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On the Possibilistic Approach to Linear Regression with Rounded
or Interval-Censored Data
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Consider a linear regression model where some or all of the obsertians of the depgndent variable have been either rounded or
interval-censored and only the resulting interval is available. Givera linear estimator 3 of the vector of regression parameters, we
consider its possibilistic generalization for the model with rounded/cesored data, which is called the OLS-set in the special ca&:
Ordinary Least Squares. We derive a geometric characterizatiorof the set: we show that it is a zonotope in the parameter space.
We show that even for models with a small number of regression paraeters and a small number of observations, the combinatorial
complexity of the polyhedron can be high. We therefore derive simig bounds on the OLS-set. These bounds allow to quantify the
worst-case impact of rounding/censoring on the estimatoﬁ. This approach is illustrated by an example. We also observe that the
method can be used for quantification of the rounding/censoring ééct in advance, before the experiment is made, and hence can
provide information on the choice of measurement precision when th experiment is being planned.

Keywords: Linear regression; rounding; inexact data; interval-censored data.

1. INTRODUCTION A typical setup, when only instead of the exact values
y are available, is the presence of rounding. If we store data
CONSIDERthe linear regression model using data types of restricted precision, then instead of ex
act values we are only guaranteed that the true value is in an
y=XB+¢ (1) interval of width 29 whered is the number of bits of the

data type reserved for representation of the non-integer pa
wherey denotes the vector of observations of the dependerir example, if we store data as integers, then we know only
variable X denotes the design matrix of the regression modge intervaly = [j— 0.5, §+ 0.5] instead of the exact valug
B denotes the vector of unknown regression parameters @téreyis y rounded to the nearest integer.
€ is the vector of disturbances. We do not make any speciaHowever, the setting may be understood more generally, for
assumptions oi; we just assume that for estimation@fa example:

linear estimator can be used, i.e. an estimator of the form ] o
e The datay have been interval-censored. This is often the

~

B =Qy, ) case of medical, epidemiologic or demographic data —
only interval-censored data are published while the exact
whereQ is a matrix. In the following text, we shall concen-  individual values are kept secret.

trate on the Ordinary Le_ast Squ$res_£OIT_S_) estimator, wh|ch. Sometimes, data are intervals by their nature. For in-
corresponds to the choid@ = (X'X)™"X" in (2). Never- stance, financial data have bid-ask spreads
theless, the theory is also applicable for other lineamesti ’ '
tors, such as the Generalized Least Squares (GLS) estimatas Categorial data may be sometimes interpreted as inter-
which corresponds to the choi@e= (XTQ1X)"1QXT in val data; for example, credit rating grades can be un-
(2), whereQ is either known or estimated covariance matrix  derstood as intervals of credit spreads over the risk-free
of €. Other examples include estimation methods which, at yield curve.
the beginning, exclude outliers and then apply OLS or GLS.
These estimators are often used in robust statistics.

The symboh stands for the number of observations and t

symbol p stands for the number of regression parameters. (a) If the datay have been rounded, then the widths of all

There is an interesting difference between rounded data and
ngrval—censored data.

The tuple (X,y) is calledinput datafor the model {). intervalsYi,...Y, are the same; for example, if we are
Throughout the text we assumxeis a fixed matrix of con- rounding to integers, then every interval\¥nhas width
stants. 1.

In this text we deal with the situation when the observa- _ . .
tionsy of the dependent variable cannot be observed directlgp,) If the intervalsy resulted from censoring, then the inter-

instead, only the interval vectdt= [Y,Y] is known such that valsYy,..., Yo may be of different widths. In particular,
the vector of unobservable valug&ulfills y € V. only some portion of the data may have been censored:
then, for someé C {1,...,n}, the value%; withi € | are
*Corresponding authocernym@vse.cz crisp (i.e.Y; =Yj).
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The case (a) can be seen as a special case of (b). The methdte possibilistic approach also allows to derive bounds
introduced in the following sections is applicable to therenoon the setOLSY) giving information about the possible
general case (b). worst-case impact of rounding/censoring on the deviation
A variety of methods for estimation of regression paramef the OLS estimatorﬁ from (say) its central valueé =
ters in regression involving interval data has been demipp%(xTx)—le(XJrV), This approach is illustrated in Section
they are studied in statistic4,[2, 3, 4, 5, 6, 7], where also 6.
robust regression methods have been propdsé,[in fuzzy ~ Several measures can be introduced to quantify the round-
theory [L0, 11, 12,13, 14, 15, 16] as well as in computer sci-ing/censoring effect: the essence is that if the@e§Y) is
ence [17], [18], [19]. An algebraic treatment of least squareia some sense small, then the rounding/censoring impact on
methods for interval data has been considere@0hdnd [21].  the estimator can be regarded as negligible. Natural messur
There are classical works dealing with rounding of data iiclude the volume of the s€@LSY) and the radius of the
cluded in regression analysi&Z 23, 24] as well as modern smallest circle circumscribing the PLyYy).
works on the topic25, 26, 27, 28]. However, we can also regard the €tSY) in a proba-
A majority of the cited papers deals with the basic issilistic way.
how to derive a “good” crisp estimator fffrom data affected  probabilistic interpretation of the possibilistic approa. If
by rounding/censoring. Our approach is complementary: gLis a random vector such that the support of its distribution
goal is not to derive an estimator fbut rather to describejs v, then the support of the distribution oKTX)"XTy is
the set in which a given linear estimag®rcan be when crisp OLSY). Then the seDLSY) can be seen as00% confi-

values ofy are replaced by rounded/censored values. dence regiorfor the OLS estimator. An interesting special
case is a regression model with independent disturbantes wi
2 THE POSSIBILISTIC APPROACH distributions the supports of which are bounded.
Definition 1. Let Y d(_anote the interval v_ectc@!,\?]: The 3. GEOMETRY OF THE SETOLSY)
OLS-set associated with Y (and the matrix X, which is as-
sumed to be fixed) is defined as First we need to review some notions from geometry of con-

vex polyhedra; for further reading se2d].
OLSY)={BeRP:(3yecY)X"XB=XTy]}.
Definition 2. TheMinkowski sum of a set AC R¥ and a vec-
tor g € RK is the set

The motivation for Definitiorl is straightforward. Our aim
is to use least squares to obtain an estimate of the unknown
vector of regression parametgdsn the model {). However,
we only know intervalsy that are guaranteed to contain the
directly unobservable data Then, the seOLSY) contains AGg=comAU{a+g:acA}),

all possiblevalues ofﬁ asyranges oveY. The seOLSY) is
a possibilistic version of the notion of the OLS-estimator. whereconvdenotes the convex hull.

The setOLSY) captures the loss of information caused
by rounding/censoring of the data included in the regressi@efinition 3. Thezonotopegenerated byg...,gn € R with
model. For a user of such a regression model, it is esserffift s€ R¥ is the set
to understand whether the set is, in some sense, “large” or
"small*; that is, whether the impact of the loss on the OLS 2 (Si01,-.-,9n) = (---({S}©091) ©%2) &+ B On)-
esimator may be serious or not. A geometric characterizatio
of that set will be given in the next section. The vectors g ..., gy are calledgenerators.

Whenp = 2 or p = 3 then the seOLSY) can be visual-
ized in the parameter space using standard numerical m
ods. However, in higher dimensions visualization is qui
complicated. Hence we need methods for a suitable descE
tion of the seOLYY).

The possibilistic approach is essentially algebraic or-geo
metric, not probabilistic: it does not assume any distidt Theorem 4. Let X € R™P be a matrix of full column rank
of yonY. It allows to answer such questions &sit true that 5,4 y— IY.Y] an nx 1 interval vector. Then
a given vector b fulfills e OLSYY)?”, i.e. is it true that if the B
truly observed values y had been available, we could have es- QLgY) = 2(QY; Qu(Y1—Y;),....Qn(Yn—Y,)),
timatedf3 = b? If bis a bad scenario, then a negative answer
allows to rule the scenario out. (See also Section 7.) where Q= (XTX)~1XT and Q is the i-th column of Q.

Adg={a+Ag: acA A €][0,1]}.

It is easily seen that for a convex gtit holds

Instead of(--- (({s} ®01) ®g2) ®--- ® gn) we shall write
g}_@gl@QZ@"'@gN only.

Itis easily seen that a zonotope is a convex polyhedron; see
Pg'urel.

The main result of this section follows.
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Fig. 1: The evolution of a zonotop#'(s; g1, 092,03,94)-

Proof. Y}. The interesting case ia > k. In that case we can say that
zonotopes are images of “high-dimensional” cubes in “low-
oLSY) dimensional” spaces under linear mappings, see Figuhe
= {Qy:yeY} our setting, the seDLYY) is an image ofY under the map-

ping determined by the matri@ = (XTX)~XT,

={QY+QA:A€[0Y Y]} Hence, we have found that the §¥tSY) is a convex poly-

={QY+QA:A1€[0,Y1-Y;], A2€[0,Y2-Y;], hedron in the space of regression parameters. Moreovar, fro
s A€ 0,Yn =Y, ]} the Figurel itis clear that the séDLSY) is center-symmetric
- and the center point i§ = 3(X™X)"IXT(Y +Y).
N1 0 0
0 No 0
= {QX+Q | 4+Q] L[+ +Q] L | 4. COMPLEXITY OF THE POLYHEDRONOLSY)
0 0 An In order the user can understand how the@kegY) looks
A€ [0,Y1-Y,], A2 € [0,Y2—Y,],..., like, she/he can use any s_tandard descriptiqn _applicable fo
B convex polyhedra. In particular, three descriptions come t
An € [0,Yn fxn]} mind:
={QY+QuA1+ Q22+ -+ QnAn: (a) description of the zonotop@LSY) by the shift vector
AN e€0Y1—-Yq], \2€[0,Y2-Y,], ..., and the set of generators;
An € [0,Yn =Y} (b) description of the zonotopg@LSY) by the enumeration
= {QY+Q1(Y1 -Y A1+ Qa(Y2 =Y ) A+ - of vertices;
+Qn(Yn—Yp)An: (c) description of the zonotopg@LSY) by the enumeration
A1€00,1], A2€[0,1], ..., An € [0,1]} of facets, i.e. in terms of @-column matrixA and a

QY Qi (V1Y) B QY2 —Y,) - vectorc such thaOLSY) = {be RP: Ab<c}.

®Qn(Yn—Y,). O The description (a) has been given by Theodem
Itis an interesting question whether there are efficiera-alg
There is a nice geometric characterization of zonotopeghms which can construct the enumerations (b) and (c)hgive
Namely, a seZ C R¥ is a zonotope if and only there exists a X, Y andY. We give an argument that the answer is negative.
number m, a matrix @ R<*™ and an interval m-dimensional The answer follows from the simple fact that zonotopes can
vector Y (called m-dimensional cube) such that ZQy:y € have too many vertices and facets.
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Fig. 2: A zonotope as an image of a higher-dimensional cube.

Theorem 5([29]). For a zonotope ZZ RP with n generators whereknaxis thek € {0,..., p— 1} for which the maximum is
itholds V(Z) <25 P (")) and F(Z) < 2(,"y), where(Z) attained. By well-known properties of binomial coefficignt
is the number of vertices and(E) is the number of facets offor nlarge enough it holdgmax= p— 1. In the inequality(x)
Z. In general the bounds cannot be improved. [0 we used a similar estimate as(i8). O

The number¥ (Z) andF (Z) cannot be bounded by a poly- The Corollary shows that if is fixed, then the séDLSY)
nomial inn and p; hence, the functions enumerating verticasannot have more than a polynomially bounded number of
and facets are not computable in polynomial time. vertices and facets. Now a question arises whether the enu-

However, a short look at Theorefrshows that we can alsomerations of them can be computed in polynomial time.
derive a positive result. If we treat the numheas a fixed  The answer is positive. In the literature on computational
constant (i.e. if we restrict ourselves to a class of regmassgeometry, several algorithms for enumeration of vertices a
models with a fixed number of regression parameters), thfaoets of a zonotope given by the set of generators are known.

we have: Moreover, there are methods with computation time which is
I _ bounded by a polynomial in the size of input and the size of
: <O(nP-1 < .
gc(arr]g!?)ry 1. 1f pis fixed then ¥Z) < O(n""%) and K(Z) < output; see3(0] and [31]. In Corollary1 we have shown that if
’ p is fixed then the size of the output is polynomially bounded
Proof. We have in the size of the input. Hence:
F(Z) < 2( n ) Corollary 2. Let p be fixed. If the vectors,Y are rational
- \p-1 and the matrix X is rational and has full column rank, then:
2n(n—1)---(n—p+2) . .
= (p—1)! (3) (&) the list of vertices of the polyhedron QIY§ can be com-
< op-1 ' puted in time bounded by a polynomial in n;
<2n
< O(np—l) (b) a matrix A and a vector ¢ such that
and OLSY)={beRP:Ab<c}
V(Z) < zpf (n - 1) can be computed in time bounded by a polynomial in n.
T &\ K
n—1
<2p- oo\ k 5. APPROXIMATIONS OF THE POLYHEDRONOLSY)
@ O(nfmax) By Corollary2, the descriptions of the s@LSY) in terms of
_O( -, the lists of vertices and facets can be constructed in pelyno
= n ,

mial time whenp is fixed. However, these descriptions need
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not be user-friendly: if, sayp = 4 andn = 100 then the enu- 6. EXAMPLE
meration of vertices and facets can fill up a thick book!
In this section we derive two simple approximations th&onsider the regression model
can be useful in practice.
Interval approximation. It is easily seen that for eveiy Yi = Br+ BoXi + & (7

and everyp € OLYY) it holds , ) ) ,
with n = 11 observations collected in the following table.

Only integer-rounded valueg,”..¥11 are available to us;

=
- thus, foralli =1,...,11,

n
min{Q;;Y;,Qii Y} < b o - -
J; {Q']*] QI] J}_ i Y|:[X|,Y|]:[y|—%7y|+%]
n
< Z max{Qijyj,Qijyj} 4) I 1 2 3 4 5 6
=1 X | =2 -1 0 1 2 3

~ Y, |15 -15 -05 35 35 55
- gl 2 -1 0 4 4 6

whereQ = (XTX)~1XT. Moreover, the cube Yi|25 -05 05 45 45 65
i 7 8 9 10 11
B = [b,b] (5) Xi 4 5 6 7 8
Y; | 85 65 105 105 95
is the smallest cube enclosing the polyhed@ir§Y). i 9 7 11 11 10
The boundB can be easily computed in polynomial time. Yi |95 75 115 115 105

The bound allows us to quantify the effect of interval cen- ) )
soring on each regression parameter separately. Oftethitis USing the central estimator
case that we are interested in estimation of a single regres- ~ Tus—luTe
sion parameter or a subset of regression parameters; then, i B=X X)Xy (8)
the intervallb;, bi] is narrow, this fact can be interpretedthe
rounding/censoring effect is insignificant for estimatadrthe ~ ~
i-th parameter pr=212 p=12

Ellipsoidal approximation. The smallest ellips&’ con-  and using 4) we get
taining OLS(X,y) is calledthe Léwner-John ellipse Com-
binatorially complex polyhedra are often approximatechwit [by,b1] = [1.56,2.69], [b,,by]=[1.06,1.34. (9)
ellipses: an ellipse is a convex set which is quite flexible to
approximate the shape of the polyhedron and it is suffigientthe rounding effect couldn’t have caused an error highar tha
simple to be described. An ellipgeis described by a center+0.565 [= (2.69— 1.56)] in the estimate of; and an error

we get

pointsand a positive definite matri such that higher than+0.14 in the estimate of,. The zonotopeZ,
together with the cubé, b] and the ellipsef), is plotted in
&={xeRP:(x—9)E"}(x—9) <1}. Figure3.

Though the approximations 1 and 2 are quite trivial, their
We do not know a polynomial-time algorithm for constructiogombination gives some nontrivial information. The in-
of the Lowner-John ellipse for the SBLSY). Itis anintrigu- teryal [b,b] contains the poinf1.56,1.06]; hence, the en-
ing research problem; however, we expect a hardness regigéure ) does not rule out the case thaoth regression
on this computational problem rather than a polynomiaktinharameters could be affected by the maximal possible er-
algorithm. (More on algorithms for finding ellipses circumpor [—0.565 —0.14) in the negative direction simultaneously.

scribing polyhedra is found ir8p].) However, this case is ruled out by the fact tfa65,1.06] ¢
The following ellipse& = (E,s) can be seen as a weakeg,
form:

Remark. Observe that in the Example, the width of the interiml b ] in
1A/ (9) for the intercep{3; in the model ¥) is greater than one, while all of the
S= EQ(Y +Y), (6) intervals[Y;,Y;] are of width 1. Hence it is not true that the maximal intercept
—0O.di n., _ 2 ny. 2y . T B is achieved in the cage=Y and the minimal intercept is achieved in the
E=Q d/ag(4(Y1 Y1) 4 (Yn—Yn) ) Q. casey=Y (as these two cases produce intercepts the difference ofghi).
Indeed,(XTX)"1XTy* = (2.69,1.12)T and (XTX)"1XTy* = (1.56,1.28)"
whereQ = (XTX)~IXT anddiag(és, .. ., &) denotes the diag- with

onal matrix with diagonal entrieg, ..., &,. This is the ellipse Y =(Y1,Y2,Y3,Y4,Y5,Y6,Y7,Y8, Yo, Y10.Y11)"
which is the image of the smallest ellipse circumscribinig and -
R" under the mapping — Qu. This provesZ C &. Y = (Y1,Y2.Ys, Y4, Y5, Y6, Y7, Yg, Yo, Y10, Y11) .

The ellipse£’ can be computed in polynomial time.
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Fig. 3: The zonotop& for the regression model in the Example and its approximatasd& given by 6) and @), respectively.

7. ADMISSIBILITY; VOLUME OF OLSY) in the model 10). For any estimatoﬁ, define the error func-
tion
As motivated by the Example, it is natural to ask whether it R N
could have happened that all regression parameters had been (E) ) max{b—B,8—-b} if BeOLYY),
affected by a simultaneous errfyy i.e. whetherB +A is in n ) if B¢ OLYY).
OLSY) or not. A vectorb (in particular, a vectob of the

formb = +4) is calledadmissibléf b € OLSY). Now j3, being the central estimator, minimiza¢g). Hence,

a;n this sense itis optimal. This is a justification of the ititie

Proposition 6. Admissibility can be tested in polynomi ; ; .
P y poly act that taking centers (i.e. the rounded values) is thevbes

time.
can do.
Proof. The vectorb is admissible if and only if there is a
y such thatQy = b andy <y <y, whereQ = (XTX)"1XT. 9 CONCLUSION

Hence, deciding admissibility amounts to deciding theifeas
bility of a system of linear (in)equalities, which is essety |t is interesting to observe that while the location of théypo
a linear programming problem. O hedronOLSY) in the parameter space depends on o#md
iy . ) Y, its size and shape depends only¥on- Y (assuming the
The Proposition, combined witf#), suggests a procedurematrixx fixed), i.e. Fz)n thg widths o?the iﬁtérva‘is, .. .?Yn.

for.Mo.nte-CarIo approxmatlon.of the vglume aLsy), Therefore, the bounds on the worst-case error introduced in

which IS a natural measure of its size. .JUSt g_enerate a "dLetion 5 (say, the numbelns— by in (4) or the length of the

@_m pomtp € [.D’ b] ar_ld teSt.'tS a_1dm|33|_b|l|ty. Th's prOcedur‘fongest semiaxis of the ellipsé)j depend only on the widths

IS interesting in particular in hlgher fjlme.nsmns, where tr&)f the intervalsys, ..., Y,, which are often known or may be

polyhedronOLSY) cannot be easily visualized. chosen in advance, for example by the choice of precision
Though the \{olume OO.LS(Y). can .be comp.uted exactly,of measurement or precision of data storage. It follows that

no polynomial-time _algo_nthr_n (im, p) is known; hence, thethe impact of rounding/censoring on the OLS estimator of re-

Monte Carlo approximation is a reasonable choice. gression parameters can be analyzed in advance, before the

measurement ofis performed. The analysis of the shape and
8. ANOTHER EXAMPLE size of the seOLSY) then can give useful information on the

) ] choice of precision in an experiment being planned.
In this example we show that the underlying theory can be

used as a simple proof technique. Consider the model of lo-
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