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This paper describes instrumental measurement uncertainties and their influence on the result obtained from determination of 

rock sample uniaxial compressive strength and deformability. The interdependence of uncertainty contribution is analyzed and 
guides for improving measurement uncertainty are given. The achieved uncertainties are compared to typical uncertainties in the 
determination of concrete and metallic material compressive strength and deformability. 
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1.  INTRODUCTION 

NE of the basic and most used methods of testing 
which is performed on rock samples is determination of 
uniaxial compressive strength and deformability. The 

testing method is proposed by the International Society for 
Rock Mechanics [1] in the form of Suggested Method and 
based on the guidelines in this document, some national 
standards were derived. Subsequently, additional documents 
[2] have been published that describe requirements and 
difficulties that arise from implementation of testing in 
detail and methods to overcome these difficulties. The latest 
literature dealing with determination of rock sample 
properties [3] has replaced [4] and [5]. Reference [3] is 
extended standard test method which also includes confined 
testing in various temperatures when compared to [2]. 

Similar testing is performed on other types of materials 
like concrete [6] and metals [7] - [9] with some differences 
in testing procedures and minimum measurement equipment 
properties. Testing of concrete sample properties has the 
most similarities with the testing of rock samples. The 
metals are tested for tensile strength as opposed to rock and 
concrete. Homogeneity of metallic materials is better than in 
concrete samples. Also, homogeneity of concrete samples is 
usually better than in rock samples. Homogeneity is 
important because it influences repeatability of 
measurement. 

According to the method [2], a rock sample of 54 mm in 
diameter and height from 2.5 to 3 times higher than its 
diameter is placed in the compression test machine and 
compressive force is applied to the sample. The force should 
have constant increase over time until the sample breaks and 
is disintegrated while simultaneously axial and lateral 
deformations are measured. The result is uniaxial 
compressive strength, i.e., stress at which the sample is 
disintegrated. If axial deformations are measured, Young’s 
modulus of elasticity can be obtained. If lateral deformations 
are measured, the sample’s Poisson’s coefficient is also 
obtained. 

A large difficulty in implementing the presented 
measurements is sample nonhomogeneity. Therefore, 
repeated measurements in equal conditions using different 
samples will give a variation in measurement results caused  

 
 

by material structure, i.e., nonuniform grain size, 
arrangement and micro cracks. It is not unusual that this 
variation is in the range of more than a few percent, i.e.,  
20 % [10]. Therefore, at least five samples are tested and the 
results are averaged to represent the properties of the 
material from which the samples are obtained. It is 
suggested that test results from samples which substantially 
deviate from the average are not used for calculating the 
final result. Rock samples can have uniaxial strength in the 
range from 5 MPa for soft rock, up to 250 MPa for very 
brittle rock. Concurrently, Young’s modulus of elasticity is 
in the range from 5 GPa to 120 GPa. Poisson’s ratio is 
mostly in the range from 0.1 to 0.45. 

 
2.  MEASUREMENT MODEL AND EQUIPMENT PROPERTIES 

The first quantity that is indirectly determined by the 
measurement is uniaxial compressive strength which 
depends on the force applied to the sample. The second 
quantity is Young’s modulus of elasticity which depends on 
force and sample axial deformation. The third quantity is 
Poisson’s ratio of material. 

 
2.1.  Uniaxial compressive strength 
Sample stress σ is calculated as the ratio of compressive 

force F and sample cross-section area A at the beginning of 
the test according to (1) and uniaxial compressive strength 
as the ratio of maximum applied force Fmax and cross-
section area A. 
 

                                            F
A

σ =                                     (1) 

 
Therefore, the measurement uncertainty of stress is 

dependant on the uncertainty of force and the uncertainty of 
area. Experience has shown that the compression test 
machine (CTM) has to have very high stiffness, which is 
smaller if load cell is used and placed on top of the sample 
[2]. The ideal load cell should have small stiffness to 
achieve good quality measurements. Therefore, pressure 
transducer is used to measure oil pressure in the machine 
and force is calculated as the product of machine pressure 
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and cross-section area of cylinder AM that compresses the 
sample: 

 
                                           MF p A= ⋅                                (2) 
 
which leads to (3): 
 

                                          
2
M
2
0

dp
d

σ =                                  (3) 

 
where dM is compression test machine cylinder diameter and 
d0 sample diameter. 

Although this principle of force measurement gives larger 
uncertainty, it can give better results in the measurement of 
rock sample properties. 

The pressure is measured using a transducer with the range 
of 700 bar and accuracy of ± 0.2 %. Hence, the measured 
pressure accuracy is equal to ± 1.4 bar which was used for 
calculation of uncertainty. During calibration it is 
established that transducer properties are within limits of 
± 1.2 bar for range of 0 bar to 700 bar and within ± 0.6 bar 
for the range of 0 bar to 450 bar which can be achieved by 
current CTM. 

The sample dimensions are measured using vernier caliper 
with accuracy of ± 0.02 mm and resolution of 0.02 mm. 

The compression test machine has cylinder of 8 inch 
(203.2 mm) in diameter. 

Displacement can be measured by using extensometers 
with an accuracy of 1 % of the reading and precision of  
0.2 % of full scale, or LVDTs which should be accurate to  
± 2 μm [2]. In the practical example, specification of LVDT 
is used because LVDTs are currently used in the 
measurement. 

 
2.2.  Young’s modulus of elasticity 
Young’s modulus of elasticity E is defined as (4), i.e., the 

slope of curve obtained in the diagram of axial deformations 
ε (x axis) and stress σ (y axis). The slope is determined in the 
linear part of the obtained curve which has nonlinearities in 
the beginning and at the end of the test, caused by rock 
structure. In the beginning, the cracks are closed and at the 
end of the test, the material becomes plastic. The modulus 
can be determined in three ways: tangent, average and 
secant [2] as presented in Fig.1. 

 

 
 

Fig.1.  Uncertainties in measurement of sample diameter [2] 
 

                                           E σ
ε

=                                      (4) 

Deformation is defined as the ratio of change in sample 
height and height of the sample at the beginning of the test. 
Since lower and upper plane of the sample is not perfectly 
flat, a displacement transducer is mounted on the sample 
and it spans over only a part of the sample height. If the 
transducer were mounted between the CTM cylinder and the 
lower plate on which the sample is placed, contact 
deformations would give deformations which can be higher 
then sample deformation and that would lead to a bad result. 
Therefore, transducer span is measured as starting 
dimension l0 and transducer displacement Δl. 

If (3) is placed in (4), using previously defined 
deformation, follows (5). 
 

                                     
2

0 M
2
0

l dE p
l d

=
Δ

                                (5) 

 
2.3.  Poisson’s coefficient 
Poisson’s coefficient ν is defined [11] as (6), where εa is 

axial deformation and εd is lateral deformation. It can be also 
written as (7). 
 

                                         d

a

εν
ε

= −                                     (6) 

 

                          
slope of lateral curve

Eν = −                    (7) 

 
Lateral deformation is defined as the ratio of change in 

sample diameter Δd and diameter d0 of the sample at the 
beginning of the test. From (6) follows (8). 
 

                                        0

0

d l
l d

ν Δ ⋅
=
Δ ⋅

                                  (8) 

 
3.  RESULTS 

3.1.  Uncertainty of sample dimensions 
The diameter of the test specimen shall be measured to the 

nearest 0.1 mm by averaging two diameters measured at 
right angles to each other close to the top, the mid-height 
and the bottom of the specimen. The average diameter shall 
be used for calculating the cross-sectional area. The height 
of the specimen shall be determined to the nearest 1.0 mm 
[2]. 

This means that there are six diameter measurements, 
which are averaged and then the result is rounded. The first 
contribution to the uncertainty is standard deviation s of the 
measurement and standard uncertainty (9) is calculated 
according to [12] and [13], depending on the number of 
measurements n. This is A type contribution. Other 
contributions are resolution of caliper, flatness and 
parallelism of each face, squareness error and calibration 
error given in calibration certificate. These are B type 
contributions. For variables with rectangular distribution, 
uncertainty of B type is calculated by dividing the half width 
interval with square root of number 3. Uncertainty from 
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resolution and rounding is obtained by dividing the 
resolution by factor two and then with square root of three, 
i.e., full interval is divided by square root of 12 [14], [15]. 
 

                               ( ) ( )0
0

1
3

s dnu d
n n
−

=
−

                       (9) 

 
3.2.  Uncertainty of measured pressure 
The pressure measurement uncertainty is obtained by 

dividing transducer error specification with square root of 3 
because this contribution has rectangular distribution. 

 
3.3.  Uniaxial strength uncertainty 
Combined standard uncertainty uC(σ) is calculated in (10) 

according to GUM [14]. Under the assumption that 
dimension measurements are not correlated, follows (11) for 
uniaxial strength defined by measurement model (3): 
 

                         ( ) ( )
2

2 2
C

1

n

i
i i

u u x
x
σσ

=
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      (11) 

3.4.  Young’s modulus uncertainty 
Under the assumption that secant elasticity modulus is 

determined, (4) or (5) can be used. Relation (5) is used in 
the following example because all uncertainty contributions 
of modulus can be compared. Also, in this manner it is 
easier to notice possible correlation of input quantities. 

The combined standard uncertainty uC(E) is calculated in 
(12) according to GUM [14]. Again, under the assumption 
that dimension measurements are not correlated, follows 
(13) for Young’s modulus defined by measurement model 
(5): 

 

                           ( ) ( )
2

2 2
C

1

n

i
i i

Eu E u x
x=

⎛ ⎞∂
= ⎜ ⎟∂⎝ ⎠
∑                   (12) 

 
 
3.5.  Poisson’s coefficient 
Combined standard uncertainty uC(ν) is calculated in (14) 

according to GUM [14]. Again, under the assumption that 
dimension measurements and displacement are not 
correlated, follows (15) for Poisson’s coefficient defined by 
measurement model (8): 
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4.  PRACTICAL EXAMPLE 
For a clearer understanding, the following example is 

explained. Typical diameter measurement results are 
presented in Table 1. All uncertainty contributions are 
calculated in Table 2 and presented in Fig.2. 
 

Tab.1.  Typical measurement of sample diameter. 
 

Measurement No. Diameter (mm) 
1 54.20 
2 54.16 
3 54.14 
4 54.16 
5 54.18 
6 54.14 

 
From the obtained standard deviation of 0.0234 mm 

follows standard uncertainty of 0.0123 mm as presented 
in (9). Flatness and parallelism are estimated as in [16]. 

 
Tab.2.  Combined uncertainty of diameter measurement. 

 

Quantity Probabillity 
distribution

Sensitivity 
coefficient

Uncertainty 
contribution 

(mm)

St. deviation 0.0234 mm 0.0123 mm students t 1 0.0123
Resolution 0.02 mm 0.0058 mm rectangular 1 0.0058
Flatness 0.005 mm 0.0029 mm rectangular 1 0.0029
Parallelism 0.008 mm 0.0046 mm rectangular 1 0.0046
Calibration 0.02 mm 0.0115 mm rectangular 1 0.0115
Rounding 0.1 mm 0.0289 mm rectangular 1 0.0289
Sample diameter 54.163 mm u C(d 0)= 0.034

Standard 
uncertaintyEstimate
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When uncertainty contributions are compared, it can be 
concluded that vernier caliper is a satisfactory instrument 
for sample dimension measurement and dominant 
contribution comes from rounding the result. 
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Fig.2.  Uncertainties in measurement of sample diameter 

 
 
Uncertainty of sample height depends even more 

dominantly on rounding. 
Uniaxial strength uncertainty depends on the 

uncertainty of pressure and sample diameter before the 
test. The diameter of CTM cylinder was not measured 
because it was obtained from manufacturer 
documentation, but measurement uncertainty was not 
stated. Under the assumption that uncertainty of CTM 
diameter is equal to the uncertainty of sample diameter, 
results given in Table 3 and Fig.4. are obtained. 
Uncertainty of CTM diameter is surely smaller than 
assumed, because it is a precisely manufactured machine 
part made with small tolerances. 

 
 

Tab.3.  Combined uncertainty of uniaxial strength measurement. 
 

Quantity Probabillity 
distribution

Uncertainty 
contribution 

(MPa)
Pressure 15.41817 MPa 0.080829 MPa rectangular 14.06 1.136
CTM diameter 203.2 mm 0.0343732 mm rectangular 2.1330 MPa/mm 0.073
Sample diameter 54.2 mm 0.0343732 mm rectangular -7.9967 MPa/mm -0.275
Strength 216.7 MPa u C(σ )= 1.2

Estimate Standard 
uncertainty

Sensitivity 
coefficient
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Fig.3.  Uncertainties in measurement of sample height 

 

Pressure uncertainty is dominant contribution to the 
combined standard uncertainty, which means that if 
pressure transducer with smaller error limits is used, it 
will lead to decreased uncertainty of compressive 
strength. 

The use of pressure transducer with equal accuracy 
class and smaller range could be used for samples 
obtained from softer rock, where smaller strength is 
expected, which would decrease uncertainty. If pressure 
uncertainty were halved, the decrease of strength 
uncertainty would be substantial. Additional reduction 
has no sense unless sample diameter is measured with 
smaller uncertainty. 

The relative standard uncertainty of strength is lower 
than 1 % for strength larger than 118 MPa. 

If secant Young’s modulus is determined, pressure and 
strength used for calculation are at 50 % of maximum 
value achieved during testing. Calculation presented in 
Table 4 and Fig.5. follows. 
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Fig.4.  Uncertainties in measurement of uniaxial strength 

 
 
Under the assumption that dimensional measurements 

are uncorrelated, follows that uncertainty of elasticity 
modulus is similarly influenced by pressure uncertainty, 
sample height uncertainty and displacement uncertainty, 
because these contributions have similar distribution 
width. The uncertainty of sample and CTM diameter are 
smaller than one third of the maximum uncertainty 
contribution and therefore can be considered negligible.  

Using a pressure transducer with lower uncertainty is 
not sufficient to improve modulus uncertainty. To achieve 
lower modulus uncertainty, the use of pressure and 
displacement transducer with lower uncertainty is 
required. If these uncertainties are halved, combined 
standard uncertainty will be improved. Additional 
lowering has sense if height dimension is rounded to a 
limit smaller than 1 mm. 

 
Tab.4.  Combined uncertainty of Young’s modulus of elasticity. 

 

Quantity Probabillity 
distribution

Uncertainty 
contribution 

(GPa)

Pressure 7.709083 MPa 0.080829 MPa rectangular 7.646 0.618
Height 68 mm 0.1463 mm rectangular 0.867 GPa/mm 0.127
CTM diameter 203.2 mm 0.0343732 mm rectangular 0.580 GPa/mm 0.020
Diameter 54.2 mm 0.0343732 mm rectangular -2.175 GPa/mm -0.075
Displacement 125 μm 1.154700538 μm rectangular -0.472 GPa/μm -0.545
Young's modulus 58.95 GPa u C(E )= 0.84

Estimate Standard 
uncertainty

Sensitivity 
coefficient
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The relative standard uncertainty of elasticity modulus 
is lower than 1 % for elasticity modulus larger than 84 
GPa. 
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Fig.5.  Uncertainties in measurement of modulus of elasticity. 
 
If Poisson’s secant coefficient is determined, calculation 

presented in Table 5 and Fig.6. follows. 
 

Tab.5.  Combined uncertainty of Poisson’s coefficient. 
 

Quantity Probabillity 
distribution

Uncertainty 
contribution 

Height 68 mm 0.146 mm rectangular 0.00295 mm-1 0.00043
Axial displacement 125 μm 1.15 μm rectangular -0.00161 μm-1 -0.00185
Sample diameter 54.2 mm 0.0344 mm rectangular -0.0037 mm-1 -0.00013
Lateral displacement 20 μm 1.15 μm rectangular 0.01004 μm-1 0.01159
Poisson's coefficient 0.20074 u C(ν )= 0.0117

Estimate Standard 
uncertainty

Sensitivity 
coefficient

 
 
Under the assumption that dimensional measurements 

and displacements are uncorrelated, follows that 
Poisson’s coefficient uncertainty dominantly influences 
lateral displacement uncertainty. Other sources of 
uncertainty are negligible. The use of extensometer with 
lower error limits instead of LVDT would decrease 
Poisson’s coefficient uncertainty. For example, class 0.2 
extensometer has bias error of ± 0.6 µm [17] which would 
decrease uncertainty. Strain gauges are an attractive and 
cost effective alternative to the high resolution 
extensometer [17]. 
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Fig.6.  Uncertainties in measurement of Poisson’s coefficient. 

 
 
The relative standard uncertainty of Poisson’s 

coefficient is in the range from 2.6 % to 12 % for 
expected values. 

 

4.  DISCUSSION 
Dimensional measurements are performed with an 

identical instrument, which means that sources of 
uncertainty associated with that instrument should appear 
more than once in the uncertainty budget, i.e., lead to 
correlated input quantities. In this case, dominant 
uncertainties come from rounding, which means that they 
are not correlated [15], [18]. Hence, the assumption of 
noncorrelated dimensional measurements is justified. 

The results of measurement presented in this paper are 
used for calculation of intact rock properties. In situ rock 
mass properties depends on intact rock properties but 
strongly on structural features. Rock mass properties are 
then used for example in slope stability, underground 
excavation etc. Therefore, safety factors mostly in the 
range from 2 to 10 are used and the achieved 
uncertainties are satisfactory for this type of application. 
This does not mean that presented measurements could 
not or should not be performed with greater quality. 
 

Tab.6.  Strength and standard uncertainty in testing of 
concrete and steel. 

 
 Concrete [19] Rolled steel [20] 
σ 33 MPa 478.6 MPa 

uC (σ) 0.1 MPa 2.9 MPa 
uC% (σ)  0.3 % 0.6 % 

 
Table 6 and Table 7 present uncertainties in the 

measurement of properties of concrete and metal samples. 
The obtained uncertainties from the practical example are 
larger than those presented in Table 6 and Table 7. It 
should be noted that the presented uncertainty calculation 
gives information on where and how uncertainties can be 
lowered, if necessary. 

 
Tab.7.  Young’s modulus and standard uncertainty in tensile test 

 
 Metal [17] Cold rolled steel [21] 

E 210 GPa 207.5 GPa 
uC (E) 0.7 GPa 0.85 GPa 

uC% (E)  0.33 % 0.41 % 
 

5.  CONCLUSION 
This paper describes contributions to uncertainty of 

results obtained by testing of rock sample deformability, 
i.e., those that come from limitations of the used 
instruments and transducers. Uncertainty contributions 
are assessed and compared in an example and guidelines 
for lowering the combined standard uncertainty are given. 

The relative standard uncertainty of strength is lower 
than 1 % for strength larger than 118 MPa. The relative 
standard uncertainty of elasticity modulus is lower than 1 
% for elasticity modulus larger than 84 GPa. The relative 
standard uncertainty of Poisson’s coefficient is in the 
range from 2.6 % to 12 % for expected values. 

Uncertainty contribution from repeatability is not 
considered since it requires repeating the test with 
sufficient number of homogeneous samples and 
calculating the contribution. Also, the influence of 



 
MEASUREMENT SCIENCE REVIEW, Volume 11, No. 4, 2011 

 117

different stress increase and sample centering is not 
considered.  
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