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   A new model for the sample of square cross section with cuboid geometry including the effect of heat loss from the surface of the 
sample was tested using the theory of sensitivity coefficients. Theoretical calculation of model uncertainty and derived analytical 
formulas are presented. Results of the uncertainty analysis set out the range of experimental conditions under which the model is 
valid and the uncertainty of estimated parameters is low. Propagation of error for non-stochastic dynamic measurements based on 
the sensitivity coefficients shows limitations related to a range of model validity. The analysis improves the accuracy of 
measurements. The model was used for data evaluation of thermophysical parameters measured on the sandstone from the 
locality Pravčická brána. Evaluation procedure was tested on experimental data measured under different experimental 
conditions. In conclusion, the discussion of the experiment optimization is presented. 
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1.  INTRODUCTION 

HERMOPHYSICAL PARAMETERS (e.g., thermal 
diffusivity, specific heat and thermal conductivity) 
reflect the thermodynamical state of the material 

structure. This state changes with the consideration of the 
atomic structure arrangement, arrangement of crystalline 
components and consideration on material defects created in 
time that are responsible for further development of 
structure change or degradation. Thermodynamical state 
should be a measure of the quality, stability and durability of 
material in regard to industrial use in civil construction.  

Measurement of thermophysical parameters of materials in 
connection with their thermodynamic state reflects various 
physical and chemical processes and processes in 
technology like phase changes, domain structure changes, 
structure relaxation, degradation (deterioration) of materials, 
ageing, polymerization, vulcanization, sintering of ceramics, 
curing, sorption/desorption… In principle, the method is 
applicable in the investigation of degradation of any kind of 
material. The process of material deterioration of stones or 
their state and quality comparing its basic or initial state 
should be monitored by continuous measurements 
(monitoring) of thermophysical properties too. Pulse 
Transient Method can be used for the quality control in 
material testing. 

The problems connected with deficiency in a large amount 
of testing material cause some problems in data evaluation, 
as an ideal model usually assumes infinitively large 
specimen. Usually, the shapes of specimens used for 
measurement are of cylindrical or cuboid form. The finite 
geometry of the specimen cause additional effects that harm 
the efficiency and accuracy of the measurement. The 
contributions to uncertainty come from additional effects 
caused by differences in ideal and real sample when 
specimen geometry is limited. The main effects are the heat 
losses from the sample surface (the heat transfer from the 

sample surface to the surroundings); the heat capacity of the 
heat source and technically the heat pulse is not ideal Dirac 
function but a pulse of limited duration.  

In this paper we discuss the given problem of heat losses 
for cuboid shape samples. 
 

2.  SUBJECT & METHODS 
Principle of the Pulse Transient Method 

Pulse Transient Method belongs to a group of dynamic 
methods for measurement of thermophysical parameters. 
The principle is simple. The planar heat source is generating 
the heat pulse. A temperature response to the heat pulse is 
recorded by thermocouple placed separately from the heat 
source (Fig. 1). 
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Fig.1.  Wiring diagram and the sample set. In between first and 
second part of the sample set a planar heat source is inserted. The 
thermocouple for the measurement of temperature response to the 
heat pulse is inserted in between second and third part.  
 

Ideal model 
The temperature  response  is  described  by  function ( 1) : 
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,  T is temperature, h is 

thickness of the specimen. Φ∗(x) is complementary error 
function, t is time. Simple formulas for evaluation based on 
maximum of the temperature response have been derived. 
This is called one point evaluation procedure. 
 

                                   κκ fth m ⋅= 22 ,                               (2) 

 
                             cm fhTeqc ⋅= )2( ρπ                          (3) 

and 
 
                                    ρκλ ⋅⋅= c                                      (4) 

 
where the correction factors fk and fc were described in [1], 
λ is thermal conductivity, κ is thermal diffusivity; tm is 
maximum of the temperature response, t0 is duration of the 
pulse width, c is specific heat, q is heat flux density at 
source, ρ is density of material.  
 

Model for the cuboid samples 
Heat loss effect included in the new model is represented 

by heat transfer coefficient α from the sample surface to the 
surroundings. The problem starts when the planar isotherm 
of heat front is deformed at the thermocouple region. In the 
sample cut at Fig.1 a problem is illustrated where this effect 
causes deformation of planar isotherms. It is evident for 
specimens having bigger thickness or for the temperature 
response measured for longer times. Data that are measured 
within the marked white area in Fig.1 are still able to be 
evaluated by the ideal model. For the case when thermal 
isotherms are deformed by this effect we need to introduce a 
new model. To solve this problem a new model for cuboid 
geometry was derived accounting the heat transfer 
coefficient α.  
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Fig.2.  Initial and boundary conditions for the model. 

The solution of basic heat equation for initial and 
boundary conditions that are drawn in Fig.2 is the following 
temperature response: 
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axial space coordinate, x,y transversal space coordinates, 2a 
transversal size of the sample, α heat transfer coefficient for 
sample–ambient interface, μn are the roots of equation 

0sincos =− μμμβ . 
 

Accuracy estimation 

Generally, uncertainty arises from different sources and 
includes errors in the data measurements, parameter 
estimation procedure and model structures. Uncertainty 
analysis calculates how these errors are propagated through 
the model and evaluate their relative importance which is 
quantified via sensitivity analysis. This type of uncertainty 
should be supposed as systematic error. The analysis uses 
sensitivity data generated by the model, along with the 
underlying data covariance to assess the degree of similarity 
(linear dependence) between sensitivity coefficients in the 
model. If the sensitivity coefficients are linearly dependent 
on each other, the parameters should not be estimated 
unambiguously and thus their uncertainty is high. 

The analysis was developed in respect to the experimental 
data set{ }N

nnn Tt 1, = , where N is the number of independent 
measurements. Model temperature function (5) 

( )batfT el ,,mod =  represents temperature response in time 

that depends on constants }{ bN
jjbb

1=
=  in model that are 

determined by different independent measurements and 
dependent random variables represented by a set of free 
parameters }{ aN

iiaa 1==  that are evaluated by fitting 
procedure. We used least square optimization to search 
for ( )[ ] }{ ∑ = −N

n nn bafT1

2
,min , where ( ) ( )batfbaf nn ,,, = , 

tn are deterministic parameters, }{ N
nnTb 1, =  are independent 

random variables. The least square optimization gives a 
system of non-linear equations that is based on sensitivity 
coefficients [2], (Fig.3.). 
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Assuming 
                     ( )( ) ( )2~ jjkkkjj bubbbb δ>−−                  (7) 

 
                                  ( )bafT nn ,~>                             (8) 
 
                     ( )( ) ( )2~ TuTTTT nmmmnn δ>−−                (9) 

 
                           ( )( ) 0~>−− kknn bbTT                     (10) 

 
The expressions in brackets •  represent the statistical 
mean values. In the next equation, we estimate the 
uncertainty 
 
              ( ) ( ) ( ) ( )2222 ~~ iiiii daaaaau Δ=−         (11) 

 
Differentiating equation (6) we obtain a system of equations 
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Now we can estimate uncertainty contribution of any 

particular measurement of involved parameters like T or b. 
Solution of equations (12) has the form 
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where the contributions of components from variables and 
constants are 
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the elements of matrix A and B are defined with equations 
(13) and (14). We can see that A~N, and B~N, therefore 

N
CkT

1~  and Ckj is N-independent. For power-like 

dependence it is useful to define indices 
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Then for relative uncertainties we can write the equation 
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The normalized sensitivity coefficients were calculated for 

the same values of thermophysical parameters as those 
measured in the experimental part and they are given in 
Fig.3. We can see that optimized region for data evaluation 
is up to value of 2F dimensionless time. 

 

0 1 2 3 4
-1.0
-0.8
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0

a i

Se
ns

iti
vi

ty
 C

oe
ffi

ci
en

ts
 

β 
  =

∂f
/∂

a i

F=κt/(2*h2)

 Thermal diffusivity
 Thermal conductivity
 Heat transfer coefficient

 
 
Fig.3. Normalized sensitivity coefficients iia af ∂∂=β (6) 

derived from temperature function (5) where ai denotes free 
parameter in model, i.e. thermal diffusivity, thermal conductivity 
and heat transfer coefficient. 
 

3.  RESULTS 
Experimental data were measured in RTB1.02 chamber 

with temperature stability of 0.01 K. Data from the samples 
tested under the air as well as vacuum atmosphere were 
obtained in the temperature range from -22 to 70°C. For the 
statistic evaluation at least 5 measurements were used to plot 
Fig.4. Temperature responses were measured for the 
duration of the heat pulse (heat pulse width) of 3 and 6 
seconds. The total time for the recording of the temperature 
response is derived from the heat pulse width and is 30-
times of pulse duration. For the data evaluation two 
temperature models were used. The first one, considering 
final pulse width and evaluation procedure based on 
formulas (2), (3), (4) is derived from the maximum of the 
temperature response published in several papers [3], [4]. 
The second one is using fitting procedure by model for 
cuboid samples having squared cross section and assuming 
heat losses from the sample surface (5).  

The sandstone specimen set was carved in a form of 
cuboids having finite length. The dimensions of parts I and 
III were 50x50x30 while part II dimensions were 
50x50x10mm. The volume density was 1738.7 kg m-3. 
Porosity measured by weighting dry and water saturated 
specimen was calculated to 27.5%. Planar heat source was 
etched of Ni foil and insulated by kapton foil.  
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Theoretical analysis of model uncertainty (Fig.6) was 
calculated for temperature response that was generated 
theoretically for exactly the same values of thermophysical 
parameters as those of measured sandstone at 25 °C. Data in 
Fig.6 were calculated for time  interval with fixed number of  

points involved into evaluation, variable time step and fixed 
time window that start at t=0sec. Each data point represents 
different length of the time interval but the number of points 
in each interval is the same to preserve the statistical weight 
of the results. 
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Fig.4.  Thermophysical parameters estimated by model fitting and one point procedure in air atmosphere and vacuum. The temperature 
history as well as vacuum treatment follows the arrows denoting heating and cooling regime. In principle, the temperature dependency of 
data measured under vacuum follow the measurements performed under the air atmosphere with some shift. 
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Fig.5.  Heat transfer coefficients calculated by fitting procedure for data measured at 3 and 6 seconds of pulse duration as well as for air 
and vacuum conditions. The low values are those for 3 seconds of pulse duration as well as for data measured under the vacuum. This is 
the consequence of sensitivity for this parameter. Sensitivity of α has reasonable values only for bigger thicknesses of material or for 
longer times of measurement of temperature response. Thus the positive temperature dependence of this parameter is evident only for data 
measured for 6 seconds of pulse width. 
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Fig.6.  Uncertainty analysis for sample thickness of 10 mm at 2, 4 and 6 seconds of pulse width and thickness 20 mm for 8, 16 and 24 
seconds of pulse duration. For the illustration of time relation the maximum of temperature response drawn in blue solid line is at 0.5 of F - 
the dimensionless time (Fourier number), that corresponds to 42 seconds in real time. Errors from particular parameters are propagated 
through the model and their relative importance is evaluated as uncertainty in percent for current time according to the measurement of 
temperature response. 

4.  DISCUSSION 
Fig.6 illustrates the uncertainties in relation with the total 

time of the measurement as well as the thickness of the 
sample. It is an explanation for data plotted in Fig.5, 
particularly answering the question why the heat transfer 
coefficient can be evaluated unambiguously only for data 
acquired for longer times of measurement. Fig.6 illustrates 
the discussion on the optimal total time for the measurement 
of transient record. The 6 sec. pulse width corresponds to 
longer total time of the transient record that finishes at the 
value of 1.7 F corresponding to 180 sec. The total time of 
temperature response for 3 sec of pulse duration takes just 
about 90 sec that correspond to the value of about 1 F. It 
starts to influence the measurement recorded for longer 
times or at higher thicknesses of material. We have to wait 
for a longer time while the heat that penetrates into the 
material from the heat source and reaches the thermocouple 
is influenced by heat losses from the surface. The reason is 
that the sensitivity for this parameter is higher for longer 
times of measurement and thus the uncertainty is about 5 
times lower, which corresponds to lower unambiguity of 
parameter estimation. Fig.6 shows that the uncertainty of 
estimation of the heat transfer coefficient is decreasing with 
increasing thickness of the sample as well as with increasing 
time of the measurement. In our case for 10 mm sample 
thickness it is evident that the total time of experimental 

recording should exceed 1.75 F. A simpler situation was 
found with the calculations of uncertainty for thermal 
diffusivity and thermal conductivity. Uncertainty values are 
decreasing with increasing measurement time and after 
getting maximum of the temperature response at 0.5F, i.e. 
about 42 seconds in real time axes, it starts to increase 
slightly. This means that there is no reason for the increase 
of the measurement time above 1.75 ÷2F (180÷200 sec.) for 
this geometry of sandstone material. 

 
5.  CONCLUSIONS 

The thermophysical properties of sandstone were 
investigated by Pulse Transient Method for dry state of 
stone under the air and vacuum conditions. The data were 
evaluated by two methods – the one point evaluation 
procedure and by fitting procedure using a new model for 
cuboid samples that accounts heat losses from the sample 
surface. The new model shifts up the values of all 
parameters. The values of thermal diffusivity increased just 
by small value, but due to data consistency condition the 
large increase of specific heat causes increase of thermal 
conductivity values remarkably. 

Measured thermophysical parameters of porous sandstone 
depend on quality of the material and the moisture content 
in pores. Temperature dependency of the transport 
parameters (thermal diffusivity and thermal conductivity) is 
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of negative slope, while the specific heat has positive slope 
in a given temperature range from -22 to 70°C (Fig.4). The 
measurements were performed under the air as well as 
vacuum conditions. Annealing and the vacuum treatment 
causes lowering of all thermophysical parameters due to the 
removal of remnant water from pores and structure of the 
sandstone. The RTB 1.02 chamber should help to avoid 
problems of insufficient drying because simultaneous 
evacuation of the chamber and elevation of the temperatures 
are more efficient in the additional drying process. 
Differences in all parameters after evacuation and aeration 
were caused by the additional drying process in vacuum 
under elevated temperatures.  

The uncertainty analysis of the new model of temperature 
function in respect to the heat transfer coefficient was 
analyzed and illustrated in Fig.5 and Fig.6. The data 
illustrate the sensitivity of heat transfer coefficient that 
represents the heat losses from the sample free surface with 
regard to the time of the measurement as well as geometry 
of the specimen. Results show that this parameter is 
affecting the measurement with increasing time of the 
measurement and at larger thicknesses of the sample.  

The heat transfer coefficient is not possible to estimate 
unambiguously for shorter times of the temperature 
response. The heat transfer coefficient from the sample 
surface to the surroundings is temperature dependent and its 
values are greater for higher temperatures. The values 

measured in vacuum are practically the same over the whole 
temperature range and also for the data measured for 3 
seconds pulse width. 
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