Synthesis and Transport Properties of Nanostructured VO2 by Mechanochemical Processing

Open access

Synthesis and Transport Properties of Nanostructured VO2 by Mechanochemical Processing

The high-energy milling of the V2O5-Na2SO3 mixture in the range of 5 - 100 min leads to a synthesis of monoclinic VO2. The starting and minimum (at 220 °C) values of electric resistance R of the 100 min milled and pressed VO2-Na2SO4 mixture were 13.9 MΩ and 91.5 kΩ, respectively. The subsequent washing of the as-milled powder partially leads to the development of VO2 nanostructures with tube-like, sheet-like and rod-like morphology, besides VO2 (B) belt-like morphology, depending on the milling times.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Lopez R. Haynes T. E. Boatner L. A. Feldman L. C. Haglund Jr. R. F. (2002). Size effects in the structural phase transition of VO2 nanoparticles. Phys. Rev. B 65 (22) 2241131-2241135.

  • Wang Y. Zhang Z. (2009). Synthesis and field emission property of VO2 nanorods with a body-centered-cubic structure. Physica E 41 (4) 548-551.

  • Guinneton F. Sauques L. Valmalette J. C. Cros F. Gavarri J. R. (2001). Comparative study between nanocrystalline powder and thin film of vanadium dioxide: Electrical and infrared properties. J. Phys. Chem. Solids 62 (7) 1229-1238.

  • Eyert V. (2002). The metal-insulator transitions of VO2: A band theoretical approach. Ann. Phys. 11 (9) 650-702.

  • Wang Y. Zhang Z. Zhu Y. Li Z. Vajtai R. Ci L. Ajayan P. M. (2008). Nanostructured VO2 photocatalysts for hydrogen production. ACS Nano 2 (7) 1492-1496.

  • Bai H. Cortie M. B. Maaroof A. I. Dowd A. Kealley C. Smith G. B. (2009). The preparation of a plasmonically resonant VO2 thermochromic pigment. Nanotechnology 20 (8) 085607.

  • Ding N. Feng X. Liu S. Xu J. Fang X. Lieberwirth I. Chen C. (2009). High capacity and excellent cyclability of vanadium (IV) oxide in lithium battery applications. Electrochem. Commun. 11 (3) 538-541.

  • Liu J. Li Q. Wang T. Yu D. Li Y. (2004). Metastable vanadium dioxide nanobelts: Hydrothermal synthesis electrical transport and magnetic properties. Angew. Chem. Int. Ed. 43 (38) 5048-5052.

  • Chen W. Peng J. Mai L. Yu H. Qi Y. (2004). Synthesis and characterization of novel vanadium dioxide nanorods. Solid State Commun. 132 (8) 513-516.

  • Kong L. Liu Z. Shao M. Xie Q. Yu W. Qian Y. (2004). Controlled synthesis of single-crystal VOx·nH2O nanoribbons via a hydrothermal reduction method. J. Solid State Chem. 177 (3) 690-695.

  • Li G. Chao K. Peng H. Chen K. Zhang Z. (2007). Low-valent vanadium oxide nanostructures with controlled crystal structures and morphologies. Inorg. Chem. 46 (14) 5787-5790.

  • Wei M. Sugihara H. Honma I. Ichihara M. Zhou H. (2005). A new metastable phase of crystallized V2O4·0.25H2O nanowires: Synthesis and electro-chemical measurements. Adv. Mater. 17 (24) 2964-2969.

  • Bai L. Gao Y. Li W. Luo H. Jin P. (2008). Synthesis and atmospheric instability of well crystallized rod-shaped V2O4·2H2O powders prepared in an aqueous solution. J. Ceram. Soc. Jpn. 116 (1351) 395-399.

  • Wei M. Qi Z. Ichihara M. Hirabayashi M. Honma I. Zhou H. (2006). Synthesis of single-crystal vanadium dioxide nanosheets by the hydrothermal process. J. Crys. Growth. 296 (1) 1-5.

  • Whittaker L. Zhang H. Banerjee S. (2009). VO2 nanosheets exhibiting a well-defined metal-insulator phase transition. J. Mater. Chem. 19 (19) 2968-2974.

  • Godočíková E. Baláž P. Gock E. Choi W. S. Kim B. S. (2006). Mechanochemical synthesis of the nanocrystalline semiconductors in an industrial mill. Powder Technol. 164 (3) 147-152.

  • Dodd A. C. McCormick P. G. (2001). Synthesis of nanoparticulate zirconia by mechanochemical processing. Scr. Mater. 44 (8-9) 1725-1729.

  • Billik P. Čaplovičová M. Janata J. Fajnor V.Š (2008). Direct synthesis of nanocrystalline spherical α-Mn2O3 particles by mechanochemical reduction. Mater. Lett. 62 (6-7) 1052-1054.

  • Billik P. Čaplovičová M. (2009). Synthesis of nanocrystalline SnO2 powder from SnCl4 by mecha-nochemical processing. Powder Technol. 191 (3) 235-239.

  • Trudeau M. L. Schulz R. Dussault D. Van Neste A. (1990). Structural changes during high-energy ball milling of iron-based amorphous alloys: Is high-energy ball milling equivalent to a thermal process? Phys. Rev. Lett. 64 (1) 99-102.

  • Koch C. C. (1997). Synthesis of nanostructured materials by mechanical milling: Problems and opportunities. Nanostruc. Mater. 9 (1-8) 13-22.

  • Huang B. Perez R. J. Crawford P. J. Sharif A. A. Nutt S. R. Lavernia E. J. (1995). Mechanically induced crystallization of metglas Fe78B13Si9 during cryogenic high energy ball milling. Nanostruct. Mater. 5 (5) 545-553.

  • Wang X. Li Y. (2003). Synthesis and formation mechanism of manganese dioxide nanowires/nano-rods. Chem.-Eur. J. 9 (1) 300-306.

  • Hagrman D. Zubieta J. Warren C. J. Meyer L. M. Treacy M. M. J. Haushalter R. C. (1998) A new polymorph of VO2 prepared by soft chemical methods. J. Solid State Chem. 138 (1) 178-182.

  • Wei M. Konishi Y. Zhou H. Sugihara H. Arakawa H. (2004). A simple method to synthesize nanowires titanium dioxide from layered titanate particles. Chem. Phys. Lett. 400 (1-3) 231-234.

  • Manivannan V. Parhi P. Howard J. (2008). Mechanochemical metathesis synthesis and characterrization of nano-structured MnV2O6·xH2O (x = 2 4). J. Cryst. Growth 310 (11) 2793-2799.

  • Liu X. Fu S. Huang C. (2005). Synthesis characterization and magnetic properties of β-MnO2 nanorods. Powder Technol. 154 (2-3) 120-124.

  • Cao J. Wu J. (2011). Strain effects in low-dimensional transition metal oxides. Mater. Sci. Eng.-Reports 71 (2-4) 35-52.

Journal information
Impact Factor

IMPACT FACTOR 2018: 1,122
5-year IMPACT FACTOR: 1,157

CiteScore 2018: 1.39

SCImago Journal Rank (SJR) 2018: 0.325
Source Normalized Impact per Paper (SNIP) 2018: 0.881

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 205 131 1
PDF Downloads 88 53 0