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The performance of bone age assessment is highly correlated with the extraction of bony tissue from soft tissues, and the key 
problem is how to successfully separate epiphyseal/metaphyseal region of interests (EMROIs) from the background and soft tissue. 
In our experiment, a series of image preprocessing procedures are used to exclude the background and locate the EMROIs of left-
hand radiographs. Subsequently, automatic gamma parameter enhancement is applied to test the two segmentation methods 
(adaptive two-means clustering algorithm and gradient vector flow snake) among children of different age (the age from 2 to 16 
years for 80 girls and boys). Four error measurements of misclassification error, relative foreground area error, modified 
Hausdorff distances, and edge mismatch, are included to evaluate the segmentation performance. The result shows that the two 
segmentation algorithms are corresponding to different ranges of optimal gamma parameters. Furthermore, the margin of 
EMROIs can be obtained more precisely by developing an automatic bone age assessment method with the gamma parameter 
enhancement. 
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1.  INTRODUCTION 

HE BONE age (BA) is a significant indication for 
evaluating the growth potential of children in pediatric 
endocrinology [1]. Usually, pediatricians or radiologists 

diagnose the ossifications of carpals, phalanges, ulna and 
radius, and the epiphysis/metaphysis for a child by 
determining if the discrepancy between BA and the 
chronological age (CA) is consistent. Thus, the bone age 
assessment (BAA) is widely used in clinical practice to 
examine growth disorders, growth hormone deficiency, and 
the efficacy of growth therapy in children.  

The Greulich and Pyle atlas (GP) [2] and Tanner-
Whitehouse III (TW) method [3] are two extensively used 
methods that analyze radiographs of the left hand and wrist 
for determining BA. The GP method is a visual comparison 
with a standard atlas of hand radiograph, and a pattern can 
be selected according to how closely it matches the 
standard. However, the GP method is easily influenced by 
human subjectivity and qualitative assessment of the 
ossification status. In comparison, the TW method serves to 
assess BA according to the detailed shape analyses of 
several bones of interest and assigning corresponding 
scores. Subsequently, the sum of all the TW scores is used 
to compare against the corresponding bone stages. The TW 
method provides a more objective examination than the GP 
method, but the drawbacks of complexity and time-
consuming nature result in a seldom use in clinical practice 
[4,5].   

Recently, an increasing attention has been paid to the 
development   of automatic computerized analyses of  BA 
by  using  a  series  of  image   processing   techniques.   The  

 
advantages of BAA include reproducibility and reliability; 
therefore, many reports focusing on the precise computer-
based BAA have been made for improving the performance 
[6-10]. The critical point of making BAA is how to extract 
useful characteristics such as bone size and shape. These 
factors can then be employed to construct a growth model 
[6]. So, many image processing techniques, such as contrast 
adjustment, noise filtering, target searching and location 
combing with the different segmentations including 
threshold, scanning method, active shape models, are 
combined to capture the bone region for performing an 
efficient and accurate analysis [11-19].  

Based on the study of α-gamma equalization enhancement 
combing with adaptive two-means clustering algorithm and 
gradient vector flow (GVF) snake [16], the authors have 
shown the increased stable performance for the 
segmentation of epiphyseal/metaphyseal region of interests 
(EMROIs). However, the enhancement algorithm is using 
fixed parameters for the EMROIs of distal, middle, and 
proximal phalanges which are exhibiting too varied values 
for different backgrounds. To solve the problem, our paper 
presents an automatic approach of gamma-parameter 
enhancement to improve performance for the segmentation 
of EMROIs under good radiographs of hand contrast 
between bony and soft tissues.  

In our study, the EMROIs are extracted by using a series 
of image preprocessing procedures. Next, the initial image 
enhancement based on gray level distribution is adopted to 
make the phalanx contour region clear. Following, the two 
segmentation methods, the adaptive two-means clustering 
algorithm and GVF snake, are applied to  separate  epiphysis  

T 

10.2478/v10048-012-0003-z 



 
MEASUREMENT SCIENCE REVIEW, Volume 12, No. 1, 2012 

 22

and metaphysis from the soft tissue. Besides, the experiment 
makes the statistics to show the segmentation performances 
to different parameters of gamma selection rules 
accompanying the two segmentation methods. 
 

2.  SUBJECT & METHODS 
To extract left-hand radiographs accurately, a series of 

image preprocessing procedures are applied to acquire 
phalangeal bone region of interests (PROIs) and EMROIs. 
At first, the left hand of the original radiographs is cropped 
from original radiographs, and then background and 
unwanted region are excluded. Next, the middle fingertip 
can be used as the reference to rotate the image in an 
upward direction. Finally, several image processing 
strategies are used to extract PROIs and segment the nine 
EMROIs including the proximal, middle, and distal phalanx 
of index finger, middle finger, and ring finger, respectively. 
In Fig.1, the extraction procedures are shown as follows: 

 

  
 
 
 
 
 
 
 
 
 
 
 

 
 
2.1.  EXTRACTION OF PROIS/EMROIS.  

Below, several image processing techniques are 
introduced to frame the PROI. Before that, two hands should 
be separated to obtain the left hand only.  
 
2.1.1.  CROP THE LEFT-HAND REGION.  

The input radiograph usually contains two hands, and the 
left and right hand may connect to each other in some cases. 
It is therefore difficult to localize and segment the PROI and 
EMROI. The technology of cropping the left hand can be 
accomplished by the previous study [10].  
 
2.1.2.  REMOVE BACKGROUND AND ARM REGIONS.  

In general, x-ray irradiation produces radiographs of non-
uniform background, so a scheme of removing background 
was applied to avoid the segmentation being influenced by 
regional noise. All details are performed in 9 steps:  

1. Acquire the cropped left-hand radiograph, I , and 
resample it by a factor of one-fourth to shorten the 
execution time (see Fig.2a). 

2. Employ the local standard deviations (LSD) with a 
mask of 5×5 pixels which was determined empirically 
(see Fig.2b).    The pixel centered at ),( yx  is used for 

computing the standard deviation of pixel ),( yxILSD : 
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where xyμ  is the mean intensity value within the mask.  

3. Convolve the LSDI  image with a median filter of 7×7 
pixels and apply a threshold process by its mean value 
to approach a rough hand region,  MEDI  (see Fig.2c).  

4. Use a threshold for the original radiograph by three-
means clustering algorithm in the minimum centroid to 
obtain meansI −3  (see Fig.2d).    

5. Combine two images of Fig.2c and Fig.2d with gray 
color to produce Fig.2e, and the output is defined as 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

meansMEDncombinatio III −×+= 35.0               (2) 
 

6. Find out the center of foreground of Fig.2c and apply 
the 8 neighbor region growing algorithm, with 8 seeds 
along the lines of eight angles (e.g., 30°, 60°, 120°, 
150°, 210°, 240°, 300°, and 330°, respectively, see 
Fig.2d) radiating from the center, to separate the 
foreground from the background image (see Fig.2g).  

      The obtained image is marked as rgI . 

7. Do the erosion and dilation for rgI  to remove existing 

noise (see Fig.2h, the hI ).  
8. Scan the hand region of Fig.2h line by line from the 

center to the bottom of the hand, and choose the 
narrowest width as a cut-off line to remove the arm 
region,  crophI _  (see Fig.2i). 

9. Map Fig.2i onto the original radiogram cropped by the 
cut-off line to cropI  (see Fig.2j) as shown in: 
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Fig.1.  The framework for extracting PROIs/EMROIs in hand radiographs. 
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Fig.2. The segmentation procedures of the hand region. (a) 
Original cropped left-hand radiograph. (b) Local standard deviation 
image of (a). (c) Threshold image of (b). (d) Threshold image of 
(a) by three-means algorithm. (e) Combine the (c) and (d) into one. 
(f) Search foreground image by region growing algorithm. (g) Use 
the ground image to subtract the estimated background image. (h) 
Apply erosion and dilation for the image. (i) Remove the arm 
region from the hand region. (j) Map (i) into original radiograph. 
 
 
2.1.3.  ROTATE AND CALIBRATE PROIS.  

The following steps are indicative of alignment for the 
middle fingers to locate PROIs.  

1. Input the hand region of Fig.2j.  
2. Take the coordinates of the center of the left hand as a 

reference point, and perform a scanning scheme by 
computing the radial distances going from the 
reference point to the PROI boundary with the angle of 
30° to 150° counterclockwise.  

3. Convolve a row mask, [1 1 0 -1 -1], to search out the 
three peaks, including index finger, middle finger, and 
ring finger.  

4. Use the maximum peak to rotate the image until the tip 
of the middle finger almost points upwards to the 
vertical. 

5. Next , place white windows according to the points 
with local maximum value from the tips of the three 
fingers to the reference center point (see Fig.3).   

6. Use the top window and the bottom window as the 
reference line, and repeat step 4 for the ring finger and 
index finger individually.  

 
2.2.  DETECTION AND EXTRACTION OF PROIS.  

The physiological features of EMROIs reveal that the 
PROIs include three parts and each part has one joint. 
Therefore, EMROIs can be located by searching out the 
local extremes from the projection profile of the PROI. The 
proposed procedures are listed below: 

 
1. Extract each individual PROI and project the intensity 

into one-dimension vector along the axis from top to 
bottom.  

 
 
Fig.3.  The alignment operation  for  three fingers  from  Fig.2j. 
(a) The ring finger. (b) The middle finger. (c) The index finger. 
 

2. Convolve the one-dimension vector, [1 1 0 -1 -1], to 
retrieve the gradient information from the different 
intensity distribution of the PROI. Fig.4a is an 
example for demonstrating the convolved result. 

3. Trace the convolved result and assign a value of 1 for 
an increasing trend and 0 for the decreasing trend (see 
Fig.4b). Then, map Fig.4b to Fig.4a to locate the local 
extremes (see Fig.4c). 

4. Take another example in Fig.5. A given ratio of the 
two lengths between distal and middle phalange, and 
between middle and proximal phalange, is about three-
fifth due to the phalange physiology, so we can use the 
relation to locate three local EMROIs. 

5. Finally, three masks (99×99 pixels) are retrieved and 
placed to the three local extremes as the distal, middle, 
and proximal phalange (see Fig.5b). 

 
 

 
 
Fig.4. The detection of the local extremes. (a) The projection 
convolved with the one-dimension vector. (b) Label the increasing 
and decreasing trends as one and zero, respectively. (c) Map (b) to 
(a), and locate the positions of local extremes. 

 
2.3.  SEGMENTATION STEPS.  

Although the EMROI is circumscribed within a 
rectangular window, unfortunately the skeleton and the soft 
tissue are still hard to identify. Accordingly, we have 
proposed two  segmentation  algorithms  based  on  adaptive 
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Fig.5.  Extraction of EMROIs. (a) The searched local extremes and 
(b) the framed EMROIs for distal, middle, and proximal phalange, 
from left to right. 
 
two-means clustering algorithm [17] and GVF snake to 
combine with gamma parameter enhancement 
automatically. Before using the operation, an enhancement 
algorithm is suggested to adjust the gray-level of an image 
with different effects. The procedures are explained below.  
 
2.3.1.  ADJUSTMENT FOR THE IMAGE WITH GRAY-LEVEL.  

The adjustment for the image gray-level can be defined as:  
 
 
 
 
 
 
 
    

 
 
 
 
 
 
 
 
 
                                                                                            (4) 

),( yxpγ  is indicating to adjust the original image ),( yxg  
for each pixel at the coordinate (x,y). All pixels with gray 
levels in the range between lower bound (L) and upper 
bound (U) can be varied with different gamma values and 
this calculation is used to enhance the image contrast. The 
details are described below. 
 
2.3.2.  CALCULATION OF UPPER/LOWER BOUND.  

The upper/lower bound is determined by using k-means 
clustering algorithm. The algorithm classifies each pixel to a 
predefined cluster which is randomly chosen as a cluster 
center, namely centroid. The distances between each pixel 
and all centroids are measured, and the pixel is then 
assigned to the cluster center with shortest distance. If this 
assignment is finished, a new centroid is calculated for each 
cluster with the pixels in it. Once these k new centroids 
remain unchanged, the assignment process is regarded as 
over. Because of the variation for each image, we choose the 
clustering centers as the upper bound and the lower bound 
automatically.  
 

2.3.3.  SELECTION OF GAMMA VALUES.  
The enhancement can highly influence the segmented 

images with the changing gamma values, and therefore it is 
important to choose the appropriate gamma values for the 
enhancement. This framework is shown in Fig.6. For 
examining the gamma parameters, the range is defined from 
0.1 to 1.5, and each calculation is added by 0.2. Then the 
abovementioned upper/lower bound are used to achieve the 
gamma parameter enhancement. In the following, all pixels 
with the gray level values inside the range between lower 
bound and upper bound should be considered in the 
enhancement processing.  

To evaluate the optimal segmentation of enhanced images, 
four error measurements of misclassification error (ME), 
relative foreground area error (RFAE), modified Hausdorff 
distances (MHD), and edge mismatch (EMM), are used to 
determine the performance of segmentation [20-22]. The 
modified version was presented by M. Sezgin and B. Sankur 
who have adjusted these measures so that their scores vary 
from 0 (wholly fit to the standard region) to 1 (wholly not fit  

 
 
 
 
 
 
 
 
 
 

 
 
to the standard region) [22]. The ground-truth image for 
each case implies the exact region which was defined by an 
experienced radiologist. Finally, we can output four error 
measurements with gamma parameter ( γ ) versus CA. 
Furthermore, the segmentations of each EMROI are 
recorded as the relationship of CA and 4 error measurements 
for the adaptive two-mean clustering algorithm and for GVF 
snake. 
 

3.  RESULTS 
The database, which consists of 3015 radiographs (1531 

girls and 1484 boys), was provided by the Department of 
Radiology, Veterans General Hospital Taipei, and the hand 
radiographs were scanned in digitized form with the size of 
2100×1670 pixel. The distribution is shown in Fig.7. The 
testing database contains 160 cases, randomly selected from 
a group of 2 to 16 year old children with an interval of 2 
years, and each age group, for both the girls and the boys, 
has 10 cases. The other unselected cases were considered as 
the validating database. In this study, the extracted EMROI 
images of the testing database were employed to examine 
the enhancement performances for the gamma selection 
rule. Then, the derived optimal gamma values can be 
applied to evaluate the validating database for their 
segmentation performance, and also the four error 
measurementss are presented.   
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Fig.6.  A framework of generating corresponding error measurements. 



 
MEASUREMENT SCIENCE REVIEW, Volume 12, No. 1, 2012 

 25

 

 
 

Fig.7.  Distributions of radiographs in the database 
 

3.1 SELECTION RULE OF GAMMA VALUES.  
Based on our proposed selection rules, the optimal gamma 

parameters can be obtained. Initially, four error 
measurements were set in the range from 0.1 to 1.5. As each 
error measurement is executed with different gamma 
parameters for the same age group and EMROIs, such as the 
distal phalange of middle finger, only the performance of 
error measurement showing the value under 25% can be 
accepted. The next step is to assess the intersection of the 
accepted results for the four error measurements for each 
gamma parameter into one result. First, if the results of four 
error measurements all have the accepted results, the 
corresponding gamma parameter is prior considered as the 
selected gamma parameter (a label of white circle). Second, 
if the abovementioned assumption does not apply, and the 
results of any three error measurements have the accepted 
results, the corresponding gamma parameter is also chosen 
as a white circle. The tolerance is defined as that any two 
error measurements have the accepted results. Once any one 
or none of the error measurements are in agreement, the 
gamma parameter belongs to the null set (unaccepted result).  
 
3.2.  EVALUATING GAMMA PARAMETER ENHANCEMENT.  

In the execution process, the gamma parameter 
enhancement is automatically processed to the remaining 
EMROIs for girls and boys. Both of the performances show 
the middle finger as example in a significant range between 
0.2 and 0.9 for adaptive two-means clustering algorithm in 
Table 1(a), and the range between 0.8 and 1.5 for GVF 
snake, respectively.   

Furthermore, Fig.8 demonstrates the differences by 
adaptive two-means clustering algorithm for showing 
various patterns with the gamma parameters at 0.5, 1, and 
1.5, respectively . Besides, we also compare the differences 
for the GVF snake with/without using the gamma of 1.5 in 
Fig.9. Clearly, the best fit of gamma parameters for the two 
segmentation algorithms presents the best performances. 

 
Girls’ middle finger 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 γ 

    

CA (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) 

2 ●●● ●●● ●○● ○○○ ○●○ ○●○ ●●● ●●● 

4 ●●● ●●● ●○● ○○○ ○●○ ○●○ ●●● ●●● 

6 ●●● ●●● ●○○ ○●○ ○●○ ○●● ●●● ●●● 

8 ●●● ●●○ ●○○ ○●● ○●● ○●● ●●● ●●● 

10 ●●○ ●○○ ○○● ○●● ○●● ●●● ●●● ●●● 

12 ●●● ●●● ○○○ ○●○ ○●○ ●●● ●●● ●●● 

14 ●●● ●○● ○○○ ○●○ ●●○ ○●● ●●● ●●● 

16 ●●● ●●● ○○○ ○○○ ○●○ ●●● ●●● ●●● 

 
Boys’ middle finger 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 γ  

    

CA (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) 

2 ●●● ●●● ○○○ ●○○ ○○● ●●● ●●● ●●● 

4 ●●● ●●● ○○○ ○○○ ○○● ●●● ●●● ●●● 

6 ●●● ●●● ○○○ ○○○ ○○● ●●● ●●● ●●● 

8 ●○● ●○○ ○○○ ○●● ○●● ●●● ●●● ●●● 

10 ●●● ●○○ ○○○ ○○● ○●● ●●● ●●● ●●● 

12 ○●● ○●○ ○●○ ●●○ ●●● ●●● ●●● ●●● 

14 ●●● ○○● ○○○ ○○○ ●●● ●●● ●●● ●●● 

16 ●●● ●○○ ○○○ ○○● ○●● ●●● ●●● ●●● 

Table 1.  Result of gamma parameters versus CA is executed by 
adaptive two-means clustering algorithm for girls and boys, and the 
white circles and black circles represent the accepted results and 
unaccepted result, respectively (distal, medial and proximal 
phalange are marked by the number of 1,2 and 3).  
 

Girls’ middle finger 
0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 γ 

    

CA (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) 

2 ●●● ●●● ●●● ●●● ●●● ○○○ ○○● ○○○ 

4 ●●● ●●● ●●● ●●● ●●● ○○○ ○○○ ○○○ 

6 ●●● ●●● ●●● ●●● ●●● ○○○ ○○● ○○○ 

8 ●●● ●●● ●●● ●●● ●●● ○○○ ○○○ ○○○ 

10 ●●● ●●○ ●●○ ●●● ●●● ●○● ●○● ○○● 

12 ●●● ●●● ●●○ ●●● ●●● ○○● ○○● ○○● 

14 ●●● ●●● ●●● ●●● ●●● ○○● ○○● ○○○ 

16 ●●● ●●● ●●● ●●● ●●● ○○○ ○○○ ○○○ 

   
Boys’ middle finger 

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 γ 

    

CA (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) 

2 ●●● ●●● ●●● ●●● ●●● ○○● ○○● ○○○ 

4 ●●● ●●● ●●● ●●● ●●● ○○○ ○○○ ○○○ 

6 ●●● ●●● ●●● ●●● ●●● ○○○ ○○○ ○○○ 

8 ●●● ●●● ●●● ●●● ●●● ○●● ○●● ○●○ 

10 ●●● ●●● ●●● ●●● ●●● ○○○ ○○○ ○○● 

12 ●●● ●●● ●●● ●●● ●●● ○○○ ●○● ○○○ 

14 ●●● ●●● ●●● ●●● ●●● ○○○ ○○○ ○○○ 

16 ●●● ●●● ●●● ●●● ●●● ○○● ○○● ○○● 

Table 2.  Result of gamma parameters versus CA is executed by 
GVF snake for girls and boys, and the white circles and black 
circles represent the accepted results and unaccepted result, 
respectively. (distal, medial and proximal phalange are marked by 
the number of 1,2 and 3) 
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Fig.8. An example of adaptive two-means segmentation with 
gamma parameter enhancement for (a)~(c) with gamma 
parameters at  0.5, 1, and 1.5 and their corresponding segmented 
images in (d)~(f). 

 
 
Fig.9. An example of segmentation result by GVF snake. (a) 
Original image. (b) Enhancement of original image with gamma 
parameter at 1.5. (c) Segmented image by GVF snake for (a). (d) 
Segmented image by GVF snake for (b). 
 
3.3.  EVALUATION FOR THE VALIDATING DATABASE.  

To evaluate the exact performance of the proposed 
gamma parameter enhancement algorithm, the 
abovementioned four error measurements are taken for 
validating the proposed algorithm. Because the best-fit 
situation can be observed with smaller error values for the 
adaptive two-means clustering algorithm in the gamma of 
0.5, and for the GVF snake in the gamma of 1.5, both 
gamma parameters are chosen for the following 
calculations. In examining the validating database, the four 
error measurements of 9 segments of the phalanges 
(including proximal, middle, distal phalange of index finger, 
middle finger, and ring finger) for one case are averaged to 
show how the proposed methods improve the segmentation. 
The comparisons of the two segmentation algorithms show 
the statistics of mean and standard deviation in Fig.10a for 
girls and Fig.10b for boys. The results explain that our 
proposed gamma parameter enhancement has better 
improvement for the segmentation.  

 
4.  DISCUSSION/CONCLUSIONS 

In this study, we present a series of image preprocessing 
procedures for the segmentation and locating of PROIs 
/EMROIs from radiographs to overcome the complex tasks. 
An accurate and efficient segmentation is critical for feature 

 
 
Fig.10.  Descriptive statistics of the mean and the standard 
deviation in the comparison between two segmentation methods 
for (a) girls and (b) boys. 
 
extraction of BAA, so many previous studies were devoted 
to the development of different kinds of segmentation 
methods. Usually, the existence of spatial and intensity 
relationships between pair pixels can have great influences 
for the segmentation, especially for the soft tissue in the 
EMROI which can be recognized as the specific target of 
bony tissue and vice versa. Such situation can cause a poor 
contrast for bony tissue to the soft tissue. So, a gamma 
parameter enhancement algorithm was proposed to improve 
the image contrast and preserve edges of bony tissue 
excluding the encircling soft tissue.   

With the automatic computation of upper/lower bound, our 
findings demonstrate the enhancement algorithm by using 
various gamma parameters, revealing the nonlinear 
relationship between CA and gamma parameters. The 
statistic results presented in Fig.8 and Fig.9 showing how 
the appropriate gamma parameters can help achieve the best 
approach, and the specified gamma parameters, 0.5 for 
adaptive two-means clustering algorithm and 1.5 for GVF 
snake, can be derived from the testing database. Also, in 
Fig.10a and Fig.10b for the validation database, the optimal 
results appear for the specified gamma parameters for the 
two segmentation methods with the smaller mean and 
standard deviation.  

The observation demonstrates that the segmentation has 
better results with gamma parameter enhancement than with 
fixed gamma parameters for the two segmentation methods. 
Furthermore, such great variations of gamma parameters 
between two segmentations may be caused by their initial 
conditions. For example, initial segmentation of the adaptive 
two-means clustering algorithm should be obtained to 
exclude the background of EMROIs first, so that the 
processing considers merely the related contrast of bony and 
soft tissues. Therefore, gamma parameters using adaptive 
two-means clustering algorithm are not proper for higher 
values. In another case of GVF snake, the initial contour 
generated by deformable model can be sustained far away 
from the object boundary. Thus, the contrast must be 
deservedly conspicuous for the GVF snake to segment 
EMROIs. 

The performed experimental results confirm usability and 
feasibility of both the applied extraction and locating of 
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PROIs/EMROIs based on the gamma parameter 
enhancement for the adaptive two-means clustering 
algorithm and GVF snake. Avoiding the segmentation error, 
our contribution can be of assistance to BAA and 
monitoring of growth therapies. In the future, we plan to 
build up an automatic BAA for advanced work.  
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