
10.2478/v10048-010-0029-z  
MEASUREMENT SCIENCE REVIEW, Volume 10, No. 5, 2010 

 
Non-Intrusive Device for Real-Time Circulatory System 

Assessment with Advanced Signal Processing Capabilities 
E. Pinheiro, O. Postolache, P. Girão 

Instituto de Telecomunicações, Instituto Superior Técnico, Av. Rovisco Pais 1, 1049-001, Lisboa, Portugal, 
eduardo.pinheiro@lx.it.pt, opostolache@lx.it.pt, p.girao@lx.it.pt 

 
This paper presents a device that uses three cardiography signals to characterize several important parameters of a subject’s 

circulatory system. Using electrocardiogram, finger photoplethysmogram, and ballistocardiogram, three heart rate estimates are 
acquired from beat-to-beat time interval extraction. Furthermore, pre-ejection period, pulse transit time (PTT), and pulse arrival 
time (PAT) are computed, and their long-term evolution is analyzed. The system estimates heart rate variability (HRV) and blood 
pressure variability (BPV) from the heart rate and PAT time series, to infer the activity of the cardiac autonomic system. The 
software component of the device evaluates the frequency content of HRV and BPV, and also their fractal dimension and entropy, 
thus providing a detailed analysis of the time series’ regularity and complexity evolution, to allow personalized subject evaluation. 
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1.  INTRODUCTION 

ON
ge
as

-INVASIVE cardiovascular system assessment is 
nerally done using electrophysiological signals, such 
 the electrocardiogram (ECG) or the photo-

plethysmogram (PPG), to estimate heart rate and oxygen 
saturation. In addition to the morphological properties of 
these signals, timing aspects are of utmost importance, as 
the heart rate gives information on several physical and 
mental stresses, emergency situations and also on neural 
control of the heart [1]. 

The heart rate may be determined from any biological 
signal with the same periodicity of the cardiac cycle, 
provided that enough accuracy in periodicity detection is 
guaranteed. The progresses in the study of heart rate lead to 
the discovery of two important markers of the autonomic 
cardiovascular regulation: heart rate variability (HRV), and 
blood pressure variability (BPV) [2]. 

HRV analyzes how cardiac cycle period varies and it is 
accepted as a diagnostic tool, in view of the fact that several 
pathologies change the cardiovascular control mechanisms 
[1]-[4] and HRV reflects maladies associated with 
sympathetic and parasympathetic branches of the autonomic 
nervous system [1], [5]-[6]. HRV and BPV are able to 
forecast cardiovascular risks [4]-[7], hence precise 
measurement of these parameters is required to avoid false 
diagnosis. 

BPV is linked to amplitude variations of blood pressure, 
but recent works have tried to assess blood pressure (BP) 
without the use of direct measurement devices. Indirect 
time-based measurements, such as the pulse arrival time 
(PAT) or the pulse transit time (PTT), have been applied 
with positive results. The existence of a significant 
correlation between the variabilities of PAT and BP [8]-[17] 
has been established. Even systolic blood pressure may be 
estimated from PAT, requiring calibration to a number of 
patient’s physiologic characteristics [18]. 

When evaluating the cardiac function, the patient’s stress 
acts as an important bias source, as involuntary 
psychophysiological responses related to the measurements’  

 
stress affect both the heart rate and blood pressure [2]. It is 
important to reduce invasiveness and the occupation of the 
patient’s comfort space by the measurement apparatus. The 
device presented here implements the ballistocardiogram 
(BCG), ECG, and PPG sensors. By integrating chair seat 
BCG and finger PPG transducers, the obtrusiveness of the 
cardiac evaluation tests is diminished. In the least obtrusive 
scenario ECG would be replaced by BCG, thus avoiding the 
usage of electrodes, and having the patient comfortable 
during the measurements, at the cost of loosing information 
related to the electrical stimulus to the myocardium. PTT 
evaluation may be done solely with BCG and PPG. The 
ECG was included to provide a third estimate of HRV, to 
assess the estimates provided by the other signals, and 
because it allows measurements of pre-ejection period (PEP) 
and PAT. 

Fractal dimension and entropy-based methods have been 
used in cardiology in the last years and have derived 
important conclusions in HRV analysis [19]-[27]. In the 
present case, they were applied to HRV and to PAT and 
PTT variabilities (PATV, PTTV). The proposed device 
allows gathering a substantial amount of data, with subject’s 
minimal discomfort, and characterizes the fractal dimension, 
Shannon, Rényi and Tsallis entropies of the subject’s HRV 
and BPV. 

Variability monitoring requires some recording time to 
compile sufficient data for the analysis to be meaningful. 
The unobtrusive sensors, namely BCG, are very useful as 
they reduce the patient’s annoyance with the measurement 
process. After some minutes of recording it is possible to 
assess deviations on the subject’s regular HRV parameters. 
Changes in the autonomic system and some modifications in 
the patient’s contractile mechanism may be signalized by 
these methods [2],[4],[5],[19]-[22]. A group of healthy 
subjects experimented with the system, in order to provide 
validation data to evaluate the system’s cardiovascular 
monitoring ability. 

Subsequently, the paper gives details of the design, 
realization, and validation of the device’s hardware and 
software components. The hardware component that regards 
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the sensors and signal conditioning circuitry acquiring BCG, 
ECG, and PPG, is presented in section 3. The software 
component that regards the device capabilities to interact 
with the user and to analyze the gathered data, is presented 
in section 4. The results validating the device based on a 
healthy test group, the discussion of the results, and the 
respective conclusions compose sections 5 and 6 of the 
paper. 
 

2.  DEFINING CONCEPTS 
A. Cardiovascular delays 
The time difference between the ECG R-wave and the 

PPG foot is usually named pulse arrival time. This delay is 
also referred to in literature as pulse wave transit time, pulse 
wave delay or also pulse wave velocity, [9]-[14]. Recent 
literature reports the existence of a significant correlation 
between PATV and BPV [8]-[17], showing, in particular, 
that the most relevant correlation is obtained when defining 
PAT as the R-wave to PPG foot delay [11]. Accordingly, the 
measurement of PAT under this definition will improve the 
characterization of the patient’s cardiovascular status. 

Although being used in current applications to estimate BP 
[12],[16],[18], the exactness of PAT application for this 
purpose is argued [28],[29]. A subject-dependent BP-PAT 
relation, (1), has been presented earlier [18]. Using it, the 
device may obtain not only BPV but also systolic BP, SBP, 
though being unable to estimate diastolic BP. The constants 
b and k are obtained by calibration, L is the length of each 
subject’s right arm, and d is the density of the subject’s 
blood (e.g. 78 cm and 1060 kg/m3). 
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Fig.1.  The  three  signals  acquired  by  the system, with  the most 
important parameters marked. 

 
The PEP is the duration of electro-mechanical delay plus 

the isovolumetric ventricle contraction up to the aortic valve 
opening and it is a variable additive delay, which changes 
rapidly in response to stress, emotion and physical effort 
[30]. The use of PAT instead of PTT improves the 
correlation with systolic BP [31]. The use of PTT is justified 
by the unobtrusiveness of its acquisition. PAT is better in 

isolating the effects of administration of different vasoactive 
drugs [31], and also when inducing physical stress in normal 
subjects [30]. In spite of this shortcoming, it is profitable to 
measure PTT using BCG and PPG, as it will not induce 
stress in the subject and it will still be possible to estimate 
SBP. To evaluate PEP or PAT the ECG must be acquired, 
while PTT measurement only requires unobtrusive 
measurements.  

Our recent work underline the relation between PAT and 
PTT, for a group of healthy subjects, using the I valley of 
the BCG as reference for PTT evaluation [17]. Fig.1 shows 
2 seconds of BCG, ECG and PPG acquired with the 
developed device, where the synchronism of the most 
prominent waves of each signal is evident. 

Since the I valley of the BCG marks the start of ejection, 
being related to the acceleration of blood into the pulmonary 
artery and ascending arch of the aorta [32], it is appropriate 
for dividing the PAT into the PEP and the PTT components. 
This enables a more detailed analysis on the subject’s 
condition by discriminating the purely vascular component, 
PTT, from the ejection delay component, PEP. 

It is of particular interest to analyze the long-term 
evolution of the parameters gathered. To express in detail 
information on the evolution of the cardiovascular 
parameters, several information measures are taken. 

 
B. Fractal and complexity measures 
Fractal dimension analysis of an HRV time series has been 

presented as an effective measurement of autonomic 
nervous system response [20]-[21]. The fractal dimension 
computed by the device is the Minkowski-Boulingand 
dimension.  

For HRV, a fractal set, with Minkowski-Boulingand 
dimension DMB and area A(r) traced by a circle of radius r 

along the fractal, allows to write 
( )

MBDkr
r
rA −= 1

2
, 

therefore conducing to the limit presented in (2), formal 
definition of the Minkowski-Bouligand dimension [33]. 
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The preceding formulation of Minkowski-Bouligand 

dimension is remindful of the Hausdorff-Besicovitch 
dimension definition (3), with A(r), the area of the circle 
with radius r, replacing N(l) the number of line segments 
with length l, needed to cover the curve. These dimensions 
have a tight relation, and their values coincide for a number 
of known cases, but Minkowski-Bouligand dimension is 
easily computed. 

The calculation of (2) was implemented in MATLAB and 
the script was embedded in the software. The Minkowski-
Boulingand dimension is computed when new values of the 
HRV and BPV time series are available. For instance in 
Fig.4, the fractal dimension of the HRV time series obtained 
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from the ECG is the only one being computed, but when 
PPG is visible, the respective HRV series is analyzed. 
However, it should be noticed that the fractal dimension is 
only significant when a large number of heart rate values is 
available, justifying the interest in having unobtrusive 
sensors in the device. 

From the information theory point of view, entropy is a 
measure of order in dynamical systems, a statistical 
complexity measurement [27]. Entropy-based techniques are 
routinely employed in analysis of medical data, namely 
cardiovascular time-series. In this case, the heart and the 
circulatory system that compose the dynamical system were 
scrutinized. Three distinct entropies were implemented, 
Shannon (4), Tsallis (5) and Rényi (6), given their distinct 
properties. 

 
 

[ ] ∑
=

−=
N

j
jjS ppPS

1
ln  (4) 

[ ]( ) [ ]∑
=

−
−

=
N

j

q
jjT pp

q
PqS

11
1,  (5) 

[ ]( ) ⎥
⎦

⎤
⎢
⎣

⎡
−

= ∑
=

N

j
jR pPS

1
ln

1
1, α

α
α  (6) 

 
{ NppP ,...,1≡ } is the time series in consideration, q is 

the entropic index, and α the entropy order. Taking the limit 
α→1, Rényi entropy coincides with Shannon entropy. The 
limit q→1 leads Tsallis entropy to coincide with the 
Shannon-Boltzmann-Gibbs entropy [24]. For the analysis of 
shorter and noisy time series, the Kolmogorov-Sinai entropy 
may be used to estimate the mean rate of creation of 
information [34]. With wide use in physiology and 
medicine, approximate entropy [35], and a modified 
algorithm, sample entropy [36], have been proposed. 

Having some advantages, approximate and sample 
entropy, however, assign higher entropy to some pathologic 
time series that represent less complex dynamics than to 
time series derived from healthy cardiovascular dynamics 
[37]. Therefore, as the device is able to obtain long 
recordings, the entropies defined in (4), (5), and (6) were 
implemented instead. HRV is assessed by the use of three 
signals. PATV, PTTV, and PEPV are assessed by the 
measures (4)-(6). These computations diminish the 
uncertainty of the entropy estimation, and provide an 
accurate description of the cardiovascular system status. All 
these entropies are computed swiftly in real-time and 
calculated whenever the time series is updated. 

 
3.  DEVICE OVERVIEW - HARDWARE 

The device hardware is composed of the respective 
sensors, with dedicated conditioning circuits, a 
multifunction data acquisition board (DAQ), NI 6024E, and 
a laptop PC which implements the data processing 
algorithms necessary to investigate the cardiovascular 
parameters. The sampling frequency used was 1.5 kHz so 
the digitalization will not affect the PATV correlation with 
BPV, as this sampling rate allows peak detection with an 
appropriate resolution [1]-[2]. 
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Fig.2.  BCG,   ECG   and   PPG   measurement  system   (PGAi – 
programmable gain amplifiers, BCG-F – ballistocardiogram signal 
filter, PPG-F – plethysmography filter, ECG-F- electrocardiogram 
filter). 

 
To acquire the BCG, an electromechanical film (EMFi) 

sensor was placed under the seat of a normal office chair, 
while the ECG was acquired using three chest leads and the 
PPG by evaluating index finger absorption of red light [8]. 
Fig.2 depicts the system. 

 
A. Ballistocardiogram 
The BCG acquisition is based on the unnoticeable 

implementation of an electromechanical film sensor 
(EMFIT L-series) inside an office chair’s seat. The 
transducer is composed of exterior homogeneous surface 
layers having in its interior a number of thin polypropylene 
layers with air voids [38], generating a scarce electric charge 
variation at the sensors’ electrodes. 

The BCG signal is obtained connecting the EMFi output to 
a low-noise and high input impedance charge amplifier 
scheme based on a low-noise (50 nVHz-1/2, at 10 Hz), high 
input impedance (1012 Ω || 8 pF) TLC2274 operational 
amplifier. The charge amplifier gain is controlled by a 50 
kΩ X9C503 digital potentiometer. In addition to the 
amplification stage, analog filtering is also implemented 
using an active 2nd order 150 Hz Butterworth low-pass filter 
to prevent aliasing, and a 0.05 Hz high pass filter of the 
same characteristics, to remove any trace of dc component. 
This cut-off frequency, whilst diminishing power line 
interference and high frequency noise, does not interfere 
with the signal’s frequencies [39]. The BCG signal 
conditioning circuitry is connected to the analog input AI0 
of the data acquisition board and is sampled at 1.5 kHz. 
After being acquired, the BCG is subject to a Kaiser 
window, with beta 0.5, FIR notch filter in order to obtain a 
clearer signal. The systolic and diastolic waves of the BCG 
are visible, as well as a prominent I valley, see Fig.1. 

An adaptive peak detector was built using LabVIEW peak 
detection functions [8], capable of adapting itself to the 
patient’s peak amplitude and using spline interpolation, to 
determine the I valley position in the BCG signal. The heart 
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rate is computed from the delay between consecutive I 
valleys obtained from the peak detection processing block 
output. 

 
B. Electrocardiogram 
The ECG acquisition circuitry was developed for a three 

lead scheme. Three standard patch-type ECG electrodes 
were placed on the subject’s chest in a triangular disposition 
to respect the Einthoven triangle. 

The gathered electromotive force is applied to the inputs 
of an instrumentation amplifier scheme based on INA118, 
an integrated circuit with low bias current (5 nA) and high 
common mode rejection ratio (110 dB), whose gain is 
controlled by an external resistor, another 50 kΩ X9C503 
digital potentiometer. Afterwards, filtering stages remove 
baseline wandering and artifacts originating from subject 
movement or muscular activity. The signal was limited to a 
band of 0.05-150 Hz by the use of 2nd order high-pass and 
low-pass Butterworth filters implemented with TLC2274. 
The ECG signal conditioning output is connected to analog 
input AI1 of the DAQ. Power line interference was filtered 
by a FIR digital 50 Hz notch filter implemented in the 
LabVIEW signal processing block. 

To determine the time stamp position of the QRS complex, 
the adaptive peak detector used for the BCG signal is used 
also for the ECG to find the R peak. 

 
C. Photoplethysmogram 
A finger PPG sensor has been developed. Its sensing 

principle is based on controlled red light emission by a LED 
and detection by a photodiode. The light transducer 
implemented is the photodiode TAOS TSL257. This sensor 
has an integrated transimpedance amplifier and is 
characterized by a high responsiveness in the red part of the 
electromagnetic spectrum (1.68 V/(µW/cm2) at 645 nm). In 
comparison to a previous application of infrared light [8] 
where good results were obtained, improvements in the PPG 
signal quality were registered due to the better 
characteristics of the sensor used. 

Using TLC2274 high-performance operational amplifiers, 
the transducer signal is amplified and limited to a maximum 
frequency of 150 Hz, its dc component is removed by the 
abovementioned 0.05 Hz high pass filter, and it is then 
acquired by the DAQ board analog input AI2. A FIR digital 
notch filtering is also employed to reduce power line traces 
in the PPG signal. The peak detector is used to identify the 
maximum peaks and the foot of the PPG waveform. The 
heart rate and the HRV are calculated based on beat-to-beat 
analysis. 

 
4.  DEVICE OVERVIEW - SOFTWARE 

The software component of the device was developed in 
LabVIEW 8.6 with embedded MATLAB scripts. An 
informative graphical user interface (GUI), depicted in Fig.4 
and Fig.5, and additional data-logging capabilities were 
implemented. Files with the most relevant parameters and 
raw data may be saved and analyzed offline using the data 
processing block of the software in order to evaluate trends 
and identify normal and abnormal situations. 

A. Acquired signals 
The BCG, ECG and PPG signals acquired with the DAQ 

board are subject to an initial analog filtering stage, 
afterwards a digital notch filter, and only then analyzed. The 
analog filters had a pass-band with maximally flat 
magnitude, and in the digital stage, a Kaiser window, with 
beta 0.5, FIR notch filter was used. All the channels present 
the same frequency response, shown in Fig.3, thus relative 
distortion between signals is minimized. 

 

 
 

Fig.3.  Frequency response of the combined analog (2nd order 
Butterworth 0.05-150 Hz) and digital (Kaiser window, beta 0.5, 
FIR notch filter) signal processing stages. 

 

 
 

Fig.4.  User interface “ECG” visualization mode after 39 seconds 
of recording. «Input ECG» is the raw signal acquired in the 
previous 3 seconds, contaminated with some powerline noise; 
«ECG» is the ECG signal gathered in the previous 3 seconds 
passed by the FIR notch filter; «QRS Peak Evolution» is the 
amplitude of the QRS peak, which depicts respiratory activity; 
«Heart Rate Variability PSD» is the power spectral density of the 
heart rate time series; «Heart Rate Evolution» shows the heart rate 
values calculated. 

 
The information is presented to the user in separate 

windows for each of the acquired signals displaying: 
signal’s main peak amplitude (QRS in the ECG, I valley in 
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the BCG, and main wave in the PPG); heart rate 
(instantaneous, long-term, average and standard deviation); 
HRV power spectral density (PSD), Minkowski-Bouligand 
dimension, Shannon, Rényi and Tsallis entropies. Alarm 
functions are also available, as tachycardia and bradycardia 
thresholds may be defined by the user, but by default are 
respectively 140 bpm and 56 bpm. 

Fig.4 presents the GUI’s “ECG” signal visualization 
window after 39 seconds of acquisition. It displays the QRS 
modulation by respiration (left), the estimate of the HRV 
PSD (center), and the previous stated complexity measures 
(top right), as well as the signals’ heart rate estimates. 

 
B. Cardiovascular parameters 
The pre-ejection period is obtained from the delay between 

the ECG and the BCG main waves. The pulse transit time is 
obtained as the delay between the I valley of the BCG and 
the foot of the finger PPG. The pulse arrival time comes 
from the delay between the ECG QRS peak and the foot of 
the PPG. Similarly to the HRV processing, the PEP, PTT, 
and PAT power spectral density is also computed, to assess 
the autonomic function in the Very Low Frequency, Low 
Frequency, and High Frequency ranges [2]. Fig.5 displays 
the respective tab of the GUI, where the first row depicts the 
delays and the second their PSD. 

 

 
 
Fig.5.  User interface “PEP, PTT, PAT” visualization mode after 
39 seconds of recording. 

 
A “Summary” visualization window is also available in 

the GUI, presenting a synthesis of the most important data 
gathered by the device, as well as systolic blood pressure 
calculated from PAT and the coefficients used in the 
calibration. 

Non-linear signal processing elements are embedded in the 
calculations of all these elements. Adaptive peak detectors 
using spline and wavelet approximations are responsible for 
accurate classification of the signals’ parameters. Finding 
ECG peaks and PPG foot is rather simple when compared 
with I valley of the BCG. The BCG is greatly susceptible to 
motion artifacts, so it implements a real-time procedure for 

automatic detrending, by means of wavelets [40]. Both these 
adaptive processes are able to attenuate the effects of 
baseline wavering related to muscular artifacts. 
Nevertheless, for HRV and BPV recordings it is important 
to warn the patient to be still. If the aim is to estimate the 
heart rate, these requirements are less important, as the 
system only takes three seconds to know the subject’s heart 
rhythm. 

 
5.  RESULTS AND DISCUSSION 

Five young male volunteers (age 24.7 ± 2.4 years old, 
weight 74.2 ± 11.8 kg (mean ± standard deviation)), without 
known cardiac abnormalities, were used to perform the 
device assessment and validation tests. After a preliminary 
10 minute period with the subjects seated to relax, the data 
recording process started, with the volunteers being aware 
that they should be still during the data acquisition. The PPG 
sensor was placed on the left index finger and the ECG 
electrodes according to the Einthoven triangle on the chest. 
The test consisted of a continuous 10 minute recording of 
the BCG, ECG and PPG signals of each person, to meet the 
HRV standard determinations [1], and to gather an amount 
of data allowing extensive comparison. 

 
A. Heart rate 
The reference considered (xref) when measuring HR was 

the average of the three estimates. The root mean square 
deviations (εHR) of the estimates on each subject were 
computed using (7), where n is the number of heart beats of 
the recording, and x the signal used. Using (7) in all the 
signals of each recording (length of 900 ksamples), i.e., 
taking x = BCG, x = ECG, and x = PPG, the dispersion of 
εHR among the individuals produced the values of Table I. 
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The correlation coefficients between the HRV time 

estimates were obtained using the Pearson product-moment 
correlation coefficient, (8), where x and y represent two 
different signals, and μ represents the HR average of the 
signal. 
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Table I.  Heart rate root mean square deviation results 
 

 ECG 
εHR [bpm] 

PPG 
εHR [bpm] 

BCG 
εHR [bpm]

Subject 1 0.6369 0.6945 1.0006 
Subject 2 0.3214 0.4683 0.3964 
Subject 3 0.3137 0.4557 0.3836 
Subject 4 0.4065 0.5082 0.6665 
Subject 5 0.4392 0.5975 0.7435 
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Using (8) in all the signals of each recording, as in (7), the 
correlation coefficient, ρ, was computed for all subjects. The 
correlation between the signals’ estimates is presented in 
Table II. 

 
Table II. Heart rate variation correlation coefficient 

 
 ρECG↔PPG ρBCG↔PPG ρECG↔BCG 

Subject 1 0.9962 0.9875 0.9886 
Subject 2 0.9917 0.9888 0.9947 
Subject 3 0.9896 0.9862 0.9935 
Subject 4 0.9948 0.9837 0.9872 
Subject 5 0.9967 0.9901 0.9930 

 
Table I and Table II results show the system’s ability to 

correctly evaluate the heart rate and the correspondence 
between the signals’ HRV estimates. In all the cases the 
heart rate presents a small absolute error, always bellow 1 
bpm, and frequently bellow 0.5 bpm. All the subjects exhibit 
a very high correlation coefficient among all the signals’ 
HRV. Therefore, the system provides correct estimates of 
heart rate. Instantaneous values and long-term trends may be 
obtained from ECG, PPG, or BCG without significant 
quality variations. 

The great resemblance between the three signals’ HRV 
estimates is illustrated in Fig.6, which depicts their power 
spectral density. 

 

 
 
Fig.6.  HRV power spectral density in V2Hz−1 for one of the 
subjects divided in VLF, LF, and HF frequency ranges according 
to [1]. 
 

The HRV estimates were scrutinized in the frequency 
domain to evaluate their discrepancies in the ranges 
associated with different nervous system control actions. 
The customary decomposition of heart rate time series is 
Very Low Frequency (VLF, 0 to 0.04 Hz), Low Frequency 
(LF, 0.04 to 0.15 Hz) and High Frequency (HF, 0.15 to 0.50 
Hz) components [2]. The High Frequency component 
corresponds to parasympathetic nervous system control, the 

Low Frequency component to sympathetic, and the VLF 
component to a blend of cardiovascular factors and signal 
processing artifacts. 

Power spectrum normalized root mean square deviation 
(nRMSD) analysis was made in these intervals considering 
the average of the three estimates as reference. The results 
were obtained dividing the outcome of (7) by the amplitude 
of xref (which in this case is the difference between the 
minimum and the maximum of the reference’s power 
spectral density) and are displayed in Table III. 
 
Table III.  HRV power spectrum deviations in %, in the VLF, LF, 
and HF frequency ranges, for all the subjects 
 

 ECG 
nRMSD% 

PPG 
nRMSD% 

BCG 
nRMSD% 

VLF 2.25±1.59 2.59±1.48 2.79±2.39 
LF 7.43±5.76 7.56±3.71 9.25±11.86 
HF 5.22±3.09 4.69±2.29 5.96±6.91 

 
The results from Table III show that the ECG is the signal 

with most accurate results considering the reference used, 
with the PPG having comparable nRMSD and a tighter 
standard deviation. The BCG exhibits higher deviations to 
the average HRV estimate and with higher standard 
deviations. It is also noticeable that all signals have quite a 
small deviation in the Very Low Frequency component, 
with HF having twice as large deviations, and LF obtaining 
the less accurate estimates, both in average and in standard 
deviation. 

 
B. Pulse arrival time 
The correlation coefficients, ρ, between ECG to PPG delay 

(PAT), BCG to PPG delay (PTT), and ECG to BCG delay 
(PEP), removing the mean as in (8), in the 10 minutes of 
each recording (length of 900 ksamples) are shown in Table 
IV. 

It can be seen that PATV estimation is well correlated to 
the PTTV estimation, whereas PEPV exhibits no 
representative relation with the PATV estimate. The best 
values obtained were 0.9212 and 0.5393, respectively, 
reinforcing this conclusion. 

The PEP exhibits a near-zero correlation with the PTT 
which indicates, that these are quasi-independent events. 
This confirms that the PEP and the PTT provide 
complementary information on the circulatory system. The 
root mean square deviation of the normalized delays, 
nRMSD, was computed using (9), PAT (ECG↔PPG) and 
PTT (BCG↔PPG) denoting the delays’ respective time 
series, resulting in nRMSD%=10.0249±2.1159. 

 
Table IV.  Cardiovascular  delay variation correlation coefficient 

 
 ρPAT↔PTT ρPAT↔PEP ρPEP↔PTT 

Subject 1 0.7004 0.2536 -0.5128 
Subject 2 0.8254 0.5393 -0.0303 
Subject 3 0.8453 0.3876 -0.1650 
Subject 4 0.8684 0.2677 -0.2452 
Subject 5 0.9212 0.4166 0.0301 
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This outcome, combined with the correlation results, 

makes the I valley of the BCG emerge as a possible 
triggering event to replace the QRS complex of the ECG, 
given that PTTV exhibits a strong correlation with the 
PATV estimates, and that heart rate and HRV results have in 
the BCG an alternative to the ECG with comparable results. 
However, if PAT calculation is substituted by the 
unobtrusive PTT measurement, some error is to be expected, 
corresponding to the influence of the PEP, which the PTT 
does not account for. 

Analyzing the frequency content of the PATV power 
spectrum in terms of VLF, LF and HF, the results presented 
in Table V were computed. 

 
Table V.  PATV power spectrum deviations in important frequency 
ranges 

ρPTT↔PAT 
 nRMSD% 

Subj. 2 Subj. 3 Subj. 4 Subj. 5 

VLF 10.77±1.06 0.9323 0.9298 0.9025 0.9397 
LF 16.77±7.33 0.8531 0.5216 0.5527 0.8923 
HF 9.31±2.81 0.7324 0.6085 0.6582 0.9294 
 
The nRMSD results presented in Table V were obtained 

dividing the outcome of (7) by the maximum PATV 
amplitude of that frequency range, in the same manner as in 
Table III. These results show that the two PATV have 
values of nRSMD about 10% in the VLF range. In the HF 
range a standard deviation is below 3%. In the LF range the 
nRMSD is larger both in average and in standard deviation.  

 

 
 
Fig.7.  PATV and PTTV power spectral density in V2Hz−1  for one 
of the subjects, showing VLF, LF, and HF frequency ranges [1]. 

Regarding Table V results on Pearson product-moment 
correlation coefficient, it is evident that for the VLF range, 
the correlation between the different PATV estimates is 
firm. In the LF and HF ranges, although some subjects had 
high correlations, others have weak correlations, so LF and 
HF have lower average correlation with larger standard 
deviations. Fig.7 depicts the power spectral densities of one 
of the subject’s PATV and PTTV, where the resemblance 
between these variables is visible. 

The estimation of systolic blood pressure applying (1), for 
both PAT and PTT, is shown in Fig.8. For this recording the 
respective BPV is also shown. The values obtained are 
comparable. 

 

 
 
Fig.8.  Systolic BP estimated from PAT and PTT (top) and the 
correspondent BPV power spectral density. 

 
C. Fractal and complexity measures 
The Minkowski-Bouligand dimension calculation requires 

a large number of values in the time series. So, it is not 
relevant to accompany the evolution of this parameter in the 
first minutes of recording. The objective is to have an 
estimate of its value minutes after the recording process 
started. From the processing of each subject’s recording no 
significant difference was found, and all the results indicated 
a Minkowski-Bouligand dimension in close proximity to 
one. 

The computational overhead of these calculations was 
measured by implementing the software in an Intel Core 2 
Duo E6600 Dual-Core 2.4 GHz Processor, with 2 Gb RAM, 
running MATLAB R2007a on Windows XP. The fractal 
dimension of one HRV time series, obtained from a 
complete recording, was computed 1000 times, resulting in 
an average of 0.207 ms to calculate the Minkowski-
Bouligand dimension of the time-series. When embedding a 
MATLAB script within LabVIEW 8.6, the overhead 
increased to 1.903 ms. Therefore, although introducing 
some overhead, the sparseness of this computation does not 
add a noteworthy delay to the system. 
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As the length of the HRV or PATV time series increases, 
the Rényi entropy increases exponentially, while Shannon 
entropy and Tsallis entropy increase linearly. The entropy to 
time series length ratio also presents a characteristic 
response. The results for one subject are presented in Fig.9. 
This type of evolution was common to all the subjects. 

 

 
 
Fig.9.  Total and average entropy evolution for one of the subjects. 

 
The different subjects presented different values for the 

characteristic parameters of these curves. Hence it is 
possible to personalize the analysis, and the detection of 
alterations in each subject’s condition. This personalization 
is related to the responses’ amplitude and slope. Beside 
these parameters, timing elements are also relevant. 

The difference when calculating the entropy using 
different signals is negligible. Considering the average 
entropy of the signals as reference, and adapting the 
formulation of (9), the nRMSD of the entropies’ evolution 
in the five recordings was computed. The results obtained 
are registered in Table VI. 

 
Table VI. Entropy deviation for different HR estimates 

 
 ECG 

nRMSD% 
PPG 

nRMSD% 
BCG 

nRMSD% 
Shannon 0.0052±0.0027 0.0041±0.0026 0.0040±0.0051 

Rényi 0.0223±0.0345 0.0259±0.0105 0.0403±0.0760 
Tsallis 0.0052±0.0027 0.0041±0.0026 0.0040±0.0051 

 
These results show that all the entropies are independent 

of the signal used for the calculations. 
Table VII presents the difference in the entropies’ 

evolution in all the recordings when using the PTT instead 
of the PAT. 

 
Table VII. Entropy deviation from PAT to PTT 

 
 Shannon Rényi Tsallis 

nRMSD% 1.008±2.249 0.338±0.751 0.118±0.258 
 

From the results presented, the appropriateness of using 
PTT instead of PAT for estimating Rényi and Tsallis 
entropy of BPV is discernable. In this set of healthy 
subjects, the entropy has minor differences. BPV assessment 

from PAT provides the same result as BPV assessment from 
PTT. Thus, the ECG is expendable, and accurate estimation 
of the BPV time series entropy is achieved with PTTV, 
which only requires the unobtrusive BCG and PPG signals. 
Shannon entropy estimation is slightly coarser but still 
accurate. 

 
6.  CONCLUSIONS 

The developed system is able to acquire and process BCG, 
ECG and PPG. It computes the user’s heart rate from each 
of these signals, the corresponding pulse arrival time and 
pulse transit times. Evaluation of heart rate variability and 
PAT, PTT, and PEP variabilities is accurately done for a set 
of healthy and young male volunteers, allowing the 
estimation of blood pressure variability. Fractal dimension 
and three different entropies are calculated in real time, 
allowing the extension to non-linear methods to evaluate the 
cardiovascular variabilities, leading to profound and 
personalized assessment of heart rate evolution, and expand 
the knowledge on how the variabilities are progressing. 
These methods of analysis have verified similar results 
between PAT and PTT, namely PATV entropy and PTTV 
entropy are the same. So, whenever PTT is found 
sufficiently accurate for the application, only PPG and BCG 
are to be acquired to compute PTT, whereas PAT and ECG 
although providing important data, become dispensable.  

Given that the calculation of these important markers of 
the autonomic nervous system activity is rather intrusive due 
to the use of the ECG signal, the possibility of using the 
BCG signal to replace the ECG was assessed. From HRV 
analysis, it was confirmed that all the signals produce 
comparative estimates, with reasonable differences in VLF 
and HF ranges, while the entropy and fractal dimension 
calculations are extremely consistent, regardless of the 
biological signal used. From delay variability analysis, it 
was confirmed that PTT has a strong correlation with PAT 
in the set of healthy subjects tested. Power spectrum density 
analysis of the PATV showed that the VLF component 
exhibits a particularly high correlation between the ECG and 
BCG estimates, and that both VLF and HF have moderate 
errors, while the LF range has larger errors. 

With these results, the implemented system has proven to 
be accurate and trustworthy in acquiring and processing the 
biological signals, thus allowing the characterization of 
several parameters of the circulatory system. In addition to 
the HRV analysis, the possibility of the unobtrusive 
estimation of BPV, and a coarse estimate of systolic BP 
from PTT, was also positively assessed. However, the usage 
of BCG instead of ECG involves a noteworthy increase in 
estimation uncertainty. The patient preserves his autonomic 
space. The measurement does not require electrodes, but no 
sharp movements are allowed to minimize errors, and ensure 
all the recording is usable. 

Future improvements of the system will aim at its 
connection to a database and to add artificial intelligence 
capabilities to it. The aim is to fuse all the data gathered by 
the system and compare it to the subject’s history to 
evaluate changes in his condition. The objective will be to 
produce different reports to the various users, either front-
end patients or medical staff. 
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