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On the Possibilistic Approach to Linear Regression with Rounded
or Interval-Censored Data
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Consider a linear regression model where some or all of the observations of the dependent variable have been either rounded or
interval-censored and only the resulting interval is available. Givena linear estimator β̂ of the vector of regression parameters, we
consider its possibilistic generalization for the model with rounded/censored data, which is called the OLS-set in the special casêβ =
Ordinary Least Squares. We derive a geometric characterizationof the set: we show that it is a zonotope in the parameter space.
We show that even for models with a small number of regression parameters and a small number of observations, the combinatorial
complexity of the polyhedron can be high. We therefore derive simple bounds on the OLS-set. These bounds allow to quantify the
worst-case impact of rounding/censoring on the estimator̂β . This approach is illustrated by an example. We also observe that the
method can be used for quantification of the rounding/censoring effect in advance, before the experiment is made, and hence can
provide information on the choice of measurement precision when the experiment is being planned.

Keywords: Linear regression; rounding; inexact data; interval-censored data.

1. INTRODUCTION

CONSIDER the linear regression model

y = Xβ + ε (1)

wherey denotes the vector of observations of the dependent
variable,X denotes the design matrix of the regression model,
β denotes the vector of unknown regression parameters and
ε is the vector of disturbances. We do not make any special
assumptions onε; we just assume that for estimation ofβ , a
linear estimator can be used, i.e. an estimator of the form

β̂ = Qy, (2)

whereQ is a matrix. In the following text, we shall concen-
trate on the Ordinary Least Squares (OLS) estimator, which
corresponds to the choiceQ = (XTX)−1XT in (2). Never-
theless, the theory is also applicable for other linear estima-
tors, such as the Generalized Least Squares (GLS) estimator,
which corresponds to the choiceQ = (XTΩ−1X)−1Ω−1XT in
(2), whereΩ is either known or estimated covariance matrix
of ε. Other examples include estimation methods which, at
the beginning, exclude outliers and then apply OLS or GLS.
These estimators are often used in robust statistics.

The symboln stands for the number of observations and the
symbolp stands for the number of regression parameters.

The tuple(X,y) is called input data for the model (1).
Throughout the text we assumeX is a fixed matrix of con-
stants.

In this text we deal with the situation when the observa-
tionsy of the dependent variable cannot be observed directly;
instead, only the interval vectorY = [Y,Y] is known such that
the vector of unobservable valuesy fulfills y∈Y.
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A typical setup, when onlyY instead of the exact values
y are available, is the presence of rounding. If we store data
using data types of restricted precision, then instead of ex-
act values we are only guaranteed that the true value is in an
interval of width 2−d whered is the number of bits of the
data type reserved for representation of the non-integer part.
For example, if we store data as integers, then we know only
the intervalY = [ỹ−0.5, ỹ+0.5] instead of the exact valuey,
whereỹ is y rounded to the nearest integer.

However, the setting may be understood more generally, for
example:

• The datay have been interval-censored. This is often the
case of medical, epidemiologic or demographic data —
only interval-censored data are published while the exact
individual values are kept secret.

• Sometimes, data are intervals by their nature. For in-
stance, financial data have bid-ask spreads.

• Categorial data may be sometimes interpreted as inter-
val data; for example, credit rating grades can be un-
derstood as intervals of credit spreads over the risk-free
yield curve.

There is an interesting difference between rounded data and
interval-censored data.

(a) If the datay have been rounded, then the widths of all
intervalsY1, . . .Yn are the same; for example, if we are
rounding to integers, then every interval inY has width
1.

(b) If the intervalsY resulted from censoring, then the inter-
valsY1, . . . ,Yn may be of different widths. In particular,
only some portion of the data may have been censored:
then, for someI ⊆ {1, . . . ,n}, the valuesYi with i ∈ I are
crisp (i.e.Yi = Yi).
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The case (a) can be seen as a special case of (b). The method
introduced in the following sections is applicable to the more
general case (b).

A variety of methods for estimation of regression parame-
ters in regression involving interval data has been developed;
they are studied in statistics [1, 2, 3, 4, 5, 6, 7], where also
robust regression methods have been proposed [8, 9], in fuzzy
theory [10, 11, 12, 13, 14, 15, 16] as well as in computer sci-
ence [17], [18], [19]. An algebraic treatment of least squares
methods for interval data has been considered in [20] and [21].

There are classical works dealing with rounding of data in-
cluded in regression analysis [22, 23, 24] as well as modern
works on the topic [25, 26, 27, 28].

A majority of the cited papers deals with the basic issue
how to derive a “good” crisp estimator ofβ from data affected
by rounding/censoring. Our approach is complementary: our
goal is not to derive an estimator ofβ but rather to describe
the set in which a given linear estimatorβ can be when crisp
values ofy are replaced by rounded/censored values.

2. THE POSSIBILISTIC APPROACH

Definition 1. Let Y denote the interval vector[Y,Y]. The
OLS-set associated with Y (and the matrix X, which is as-
sumed to be fixed) is defined as

OLS(Y) = {β ∈ R
p : (∃y∈Y)[XTXβ = XTy]}.

The motivation for Definition1 is straightforward. Our aim
is to use least squares to obtain an estimate of the unknown
vector of regression parametersβ in the model (1). However,
we only know intervalsY that are guaranteed to contain the
directly unobservable datay. Then, the setOLS(Y) contains
all possiblevalues ofβ̂ asy ranges overY. The setOLS(Y) is
a possibilistic version of the notion of the OLS-estimator.

The setOLS(Y) captures the loss of information caused
by rounding/censoring of the data included in the regression
model. For a user of such a regression model, it is essential
to understand whether the set is, in some sense, “large” or
”small“; that is, whether the impact of the loss on the OLS
esimator may be serious or not. A geometric characterization
of that set will be given in the next section.

When p = 2 or p = 3 then the setOLS(Y) can be visual-
ized in the parameter space using standard numerical meth-
ods. However, in higher dimensions visualization is quite
complicated. Hence we need methods for a suitable descrip-
tion of the setOLS(Y).

The possibilistic approach is essentially algebraic or geo-
metric, not probabilistic: it does not assume any distribution
of y onY. It allows to answer such questions as “is it true that
a given vector b fulfills b∈ OLS(Y)?”, i.e. is it true that if the
truly observed values y had been available, we could have es-
timatedβ̂ = b? If b is a bad scenario, then a negative answer
allows to rule the scenario out. (See also Section 7.)

The possibilistic approach also allows to derive bounds
on the setOLS(Y) giving information about the possible
worst-case impact of rounding/censoring on the deviation
of the OLS estimator̂β from (say) its central valuẽβ :=
1
2(XTX)−1XT(Y +Y). This approach is illustrated in Section
6.

Several measures can be introduced to quantify the round-
ing/censoring effect: the essence is that if the setOLS(Y) is
in some sense small, then the rounding/censoring impact on
the estimator can be regarded as negligible. Natural measures
include the volume of the setOLS(Y) and the radius of the
smallest circle circumscribing the setOLS(Y).

However, we can also regard the setOLS(Y) in a proba-
bilistic way.

Probabilistic interpretation of the possibilistic approach. If
y is a random vector such that the support of its distribution
is Y, then the support of the distribution of(XTX)−1XTy is
OLS(Y). Then the setOLS(Y) can be seen as100% confi-
dence regionfor the OLS estimator. An interesting special
case is a regression model with independent disturbances with
distributions the supports of which are bounded.

3. GEOMETRY OF THE SETOLS(Y)

First we need to review some notions from geometry of con-
vex polyhedra; for further reading see [29].

Definition 2. TheMinkowski sum of a set A⊆ R
k and a vec-

tor g∈ R
k is the set

A⊕g = {a+λg : a∈ A, λ ∈ [0,1]}.

It is easily seen that for a convex setA, it holds

A⊕g = conv(A∪{a+g : a∈ A}),

whereconv denotes the convex hull.

Definition 3. Thezonotope generated by g1, . . . ,gN ∈R
k with

shift s∈ R
k is the set

Z (s;g1, . . . ,gN) = (· · ·(({s}⊕g1)⊕g2)⊕·· ·⊕gN).

The vectors g1, . . . ,gN are calledgenerators.

Instead of(· · ·(({s}⊕g1)⊕g2)⊕·· ·⊕gN) we shall write
{s}⊕g1⊕g2⊕·· ·⊕gN only.

It is easily seen that a zonotope is a convex polyhedron; see
Figure1.

The main result of this section follows.

Theorem 4. Let X ∈ R
n×p be a matrix of full column rank

and Y= [Y,Y] an n×1 interval vector. Then

OLS(Y) = Z (QY; Q1(Y1−Y1), . . . ,Qn(Yn−Yn)),

where Q= (XTX)−1XT and Qi is the i-th column of Q.
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Fig. 1: The evolution of a zonotopeZ (s;g1,g2,g3,g4).

Proof.

OLS(Y)

= {Qy : y∈Y}

= {QY+QΛ : Λ ∈ [0,Y−Y]}

= {QY+QΛ : Λ1 ∈ [0,Y1−Y1], Λ2 ∈ [0,Y2−Y2],

. . . , Λn ∈ [0,Yn−Yn]}

=
{

QY+Q





Λ1

0
...
0




+Q





0
Λ2
...
0




+ · · ·+Q





0
0
...

Λn




:

Λ1 ∈ [0,Y1−Y1], Λ2 ∈ [0,Y2−Y2], . . . ,

Λn ∈ [0,Yn−Yn]
}

= {QY+Q1Λ1 +Q2Λ2 + · · ·+QnΛn :

Λ1 ∈ [0,Y1−Y1], Λ2 ∈ [0,Y2−Y2], . . . ,

Λn ∈ [0,Yn−Yn]}

= {QY+Q1(Y1−Y1)λ1 +Q2(Y2−Y2)λ2 + · · ·

+Qn(Yn−Yn)λn :

λ1 ∈ [0,1], λ2 ∈ [0,1], . . . , λn ∈ [0,1]}

= {QY}⊕Q1(Y1−Y1)⊕Q2(Y2−Y2)⊕·· ·

⊕Qn(Yn−Yn).

There is a nice geometric characterization of zonotopes.
Namely, a setZ⊆R

k is a zonotope if and only ifthere exists a
number m, a matrix Q∈ R

k×m and an interval m-dimensional
vector Y (called m-dimensional cube) such that Z= {Qy : y∈

Y}. The interesting case ism> k. In that case we can say that
zonotopes are images of “high-dimensional” cubes in “low-
dimensional” spaces under linear mappings, see Figure2. In
our setting, the setOLS(Y) is an image ofY under the map-
ping determined by the matrixQ = (XTX)−1XT.

Hence, we have found that the setOLS(Y) is a convex poly-
hedron in the space of regression parameters. Moreover, from
the Figure1 it is clear that the setOLS(Y) is center-symmetric
and the center point is̃β = 1

2(XTX)−1XT(Y +Y).

4. COMPLEXITY OF THE POLYHEDRONOLS(Y)

In order the user can understand how the setOLS(Y) looks
like, she/he can use any standard description applicable for
convex polyhedra. In particular, three descriptions come to
mind:

(a) description of the zonotopeOLS(Y) by the shift vector
and the set of generators;

(b) description of the zonotopeOLS(Y) by the enumeration
of vertices;

(c) description of the zonotopeOLS(Y) by the enumeration
of facets, i.e. in terms of ap-column matrixA and a
vectorc such thatOLS(Y) = {b∈ R

p : Ab≤ c}.

The description (a) has been given by Theorem4.
It is an interesting question whether there are efficient algo-

rithms which can construct the enumerations (b) and (c) given
X, Y andY. We give an argument that the answer is negative.
The answer follows from the simple fact that zonotopes can
have too many vertices and facets.
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Fig. 2: A zonotope as an image of a higher-dimensional cube.

Theorem 5([29]). For a zonotope Z⊆ R
p with n generators

it holds V(Z)≤ 2∑p−1
k=0

(n−1
k

)
and F(Z)≤ 2

( n
p−1

)
, where V(Z)

is the number of vertices and F(Z) is the number of facets of
Z. In general the bounds cannot be improved.

The numbersV(Z) andF(Z) cannot be bounded by a poly-
nomial inn andp; hence, the functions enumerating vertices
and facets are not computable in polynomial time.

However, a short look at Theorem5 shows that we can also
derive a positive result. If we treat the numberp as a fixed
constant (i.e. if we restrict ourselves to a class of regression
models with a fixed number of regression parameters), then
we have:

Corollary 1. If p is fixed then V(Z) ≤ O(np−1) and F(Z) ≤
O(np−1).

Proof. We have

F(Z) ≤ 2

(
n

p−1

)

=
2n(n−1) · · ·(n− p+2)

(p−1)!

≤ 2np−1

≤ O(np−1)

(3)

and

V(Z) ≤ 2
p−1

∑
k=0

(
n−1

k

)

≤ 2p· max
k∈{0,...,p−1}

(
n−1

k

)

(⋆)

≤ O(nkmax)

= O(np−1),

wherekmax is thek∈ {0, . . . , p−1} for which the maximum is
attained. By well-known properties of binomial coefficients,
for n large enough it holdskmax = p−1. In the inequality(⋆)
we used a similar estimate as in(3).

The Corollary shows that ifp is fixed, then the setOLS(Y)
cannot have more than a polynomially bounded number of
vertices and facets. Now a question arises whether the enu-
merations of them can be computed in polynomial time.

The answer is positive. In the literature on computational
geometry, several algorithms for enumeration of vertices and
facets of a zonotope given by the set of generators are known.
Moreover, there are methods with computation time which is
bounded by a polynomial in the size of input and the size of
output; see [30] and [31]. In Corollary1 we have shown that if
p is fixed then the size of the output is polynomially bounded
in the size of the input. Hence:

Corollary 2. Let p be fixed. If the vectors Y,Y are rational
and the matrix X is rational and has full column rank, then:

(a) the list of vertices of the polyhedron OLS(Y) can be com-
puted in time bounded by a polynomial in n;

(b) a matrix A and a vector c such that

OLS(Y) = {b∈ R
p : Ab≤ c}

can be computed in time bounded by a polynomial in n.

5. APPROXIMATIONS OF THE POLYHEDRONOLS(Y)

By Corollary2, the descriptions of the setOLS(Y) in terms of
the lists of vertices and facets can be constructed in polyno-
mial time whenp is fixed. However, these descriptions need
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not be user-friendly: if, say,p = 4 andn = 100 then the enu-
meration of vertices and facets can fill up a thick book!

In this section we derive two simple approximations that
can be useful in practice.

Interval approximation. It is easily seen that for everyi
and everyb∈ OLS(Y) it holds

=:bi︷ ︸︸ ︷
n

∑
j=1

min{Qi jY j ,Qi jY j} ≤ bi

≤
n

∑
j=1

max{Qi j y j
,Qi j y j}

︸ ︷︷ ︸
=:bi

(4)

whereQ = (XTX)−1XT. Moreover, the cube

B = [b,b] (5)

is the smallest cube enclosing the polyhedronOLS(Y).
The boundB can be easily computed in polynomial time.
The boundB allows us to quantify the effect of interval cen-

soring on each regression parameter separately. Often it isthe
case that we are interested in estimation of a single regres-
sion parameter or a subset of regression parameters; then, if
the interval[bi ,bi ] is narrow, this fact can be interpreted asthe
rounding/censoring effect is insignificant for estimationof the
i-th parameter.

Ellipsoidal approximation. The smallest ellipseE con-
taining OLS(X,y) is called the Löwner-John ellipse. Com-
binatorially complex polyhedra are often approximated with
ellipses: an ellipse is a convex set which is quite flexible to
approximate the shape of the polyhedron and it is sufficiently
simple to be described. An ellipseE is described by a center
point sand a positive definite matrixE such that

E = {x∈ R
p : (x−s)TE−1(x−s) ≤ 1}.

We do not know a polynomial-time algorithm for construction
of the Löwner-John ellipse for the setOLS(Y). It is an intrigu-
ing research problem; however, we expect a hardness result
on this computational problem rather than a polynomial-time
algorithm. (More on algorithms for finding ellipses circum-
scribing polyhedra is found in [32].)

The following ellipseE = (E,s) can be seen as a weaker
form:

s= 1
2Q(Y +Y),

E = Q·diag
(

n
4(Y1−Y1)

2
, . . . ,

n
4(Yn−Yn)

2) ·QT
,

(6)

whereQ= (XTX)−1XT anddiag(ξ1, . . . ,ξn) denotes the diag-
onal matrix with diagonal entriesξ1, . . . ,ξn. This is the ellipse
which is the image of the smallest ellipse circumscribingY in
R

n under the mappingυ 7→ Qυ . This provesZ ⊆ E .
The ellipseE can be computed in polynomial time.

6. EXAMPLE

Consider the regression model

yi = β1 +β2xi + εi (7)

with n = 11 observations collected in the following table.
Only integer-rounded values ˜y1, . . . ỹ11 are available to us;
thus, for alli = 1, . . . ,11,

Yi = [Yi ,Yi ] = [ỹi −
1
2, ỹi +

1
2].

i 1 2 3 4 5 6
xi −2 −1 0 1 2 3
Yi 1.5 −1.5 −0.5 3.5 3.5 5.5
ỹi 2 −1 0 4 4 6
Yi 2.5 −0.5 0.5 4.5 4.5 6.5
i 7 8 9 10 11
xi 4 5 6 7 8
Yi 8.5 6.5 10.5 10.5 9.5
ỹi 9 7 11 11 10
Yi 9.5 7.5 11.5 11.5 10.5

Using the central estimator

β̃ = (XTX)−1XTỹ (8)

we get
β̃1 = 2.12, β̃2 = 1.2,

and using (4) we get

[b1,b1] = [1.56,2.69], [b2,b2] = [1.06,1.34]. (9)

The rounding effect couldn’t have caused an error higher than
±0.565 [= 1

2(2.69−1.56)] in the estimate ofβ1 and an error
higher than±0.14 in the estimate ofβ2. The zonotopeZ,
together with the cube[b,b] and the ellipse (6), is plotted in
Figure3.

Though the approximations 1 and 2 are quite trivial, their
combination gives some nontrivial information. The in-
terval [b,b] contains the point[1.56,1.06]; hence, the en-
closure (9) does not rule out the case thatboth regression
parameters could be affected by the maximal possible er-
ror [−0.565,−0.14] in the negative direction simultaneously.
However, this case is ruled out by the fact that[1.65,1.06] 6∈
E .

Remark. Observe that in the Example, the width of the interval[b1,b1] in
(9) for the interceptβ1 in the model (7) is greater than one, while all of the
intervals[Yi ,Yi ] are of width 1. Hence it is not true that the maximal intercept
β1 is achieved in the casey = Y and the minimal intercept is achieved in the
casey=Y (as these two cases produce intercepts the difference of which is 1).
Indeed,(XTX)−1XTy∗ = (2.69,1.12)T and (XTX)−1XTy∗∗ = (1.56,1.28)T

with
y∗ = (Y1,Y2,Y3,Y4,Y5,Y6,Y7,Y8,Y9,Y10,Y11)

T

and
y∗∗ = (Y1,Y2,Y3,Y4,Y5,Y6,Y7,Y8,Y9,Y10,Y11)

T
.
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Fig. 3: The zonotopeZ for the regression model in the Example and its approximationsB andE given by (5) and (6), respectively.

7. ADMISSIBILITY ; VOLUME OF OLS(Y)

As motivated by the Example, it is natural to ask whether it
could have happened that all regression parameters had been
affected by a simultaneous error∆; i.e. whetherβ̃ + ∆ is in
OLS(Y) or not. A vectorb (in particular, a vectorb of the
form b = β̃ +∆) is calledadmissibleif b∈ OLS(Y).

Proposition 6. Admissibility can be tested in polynomial
time.

Proof. The vectorb is admissible if and only if there is a
y such thatQy = b andy ≤ y ≤ y, whereQ = (XTX)−1XT.
Hence, deciding admissibility amounts to deciding the feasi-
bility of a system of linear (in)equalities, which is essentially
a linear programming problem.

The Proposition, combined with (4), suggests a procedure
for Monte-Carlo approximation of the volume ofOLS(Y),
which is a natural measure of its size: just generate a ran-
dom pointb∈ [b,b] and test its admissibility. This procedure
is interesting in particular in higher dimensions, where the
polyhedronOLS(Y) cannot be easily visualized.

Though the volume ofOLS(Y) can be computed exactly,
no polynomial-time algorithm (inn, p) is known; hence, the
Monte Carlo approximation is a reasonable choice.

8. ANOTHER EXAMPLE

In this example we show that the underlying theory can be
used as a simple proof technique. Consider the model of lo-
cation

yi = β + εi , i = 1, . . . ,n, (10)

with rounded observationsYi = [Yi ,Yi ]. The parameter space
is one-dimensional in this case; nowOLS(Y) is a one-
dimensional interval which coincides with (4). Thus,

OLS(Y) = [b,b] =

[
1
n

n

∑
i=1

Yi ,
1
n

n

∑
i=1

Yi

]
.

The central estimator (8) takes the form

β̃ =
1
2n

n

∑
i=1

(Yi +Yi)

in the model (10). For any estimator̂β , define the error func-
tion

η(β̂ ) =

{
max{b− β̂ , β̂ −b} if β̂ ∈ OLS(Y),

∞ if β̂ 6∈ OLS(Y).

Now β̃ , being the central estimator, minimizesη(β̂ ). Hence,
in this sense it is optimal. This is a justification of the intuitive
fact that taking centers (i.e. the rounded values) is the best we
can do.

9. CONCLUSION

It is interesting to observe that while the location of the poly-
hedronOLS(Y) in the parameter space depends on bothY and
Y, its size and shape depends only onY −Y (assuming the
matrix X fixed), i.e. on the widths of the intervalsY1, . . . ,Yn.
Therefore, the bounds on the worst-case error introduced in
Section 5 (say, the numbersbi −bi in (4) or the length of the
longest semiaxis of the ellipse (6)) depend only on the widths
of the intervalsY1, . . . ,Yn, which are often known or may be
chosen in advance, for example by the choice of precision
of measurement or precision of data storage. It follows that
the impact of rounding/censoring on the OLS estimator of re-
gression parameters can be analyzed in advance, before the
measurement ofy is performed. The analysis of the shape and
size of the setOLS(Y) then can give useful information on the
choice of precision in an experiment being planned.
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[11] Hladík, M., Černý, M. (2010). Interval regression by toler-
ance analysis approach.Fuzzy Sets and Systems. Submitted,
Preprint: KAM-DIMATIA Series 963.
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