ2

n−2(1−α)} = α + tolL .

Here the symbolχ2
n−2(δmax) denotes a random variable with

a non-central chi-squared distribution withn− 2 degrees of
freedom and with the non-centrality parameterδmax; χ2

n−2(1−
α) represents the(1−α)-quantile of the central chi-squared
distribution withn−2 degrees of freedom.

Hence, under assumption of normality, for sufficiently
small tolL , the quadratic model (3) can be approximated by
the linear model (5) within the linearization regionLint . We
explain the practical use of this region in the next section.

To determine the linearization region, the supremum is to
be found in order to evaluate the intrinsic curvature. The fol-
lowing simple iterative procedure introduced in [6] can be
used. This procedure is based on the original idea proposed
by Bates and Watts [1]; however, in this form, the algorithm
is modified in order to use the matrices of the first and second
derivatives during the calculation directly.

Algorithm 1 (Intrinsic curvatureC(int)(β 0)). In the first step,
we choose an arbitrary vectorδu1 ∈ R

2 such thatδu
′
1δu1 =

1. After that, we determine the vectorδsdefined as

δs= (F′ΛF)−1(H1δu1, . . . ,Hnδu1)ΛMΛ
Fκ(δu1).

Then, we identify the vectorδu2 = δs/
√

δs′δs. In the last
step, we verify the inequality given asδu

′
2δu1 ≥ 1− tol,

where tol is the sufficiently small positive number. If the in-
equality is satisfied, we terminate the iterative process and the
intrinsic curvature is equal to

C(int)(β 0) =

√
σ2κ ′(δu2)ΛMΛ

Fκ(δu2)

δu′
2F′ΛFδu2

.

If the inequality is not satisfied, we return to the first step of
the algorithm where we update the initial vectorδu1 by δu2.
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There are other types of linearization regions based on the
Bates and Watts parametric curvature [1] derived for particu-
lar statistical inference [6], e.g., for the bias of the estimator,
for a confidence level of confidence domain, etc., however, in
practice it is usually sufficient to use above mentioned one.
For other approach to test the consistency between data and
linearized model, see [11].

2.3. Estimation in linear model

Let us consider the linear model (5), i.e., the model in the
form of ȳ−φ(β 0

1 ,β 0
2 ) = Fδβ +ε, δβ = β −β 0. Recall that̄y

is then-dimensional normally distributed observation vector
with the covariance matrixσ2Λ−1 such that ¯yi represents an
average of three independent measurements at the pointxi , F
is the known design matrix andδβ is the vector of unknown
regression parameters.

The best linear unbiased estimator (BLUE) of the regres-
sion parameterδβ is given as [9]

δ̂ β =
(
F′ΛF

)−1F′Λ
[
ȳ−φ(β 0

1 ,β 0
2 )
]
. (7)

Hence, the BLUE of the parameterβ is calculated from

β̂ = δ̂ β +β 0 (8)

and its covariance matrix is then given by [9]

Var
(

β̂
)

= σ2(F′ΛF
)−1

. (9)

To describe the accuracy and reliability of the estimated
values, a confidence domain can be used. The confidence do-
main for the parameterβ is a set in parametric space ofβ ,
which covers the true value ofβ with a given probability of
1−α. Explicit formula for(1−α)100%-confidence domain
for β can be written as [9]

E1−α(β ) ={
u ∈ R

2 : (u− β̂ )′F′ΛF(u− β̂ ) ≤ σ2χ2
2(1−α)

}
. (10)

Geometrically, the confidence domain is an ellipse with the
center at the estimated pointβ̂ = (β̂1, β̂2)

′. The smaller the
area enclosed by the confidence ellipseE1−α(β ) is, the more
accurate the estimates ofβ are.

Moreover, the confidence domain for the parameterβ is a
proper tool for decision whether the model can be linearized
or not. The linearization regionLint(β 0) is also characterized
as an ellipse, however, its center is at the approximate point
β 0. Semi-axes directions are determined by the eigenvector
matrixF′ΛF and are identical for both types of areasLint(β 0)
andE1−α(β ). Thus, by shifting the center of the linearization
regionLint(β 0) to the estimated point̂β , we obtain simple
linearization criterion: The quadratic model can be linearized
if the confidence domainE1−α(β ) is a subset of the lineariza-
tion regionLint(β̂ ), i.e.,E1−α(β ) ⊂ Lint , or, equivalently, if

χ2
2(1−α) ≤ 2

√
δmax

C(int)(β 0)
.

2.4. D-optimal design of the experiment

The main objective of the whole analysis is to obtain the
most accurate estimator of the unknown parameterβ . To ful-
fill this objective as much as possible, we construct D-optimal
design of experiment (DOE) which secures a minimum area
of the confidence ellipse for the parameterβ [7].

If x = {x1, . . . ,xn} is the set of all experimental points,
then the functionδ : x → 〈0,1〉, with the properties such that
δ (i) = δ (xi) ≥ 0, i = 1, . . . ,n and ∑n

i=1 δ (i) = 1, describes
the design of the experiment; the numberδ (i) represents the
relative number of measurements at the pointxi . The sup-
port of the design is given by the set of experimental points
to which a non-zero value was assigned by the designδ , i.e.,
Sp(δ ) = {xi : δ (i) > 0,xi ∈ x}. The information matrix of the
designδ is defined as

M(δ ) = ∑
i∈Sp(δ )

δ (i)λi f i f′i ,

wheref′i , is the ith row of the design matrixF (4) andλi is
the weight of measurement at the pointxi . In our case,λi = 1
and the elements of the information matrix can be calculated
using the formulas given as

M11 =
n

∑
i=1

δi ·λi ·
(

coth(β2 ·xi)−
1

β2 · xi

)2

,

M12 = M21 =
n

∑
i=1

δi ·λi ·
(

coth(β2 ·xi)−
1

β2 ·xi

)

×
(

−β1 ·xi

[sinh(β2 ·xi)]
2 +

β1

β 2
2 ·xi

)
,

M22 =
n

∑
i=1

δi ·λi ·
(

−β1 ·xi

[sinh(β2 ·xi)]
2 +

β1

β 2
2 ·xi

)2

.

If N denotes the total number of all measurements carried
out in the experiment, the number of measurements that are
performed at the pointxi ∈ Sp(δ ) is equal tor(i) = δ (i)N.

Let us consider an arbitrary fixed designδ with the sup-
port Sp(δ ) = {xi1, . . . ,xin}. We denotēyδ = (ȳi1, . . . ȳin)

′ as
the vector of sample mean magnetization observed at the
points xin; particularly ȳi1 is the average ofr(i1) indepen-
dent measurements at the pointxi1, etc. By using formu-
las (7)-(9), the BLUE of the parameterβ , derived from the
experiment carried out according to the designδ , is given

as β̂ δ = β 0 + δ̂ β δ with the covariance matrix Var
(

β̂ δ

)
=

σ2(F′
δ Λδ Fδ )−1, where

δ̂ β δ = (F′
δ Λδ Fδ )−1F′

δ Λδ
[
ȳδ −φ δ (β 0

1 ,β 0
2 )
]
. (11)

Here Fδ and φ δ (β 0
1 ,β 0

2 ) are constructed fromF and
φ(β 0

1 ,β 0
2 ), respectivelly, by omitting rows with indexes to

which zero values were assigned by the designδ . The matrix
Λδ is constructed similarly by omitting rows and columns cor-
responding toδ (i) = 0, i.e.,Λδ = diag[λi1r(i1), . . . ,λinr(in)].

The design is said to be D-optimal if and only if it min-
imizes the determinant of the inverse information matrix
[3, 17]. It can be determined by the following iterative proce-
dure [3, 17]:
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Algorithm 2 (D-optimal Design). In the first step, we choose
an initial design δ0(i) = 1/k with the support Sp(δ0) =
{xi1, . . . ,xik}. The number of elements in the support Sp(δ0)
should be greater than or equal to number of estimated re-
gression parameters ofβ .

In the following steps, we determine a sequence of designs
δ1,δ2, . . . such that the designδs+1 in the (s+ 1)-step is a
convex combination of the designδs from the s-step and the
one-point design with the support{xi∗s+1

}, where the index i∗s+1
is a solution of maximization problem given as

max
{

λi f′iM
−1(δs)f i : i = 1, . . . ,n

}
.

In particular, the support of the designδs+1 is defined as
Sp(δs+1) = Sp(δs)∪{xi∗s+1

} and

δs+1(i
∗
s+1) =

{
1

k+s+1 if xi∗s+1
/∈ Sp(δs)

δs(i∗s+1)(k+s)+1
k+s+1 if xi∗s+1

∈ Sp(δs)

δs+1(i) =
δs(i)(k+s)
k+s+1

if xi ∈ Sp(δs) & i 6= i∗s+1.

Consequently, the information matrix of the designδs+1 is
given as the same convex combination of the information ma-
trices of the designδs from the s-step and one-point design
with the support{xi∗s+1

}, i.e.,

M(δs+1) =
k+s

k+s+1
M(δs)+

1
k+s+1

λi∗s+1
f i∗s+1

f′i∗s+1
.

If the inequality given as

max
{

λi f′iM
−1(δs+1)f i : i = 1, . . . ,n

}
< k+ tolD,

where k is a number of regression parametersβ and tolD is a
chosen tolerance, is satisfied, the algorithm is terminatedand
the designδs+1 is considered as D-optimal. The points from
the initial design which have a relative frequency of measure-
ment tending to zero are omitted from the optimal design.

3. NUMERICAL STUDY

Firstly, we explore the linearization regions in order to de-
cide whether the linearization is possible. Table 1 lists results
obtained by linearization of the model, describing the mea-
surement of magnetization in all 150 experimental points. For
calculation, we used relations(6) with tolerancetolL = 0.01
and(10).

Before DOE Semi-axis Results of right side
Lint 0.0096 δmax = 2.6129

14.0150·10−6 Cint = 0.0098
E0.95(β ) 0.0013 χ2

2(0.95) = 5.9900
1.8888·10−6

Tab. 1: Linearization region and 95% confidence domain forβ .
Model before DOE.
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Fig. 2: Linearization region (dashed line) and 95% confidence do-
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Fig. 3: Approximation of the measured values by the Langevin func-
tion before using DOE.

Since χ2
2(0.95) = 5.99 < 2

√
δmax/Cint = 329.7986, the

confidence domain lies within the linearization region (see
Fig. 2) and thus the linarization of model is possible.

The estimates of parameterβ and their standard errors in
the linearized model arêβ1 = 0.0513±0.0005 and̂β2 = 7.94·
10−5±0.19·10−5. Substituting the estimates into Langevin
function(1), we get an approximation̂y illustrated in Fig. 3.
We can quantify the goodness-of-fit of the model by, for ex-
ample, the coefficient of determinationR2. It is defined as
[9] R2 = 1−SSE/SST, whereSSE= (ȳ− ŷ)′Λ(ȳ− ŷ) is the
residual sum of squares andSST= (ȳ−m1n)

′Λ(ȳ−m1n) is
the total sum of squares. Herem= (1/n)∑n

i=1 ȳi and 1n is the
vector formed byn ones. In our case,R2 = 0.996.

The above-presented experiment was realized at all 150
points of the experimental set. These points were spaced
symmetrically but not equidistantly. Most measurements
were distributed from−20000 to+20000 Oe. Then, we
attempted to search for the D-optimal design of nanomate-
rial’s magnetization measurement. We determined the start-
ing design of measurementδ0 with two points{x7,x150} =
{−60000,70000} ∈ x which formed the support of the start-
ing designδ0.

The D-optimal experiment design chooses two points that
can be considered as optimal points for the measurement as
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Fig. 4: D-optimal design of the experiment for the measurement of
the Langevin function.

shown in Fig. 4. We determined the frequency of the mea-
surement in these points as it is shown in Tab. 2.

DOE Points Frequency
Initial design δ0(x7) = 0.5 rx7 = 225

δ0 δ0(x150) = 0.5 rx150 = 225
Optimal design δ ∗(x1) = 0.498 rx1 = 225

δ ∗ δ ∗(x27) = 0.499 rx27 = 225

Tab. 2: D-optimal design of the experiment.

Since the function (1) is symmetric, we divided the rela-
tive measurement frequencies both into two optimal points
{x1,x27}= {−70000,−20000} and into points{x125,x150}=
{20000,70000}. Then, we split the original 450 measure-
ments into four optimal pointsr(x1) = 112, r(x27) = 113,
r(x125) = 113, andr(x150) = 112 in a proportion of the rel-
ative measurement frequency.

We carried out new measurement of the same sample made
up of γ-Fe2O3 nanoparticles, however, this time, we per-
formed the measurements only at the optimal points of the ex-
ternal magnetic field. As clearly seen, the estimates obtained
from the model before DOE and after DOE are almost the
same. Namely, we compared the confidence domain of both
models and subsequently evaluated the effect of the D-optimal
criterion. Results of these measurements are summarized in
Tab. 3.

After DOE Semi-axis Results of right side
Lint 19.8663 δmax = 2.6129

0.0456 Cint = 4.18·10−10

E0.95(β ) 5.5287·10−4 χ2
2(0.95) = 5.99

1.2701·10−6

Tab. 3: Linearization region and 95% confidence domain forβ .
Model after DOE.

The change in the design significantly affected the Bates
and Watts intrinsic curvature of the model. After DOE, the
confidence domain also lies within the linearization regionas
expected, i.e.,χ2

2(0.95) = 5.99 < 2
√

δmax/Cint = 7.73· 109.
The estimates of parameterβ and their standard errors in
the linearized model arêβ1 = 0.0510± 0.0002 andβ̂2 =
8.70·10−5±0.09·10−5. R2 = 1 with respect to measurements
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Fig. 5: Approximation of the measured values by the Langevin func-
tion after using DOE.

according to DOE andR2 = 0.996 with respect to the origi-
nal measurements. Approximation of the Langevin function
using DOÊyD is depicted in Fig. 5.

It is clear that the variance of estimates obtained using DOE
is smaller than the variance of estimates obtained from the
initial model. The D-optimal criterion leads to the minimiza-
tion of the confidence domain of the unknown vector param-
eter estimator and therefore, we arrive at more accurate esti-
mates. Approximated Langevin functions are almost the same
for both experiments (the sum of squared differences of fitted
values in original pointsx1, . . . ,xn is less than 0.00005), how-
ever, the experiment carried out according to DOE is simpler.

Analytical course of the Langevin function does not copy
the course of magnetization perfectly (see Fig. 3. and Fig. 5.).
This is the reason why we can expect that the parameter esti-
mates obtained from different designs will be slightly differ-
ent. Relation of the Langevin function is strictly given. Slight
differences in the estimations caused by the choice of differ-
ent designs could be neglected from the practical viewpoint.
However, improvement of the analytical form is the subject of
further research.

4. CONCLUSIONS

At present, the nanosized materials are of eminent inter-
est both from fundamental and applied reasons. However,
their research, synthesis, analysis, and characterization are
very money-consuming and therefore, it is highly needed to
achieve the most accurate results and effective approaches. In
order to get the estimators of the unknown parameters, we
used the theory of nonlinear regression models which pro-
vide not only the estimators themselves but also their accu-
racy. This is the main goal for the physical characterization
of nanoparticle samples as precise knowledge of these param-
eters predestinates nanomaterials for their future possible ap-
plication.

To find the most effective approach, we used the theory of
optimal design of experiments. We used the D-optimal cri-
terion to minimize the volume of confidence domain of the
unknown parameters. It turned out that it is absolutely suffi-
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cient to carry out the magnetization measurement only at four
optimal points as we get the same values of the unknown pa-
rameters estimators but with a higher accuracy. This repre-
sents the most important outcome of our presented approach.
The additional very important profit of the presented work lies
in a decrease in the cost of the measurement as demonstated
in Tab. 4.

Before DOE After DOE
Number of stabilization processes 150 4

Measuring time 5h 25 min 0h 48 min
Helium consumption 3.1 l 0.7 l

Operating costs 34 EUR 5.6 EUR
Price of helium 33 EUR 7.7 EUR

Total costs 67 EUR 13.3 EUR

Tab. 4: Cost savings obtained by application of DOE.
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