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Nowadays, analysis of electromyography (EMG) signal using wavelet transform is one of the most powerful signal processing 

tools. It is widely used in the EMG recognition system. In this study, we have investigated usefulness of extraction of the EMG 
features from multiple-level wavelet decomposition of the EMG signal. Different levels of various mother wavelets were used to 
obtain the useful resolution components from the EMG signal. Optimal EMG resolution component (sub-signal) was selected and 
then the reconstruction of the useful information signal was done. Noise and unwanted EMG parts were eliminated throughout 
this process. The estimated EMG signal that is an effective EMG part was extracted with the popular features, i.e. mean absolute 
value and root mean square, in order to improve quality of class separability. Two criteria used in the evaluation are the ratio of a 
Euclidean distance to a standard deviation and the scatter graph. The results show that only the EMG features extracted from 
reconstructed EMG signals of the first-level and the second-level detail coefficients yield the improvement of class separability in 
feature space. It will ensure that the result of pattern classification accuracy will be as high as possible. Optimal wavelet 
decomposition is obtained using the seventh order of Daubechies wavelet and the forth-level wavelet decomposition. 
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1.  INTRODUCTION 

LE
m
us

CTROMYOGRAPHY (EMG) signal is one of the 
ost important physiological signals that are widely 
ed in clinical and engineering applications [1-2]. In 

order to use the EMG signal as a diagnostic tool or a control 
signal, feature extraction technique becomes a significant 
step to achieve good classification performance on EMG 
recognition systems. In the last decade, wavelet transform 
(WT) became an effective tool to extract useful information 
from the EMG signal [3]. A wide class of literatures has 
focused on the evaluation and investigation of an optimal 
feature extraction obtained from wavelet coefficients [4-11]. 
Many applications have been proposed, such as studies of 
combat sports and martial arts strikes [4], characterization of 
low back pain [5], determination of muscle fatigue for an 
automated system [6], estimation of knee joint angle for 
control of leg prostheses [7], determination of muscle 
contraction during human walking [8] and identification of 
hand motion commands for control of upper-limb prostheses 
[9-12]. Most of the research works have paid more attention 
to identifying hand motion commands. Hence, in our study, 
the EMG data that were recorded during six daily-life upper-
limb movements from two useful forearm muscles were 
deployed as a representative EMG signal. 

WT is a time-frequency analysis method that is successful 
in the analysis of non-stationary signals including the EMG 
signal. However, the WT yields a high-dimensional feature 
vector [9]. Commonly, the high dimensionality of a feature 
vector causes an increase in the learning parameters of a 
classifier [10]. Hence, reduction of dimensions of the feature 
vector without loss of classification accuracy is required. 
Moreover, the dimensionality reduction method can increase 
both classifier speed and classification accuracy [10-12]. For 
this reason,  in  wavelet  analysis,  selection  of  an  optimal  

 
 
dimensionality reduction method is essential before 
applying the feature vector to a classifier. 

Feature projection is the popular way to reduce dimensions 
of the feature vector. Linear and non-linear transformation 
methods are critical to the success of the time-frequency 
based feature sets during the last decade. Englehart et al. 
[10] extracted a feature vector through the WT and used 
principal component analysis (PCA), a common linear 
transformation method, for dimensionality reduction. 
Moreover, various types of the transformation method have 
been proposed, such as a combination between PCA and a 
self-organizing feature map (SOFM) [11], nonlinear 
discriminant analysis (NLDA), and linear discriminant 
analysis (LDA) [12]. Another approach that is frequently 
used for dimensionality reduction is the simple time domain 
and frequency domain extraction method [4, 7, 13-17], such 
as mean absolute value (MAV), energy, variance, zero 
crossing (ZC), mean and median frequency, and auto-
regressive coefficients (AR). In this study, we used two 
popular and successful EMG features in both clinical and 
engineering applications, root mean square (RMS) and 
MAV [2, 18], as the representative features. 

The main benefit of the WT is generation of the useful 
subset of the frequency components or scales of the 
interested signal, whereas all research works introduced 
above used all components or scales as a feature vector for a 
classifier. In this study, we have investigated the usefulness 
of an extraction of EMG features from some effective 
wavelet components or scales instead of extracting features 
from all wavelet components [19-20]. The useful resolution 
components from the EMG signal were generated and 
selected [17, 19]. Noise and unwanted parts were reduced 
effectively through the selection of the valuable frequency 
components [20]. In addition, to extract the successful EMG 
information, a suitable wavelet basis function should be 
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addressed [21-22]. Various wavelet functions with different 
levels of wavelet decomposition were evaluated. 

The scatter graph of the features in space and the statistical 
measurement method, namely the ratio of a Euclidean 
distance to a standard deviation index (RES) were used as 
the evaluation tools [23]. The results of this study will show 
the usefulness of the extraction of EMG features with some 
optimal frequency components that is generated from the 
WT method. The improvement of class separability in 
feature space of the EMG features is shown. As a result, this 
leads to the increase in recognition accuracy. 

 
 

 
Fig.1.  Six daily-life upper-limb motions (a) wrist flexion (b) wrist 
extension (c) hand close (d) hand open (e) forearm pronation (f) 
forearm supination [24]. 

 

 
 

 
 

Fig.2.  Two muscle placements of right forearm (top) flexor carpi 
radialis muscle (bottom) extensor carpi radialis longus muscle. 

 
2.  MATERIAL & METHODS 

A. EMG signal acquisition and experiments 
In this section, we describe our experimental procedure for 

recording the EMG data. The representative EMG signals 
used in this study were extracted from six daily-life upper-
limb movements and two forearm muscle channels. A 
volunteer was asked to perform the six upper-limb motions 
including wrist flexion (wf), wrist extension (we), hand 
close (hc), hand open (ho), forearm pronation (fp), and 
forearm supination (fs) as shown in Fig.1. The EMG signals 
were recorded from two forearm muscles, flexor carpi 
radialis muscle (CH1) and extensor carpi radialis longus 
muscle (CH2), on the right forearm of the volunteer by two 
pairs of surface electrodes (3M red dot 25 mm foam solid 
gel) as shown in Fig.2. The electrodes were separated from 

each other by 20 mm. A band-pass filter of 10-500 Hz 
bandwidth and an amplifier with 60 dB gain were used. The 
sampling frequency was set at 1000 Hz using a 16 bit A/D 
converter (NI, DAQCard-6024E). In the experiment, ten 
datasets were collected for each motion. The window size of 
EMG samples was set to 256 ms for a real-time constraint of 
an engineering application that the response time should be 
less than 300 ms [10]. 

 

 
 

Fig.3.  Discrete wavelet transform decomposition tree from the 
decomposition level 4. 

 

 
 

Fig.4.  The procedure of an extraction of the EMG features from 
wavelet coefficients and reconstructed EMG signals. 

 
 
B. Wavelet transform and feature extraction methods 
Wavelet transform method is divided into two types: 

discrete wavelet transform (DWT) and continuous wavelet 
transform (CWT). DWT was selected in this study because 
of  the concentration in real-time engineering applications 
[1-2]. DWT is a technique that iteratively transforms an 
interested signal into multi-resolution subsets of 
coefficients. Like the conventional time-frequency analysis, 
the DWT transforms the EMG signal with a suitable wavelet 
basis function (WF). Therefore, the WF plays a key role in 
the multi-resolution analysis. In this study, we investigated 
the usefulness of the multi-resolution analysis through 
studying of the EMG features with different scales and local 
variations and also the elimination of the undesired 
frequency components. In addition, the selection of an 
optimal WF is proposed. 
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The original EMG signal (S) is passed through a low-pass 
filter and a high-pass filter (coefficients of filters depend on 
WF type) to obtain an approximation coefficient subset 
(cA1) and a detail coefficient subset (cD1) at the first level. 
In order to obtain the multiple-resolution subsets, repetitious 
transformation is done. This process is repeated until the 
desired final level is obtained. In this study, four levels of 
decomposition are selected as shown in Fig.3. In the EMG 
analysis, four levels of wavelet decomposition show better 
performance than the other levels in a lot of literatures [19, 
21]. Finally, this generates the coefficient subsets of the 
level 4 approximation (cA4) and the level 1, 2, 3, 4 details 
(cD1, cD2, cD3, and cD4), respectively. Moreover, each 
coefficient subset can be reconstructed to obtain an effective 
EMG signal part. Reconstruction of a signal is done by 
using the inverse wavelet transform. Generally, the inverse 
transform is performed by using the coefficients of all the 
components of the final-level decomposition, that is the 
fourth-level approximation and the first four levels of detail 
(cA4, cD1, cD2, cD3, and cD4). However, in this study, we 
define the reconstructed EMG signal by the inversion of 
subset dependence. For example, in order to obtain the 
estimated signal from approximation coefficient subset only, 
the reconstructed EMG signal (A4) is inversed by using the 
coefficients of the fourth-level approximation (cA4) only. 
Therefore, we will obtain the reconstructed EMG signals, 
namely A4, D4, D3, D2, and D1 that are reconstructed from 
cA4, cD4, cD3, cD2, and cD1, respectively. However, the 
optimal wavelet function is dependent on the type of 
interested applications. Some good wavelet functions that 
are suitable for EMG signal analysis are shown in one of our 
previous works [21]. Seven mother wavelets are selected to 
be evaluated in this study. There are the second and the 
seventh orders of Daubechies wavelet (db2 and db7), the 
forth and the fifth orders of Coiflet wavelet (coif4 and 
coif5), the fifth order of Symlets wavelet (sym5), the fifth 
order of BioSplines wavelet (bior5.5), and the second order 
of ReverseBior wavelet (rbio2.2). 

After that, the wavelet coefficient subsets (cD1-cD4, cA4) 
and the reconstructed EMG signals (D1-D4, A4) were 
extracted from their features with six hand movements and 
two muscle channels. In this study, the popular and 
successful features called MAV and RMS are selected. 
However, in the experiments we found that the MAV and 
RMS features gave the same trend on the results. Moreover, 
MAV feature is better than RMS feature in the class 
separability point of view [23]. Therefore, in this paper, only 
results of the MAV feature were discussed in the later 
section. The definition of MAV feature is defined as 
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where xn represents the nth sample of the EMG signal (S) or 
the wavelet coefficients subsets (cD1-cD4, cA4) or the 
reconstructed EMG signals (D1-D4, A4) in a window 
segment and N denotes the length of EMG signal window-
segment (N = 256 in this study). The procedure of the above 
explanation is shown in Fig.4. The comparison of class 

separability in each type is discussed to find the suitable 
EMG subset. 
 
C. Evaluation criteria 

In evaluating performance of the EMG features, class 
separability viewpoint is a central criterion. The good 
quality in class separability viewpoint means that the result 
of misclassification will be as low as possible. In other 
words, maximum separation between classes is obtained and 
minimum of the variation in subject experiment is reached. 
In this study, we used two evaluation criteria, called the 
scatter graph and the RES index (statistical measurement 
method). Generally, the selection of EMG features can be 
deployed based on either classifier method or statistical 
measurement index. However, a drawback of an evaluation 
using classifier is that the evaluation results are dependent 
on types of the classifier [25]. Hence, in this study, we have 
proposed the selection of EMG features based on statistical 
index. 

The definition of RES index [23] that was used in this 
study is as follows. The MAV features in the matrix form 
can be expressed as 
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where m is the MAV value, i is the channel number (1 ≤ i ≤ 
I, I=2), j is the trial number (1 ≤ j ≤ J, J=10), and k is the 
motion number (1 ≤ k ≤ K, K=6). Note that the MAV values 
from each channel of all motions were normalized to be in 
the range of 0 and 1 which can be expressed as 
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The average of MAV values of each channel can be given 

by  
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The standard deviation of MAV values of each channel 

can be defined as 
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The definition of RES index can be expressed as 
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nd p and q are motion numbers (1=wf, 2=we, 3=hc, 4=ho, 

= =

= ∑∑ ,      

a
5=fp, and 6=fs). In addition, the ED is the distance between 
co-ordinates of a pair of clusters p and q in n-dimensional 
Euclidean space, and σ  is the dispersions of clusters p and 
q. This index uses th  Euclidean distance as a distance 
function and uses the standard deviation as a dispersion 
measure. 
 

e

3.  RESULTS AND DISCUSSION 
A.  EMG sign

aches that are 
d

 EMG signal, we can observe from 
F

al and wavelet decomposition 
Example signals computed from three appro
escribed in Fig.4 are shown in Fig.5.The db7 wavelet with 

4 levels of wavelet decomposition was used in the example. 
In Fig.5(a), the signals obtained from the raw EMG signal 
(Type I) and the reconstructed EMG signals at different 
multi-resolution levels (Type III) are presented and the 
signals between the raw EMG signal (Type I) and the 
wavelet coefficient subsets at different multi-resolution 
levels (Type II) are presented in Fig.5(b). Generally, in most 
types of natural signal, the low frequency components (i.e. 
the cA4 and the A4) are the most important part [26]. They 
can be used as the identity of its signal, whereas high 
frequency components (the cD1-cD4, the D1-D4) can be 
assumed as noises.  

However, for the
ig.5(a) and 5(b) that the low frequency component (cA4 

and A4) contains indirect correspondence and contains the 
irrelevant low resolution background; whereas we found that 
the signals at the first and the second decomposition levels 
(cD1 and cD2) and reconstruction levels (D1 and D2) are 
similar to the original signal (S). It remains the trend 
(appropriate to the low frequency contents) of the EMG 
information and removes the fluctuation (unwanted the high 
frequency components) of interference. So the signals (cD1, 
cD2, D1, and D2) are the effective EMG information parts.

 
 
 

 
 
Fig.5.  Example of the EMG signal using wavelet multi-resolution analysis with db7 wavelet and 4 levels decomposition and 
reconstruction (a) raw EMG signal (S) and the reconstructed EMG signals (D1-D4, A4) of hc from CH1 (b) EMG signal (S) and the 
wavelet coefficient subsets (cD1-cD4, cA4) of hc from CH1. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
 

Fig.6.  The scatter plots of MAV feature calculated from (a) raw EMG signal (S) (b) reconstructed EMG signal from cD1 (D1)  
(c) reconstructed EMG signal from cD2 (D2) (d) reconstructed EMG signal from cD3 (D3) (e) reconstructed EMG signal from cD4 (D4) 
(f) reconstructed EMG signal from cA4 (A4) - with six hand movements and two muscle channels (CH1 – X axis, CH2 – Y axis). 
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(a) 

 
(b) 

 

Fig.7.  The comparison between the scatter plots of MAV feature calculated from (a) reconstructed EMG signal from wavelet’s detail 
coefficient level 1 (D1) and (b) wavelet’s detail coefficient subset at level 1 (cD1) (CH1 – X axis, CH2 – Y axis).

 
 

 
 

  
  
B.  Scatter graphs C.  RES index 
To demonstrate the performance of the EMG feature 

extraction computed from each sub-signal, which is 
described in the above section in class separability point of 
view, the scatter graphs between the MAV features 
extracted from two muscle channels and six upper-limb 
movements were shown to present the distance between two 
scatter groups and the variation of features in the same 
group. Fig.6(a) shows the scatter plot of the MAV extracted 
from the raw EMG signal (S), which indicates the clear 
separation in data points from each motion with a small 
degree of variation in the same group. In Fig.6(b-c), scatter 
plots of the MAV extracted from the reconstructed EMG 
signals (D1 and D2) show clearly separation and 
compactness. It means that the EMG feature vector obtained 
from these signals can yield a good classification result from 
the classifier. In Fig.6(d-e), scatter plots of the MAV 
features obtained from the reconstructed EMG signals (D3 
and D4) show that the patterns of each motion have a little 
more fluctuation compared with the patterns of feature 
obtained from the original EMG signal (S) and the 
reconstructed EMG signals (D1 and D2). In addition, scatter 
plot of the MAV feature computed from the reconstructed 
EMG signal (A4) has a poor class separability compared 
with the others. 

To confirm the class separability performance, we used the 
RES index to indicate the quality of separation. It is used as 
a quantitative confirmation for the observation of the scatter 
graphs. In Fig.8, it confirmed that RES indices of the MAV 
from the detail coefficients of the first level and the second 
level (cD1, cD2, D1, and D2) achieved the improvement in 
class separability in feature space compared with the RES 
indices of the MAV from the original signal (S). Moreover, 
better performance in classification of EMG feature 
extracted from the reconstructed EMG signals (D1 and D2) 
over the EMG feature extracted from the wavelet coefficient 
subsets (cD1 and cD2) is shown. On the other hand, the 
classification performances of other cases (cD3, cD4, cA4, 
D3, D4 and A4) are inferior to that of the original signal (S). 

The results that we have discussed above are based on a 
fixed wavelet filter. Through Figs.9 and 10, comparisons of 
seven wavelet functions in order to find the optimal one 
have been shown. In Fig.9, RES indices from the 
reconstructed EMG signal D1 show that the rbio2.2 wavelet 
is the best mother wavelet. It is better than the others by 
about 0.6, and in Fig.10, the RES indices from the 
reconstructed EMG signal D2 show that the db7 wavelet is 
the best wavelet function.  

We found that the classification performance obtained 
from wavelet decomposition level 2, D2, is greater than the 
classification performance obtained from wavelet 
decomposition level 1, D1. Thus, we can summarize that the 
best classification performance can be obtained by using the 
reconstructed EMG signal from the wavelet’s detail 
coefficient level 2, D2, with the db7 wavelet and the forth 
decomposition levels. 

Furthermore, comparison of class separability of the MAV 
features extracted from the reconstructed EMG signal and 
extracted from the wavelet’s coefficient subset is shown in 
Fig.7. We found that the trend of classification performance 
in each level of both types is similar. However, the 
classification performance of reconstructed EMG signals 
from wavelet’s coefficient is always slightly superior to the 
classification performance of wavelet’s coefficient subsets.   
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Fig.8.  Bar plot of RES index of MAV feature with raw signal (S), 
different coefficient subsets (cD1-cD4, cA4) and different 
reconstructed EMG signals (D1-D4, A4) using db7 wavelet. 
 

 
 
Fig.9.  Bar plot of RES index of MAV feature from seven mother 
wavelets based on the reconstructed signal of details level 1 (D1). 
 

 
 
Fig.10.  Bar plot of RES index of MAV feature from seven mother 
wavelets based on the reconstructed signal of details level 2 (D2). 

 
 
D.  Usefulness of feature extracted from sub-signal 
As we have mentioned in the introduction section, the 

main benefit of the WT method is the generation of a useful 
subset of the frequency components, but previous research 
studies have used all subsets of the frequency components as 
a feature vector for a classifier. In this study, we have 
proposed to use some effective subsets instead of using all 
subsets. The useful resolution components from the EMG 
signal were generated and selected through the experiments 
and we found that from the forth decomposition levels, the 
reconstructed EMG signals from the first level and the 
second level of detail coefficients are suitable for an 
extraction of EMG features. On the other hand, other subsets 
contain noise and unwanted EMG parts, thus extraction of 
EMG feature from those subsets does not improve the 
classification ability. Hence, in the future works, we 

recommend to extract the EMG feature from the 
reconstructed EMG signals from the first level and the 
second level of detail coefficients instead of using all 
wavelet subsets. It does not only improve the classification 
accuracy but also decreases the computational time due to a 
reduction in sub-signals. 

In future works, evaluation of the estimated EMG signals 
from the detail coefficient (D1 and D2) with other kinds of 
the dimensionality reduction method should be employed, 
such as linear and nonlinear transformation methods (e.g. 
PCA, SOFM, NLDA, LDA) and time domain and frequency 
domain feature methods (e.g. energy, ZC, AR). In addition, 
to confirm the recognition result, the classification accuracy 
obtained from the classifiers should be done. 

 
4.  CONCLUSIONS 

The usefulness of the successful EMG features extracted 
from multiple-level decompositions of the EMG signal has 
been investigated in this paper. The optimal EMG resolution 
components were selected. As a result, the beneficial EMG 
information was obtained with a noise-free environment. By 
evaluations with the RES index, the results show that only 
EMG signals that were estimated from the detail coefficients 
of the first level and the second level yield the improving of 
the class separability. It ensures that the result of the 
classification accuracy will be as high as possible. The 
suitable mother wavelet and decomposition level are the 
seventh order of Daubechies wavelet and the fourth 
decomposition levels, respectively. The investigation results 
of this paper can be widely used in a wide class of clinical 
and engineering applications. 
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