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In this work, prediction of forced expiratory volume in 1 second (FEV1) in pulmonary function test is carried out using the 

spirometer and support vector regression analysis. Pulmonary function data are measured with flow volume spirometer from 
volunteers (N=175) using a standard data acquisition protocol. The acquired data are then used to predict FEV1. Support vector 
machines with polynomial kernel function with four different orders were employed to predict the values of FEV1. The performance is 
evaluated by computing the average prediction accuracy for normal and abnormal cases. Results show that support vector machines 
are capable of predicting FEV1 in both normal and abnormal cases and the average prediction accuracy for normal subjects was 
higher than that of abnormal subjects. Accuracy in prediction was found to be high for a regularization constant of C=10. Since FEV1 
is the most significant parameter in the analysis of spirometric data, it appears that this method of assessment is useful in diagnosing 
the pulmonary abnormalities with incomplete data and data with poor recording. 
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1. INTRODUCTION 

PIROMETRY is a relatively simple, noninvasive and the 
most widely used pulmonary function test that measures 
the volume of air expelled from fully inflated lungs as a 

function of time. Spirometry measures the volume of air 
inhaled or exhaled as a function of time during forced 
breathing maneuvers and is an essential tool in the diagnosis 
of airway obstruction, and in the detection of restriction and 
follow-up of respiratory diseases [1]–[4]. It generates a flow-
volume signal which represents tidal, inspiratory and 
expiratory phases of breathing. The significant parameters 
measured using spirometer are forced vital capacity (FVC), 
forced expiratory volumes in one second  (FEV1), ratio of 
FEV1 to FVC (FEV1%), peak expiratory flow and forced 
expiratory flow at 25–75% of FVC (FEF25–75%) . These 
measured variables are the basis of the diagnosis and treatment 
of lung disorders [5].   

FEV1 is the volume of air that is forcibly exhaled in the 
first second, whereas FVC is the total volume of air exhaled 
after a full inspiration. Airflow obstruction can be diagnosed 
using spirometry alone by demonstrating a low FEV1/FVC 
ratio. A low spirometric FVC together with a normal or high 
FEV1/FVC ratio has been classified as a restrictive 
abnormality [6, 7]. FEV1 is the most significant parameter for 
identifying both the restrictive and obstructive respiratory 
diseases. The value of FEV1 is very essential in quantifying 
airflow limitation.  It is also a powerful predictor of increased 
risk of lung cancer and cardiovascular diseases. The American 
Thoracic Society has developed a scale to rate the severity of 
disease based on the values of FEV1 [3]. 

Spirometry is an effort dependent test that requires the 
cooperation between the subject and the examiner, and the 
results obtained will depend on technical as well as personal 
factors. Also, full inspiration or expiration is difficult to 
achieve for subjects who suffer with difficulties in breathing. 
It has been  shown  in  the  literature  that  50%  of  the  results  

 
obtained  from  spirometric  measurement  were  unacceptable 
due to failure to complete the test [8]. Since spirometry is the 
most widely used screening test to investigate the pulmonary 
function abnormalities, there is a requirement that a large 
database is to be analyzed by a physician. The spirometric data 
would also have missing values and patients with lung 
abnormalities might not be able to repeat the test for acquiring 
the missing data [9]. Hence, there is a need for prediction of 
FEV1 which is the most significant parameter  that helps in 
defining the risk of pulmonary complication in cases where 
measurements fail to record the parameters. 

The prediction of FEV1 has already been carried out using 
Radial basis function neural networks [10, 11]. However, 
conventional neural network methods have demonstrated 
difficulties finding a good generalization performance. 
Recently it has been shown that Support vector machines 
(SVM) have been efficiently employed in various prediction 
and classification problems. The support vector machines 
were proposed by Vapnik. The principle of SVM is to find a 
maximum margin hyperplane for classification by mapping 
the instances to a higher dimensional space using the kernel 
function. Kernel function maps the input to a higher 
dimensional space without computing all elements, which 
reduces computational complexity and connects the input 
space and the higher dimensional space directly. SVM then 
choose a maximum soft margin separating hyperplane in this 
higher dimensional space, which separates the training 
instances by their classes [12] – [14]. 

SVM can be applied to both classification and regression. 
In the case of classification, an optimal hyperplane is found 
that separates the data into two classes, whereas in the case of 
regression a hyperplane is to be constructed that lies close to 
as many points as possible. Support vector regression is 
different from conventional regression techniques because it 
uses structural risk minimization (SRM) but not empirical risk 
minimization (ERM) induction principle which is equivalent 

S 

 

  63 



MEASUREMENT SCIENCE REVIEW, Volume 10, No. 2, 2009 

to minimizing an upper bound on the generalization error and 
not the training error. Due to this feature it is expected to 
perform better than conventional techniques which may suffer 
from possible overfitting. SVM have other desirable properties 
such as efficient solutions, relatively few adjustable 
parameters and the interchangeable use of kernel functions 
[15] –[18]. In this work, an attempt has been made to predict 
FEV1 using support vector machines and the results are 
validated using the average prediction error statistics. 

 

2. METHODOLOGY 
For the present study, 175 adult volunteers (normal = 55, 

abnormal = 50, validation=70) are considered. Spirometric 
measurements are done with volumetric transducer as it has 
proven accuracy and stability. The acceptability and 
reproducibility criterion were adopted as per the 
recommendation given by the American Thoracic Society 
[19]. The parameters obtained from the spirometer are 
subjected to support vector machines. The training dataset 
included all the measured parameters and the details of the 
parameters obtained are provided elsewhere [10]. Support 
vector regression with polynomial kernel is employed in the 
prediction of FEV1 values. Regression estimates a function 
based on a given set. Hence, given a set of data 
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where xi is the input vector, ai is the actual value, and N is the 
total number of data patterns, the SVM regression function is 
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where )(xiϕ  is the feature of inputs x, and both wi and b are 
coefficients which are estimated by minimizing the 
regularized risk function, 
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is called the ε - insensitive loss function, di is the actual value 
at period i and yi is the estimated value at period i and 
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is the norm of the governing equation.  The term C is the 
regularization constant which specifies the trade-off between 
the empirical risk and the model flatness. An optimal desired 
weights vector of the regression hyperplane is represented as 
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where iα  and  are the Lagrangian multipliers. And the 
regression function is 
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Here, K(xi, xj) is called the kernel function. The value of the 
kernel equals the inner product of two vectors xi and xj in the 
feature space )( ixϕ  and )( jxϕ , i.e., = ),( ji xxK

)( ixϕ . )( jxϕ . 
 An inner product in feature space has an equivalent kernel in 
input space, 
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The polynomial kernel [20, 21] of the form,  
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 is employed in the prediction and the performance of the 
regression model is analyzed by varying the order d of the 
polynomial. 

In this work, the most significant parameter FEV1 is 
predicted for 70 test data by training the support vector 
machine with 105 spirometric data. The regularization 
constant C is varied from 1 to 10 and the accuracy in 
prediction of FEV1 is estimated. Average prediction accuracy 
for normal and abnormal subjects is calculated for various 
orders of the kernel function performance of prediction and is 
evaluated by calculating the accuracy in the prediction of 
FEV1. The accuracy in prediction is compared for three chosen 
values and regularization constants.  

3.  RESULTS AND DISCUSSION 
The typical responses of a spirometer showing the 

variation of airflow with lung volume for normal, obstructive 
and restrictive subjects are presented in Fig. 1(a), 1(b) and 1(c) 
respectively.  

              
            (a)                    (b)                            (c) 

Fig.1   Typical flow volume curves of normal (a),  
obstructive (b) and restrictive (c) subjects 
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The normal flow-volume curve is found to have a rapid 
peak expiratory flow rate with a gradual decline in flow. In 
restrictive subjects, the shape of the flow volume loop is 
relatively unaffected, but the overall size of the curve appears 
smaller when compared to normal. And in obstruction, there 
was a rapid peak expiratory flow but the curve descends more 
quickly than normal and takes on a concave shape. 

The most significant spirometric respiratory parameter 
FEV1 is predicted using support vector regression model 
employing polynomial kernel. The efficiency of the SVM 
model is analyzed by varying the regularization constant from 
1 to 10. The accuracy in prediction for all the subjects is found 
to be high for C=10 compared to all the other values. Also, the 
accuracy is found to saturate after this value and thus further 
results are presented for C=10. Hence, for the remaining 
study, C= 10 is chosen to be the optimum upper bound.  
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Fig.2   Deviation of the predicted values from the measured FEV1 
values for (a) normal and (b) abnormal subjects 

Also, it is found that prediction is efficient irrespective of 
the subjects and the deviation of predicted values from the 
measured values is less for normal subjects. Fig. 2(a) and (b) 

show the deviations in the predicted FEV1 values from the 
measured values for normal and abnormal subjects 
respectively. It is observed from the results that the measured 
and the predicted FEV1 values are nearly the same for most of 
the subjects.  
The average prediction accuracies for normal and abnormal 
subjects are estimated with polynomial kernel with chosen 
orders. The average prediction accuracy for normal subjects is 
shown in Fig. 3 as function of order of the kernel for a 
regularization constant of C=10. It is understood from the 
results that normal subjects have a consistent accuracy with 
higher values for order of the kernel to be 2.  
 
    Table 1  

Statistics of the measured and predicted FEV1 for all the subjects 
 

 
 
 
 
 
 

Mean ± Standard deviation 
Subjects 

Measured FEV1 Predicted FEV1 
Normal 2.59±0.43 2.62±0.41 
Abnormal 2.12±0.55 2.12±0.53 

 
The statistical analysis of the measured and predicted 

values for all the subjects is shown in Table 1. It is seen that 
the mean of both the values for normal subjects is higher than 
that of abnormal subjects and their standard deviation is also 
lower. 
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Fig.3   Variation  of  percentage  average  prediction   accuracy   with 
chosen    orders of  the kernel for normal and  abnormal  subjects  and 
regularization constant (C=10) 

The number of support vectors employed by the SVM 
model for the prediction of FEV1 in normal and abnormal 
subjects with its corresponding prediction errors is shown in 
Fig. 4.   

It is observed from the results that minimum number of 
support vectors is utilized by kernel of order 2 when compared 
to the other orders. Further, the average prediction accuracy is 
found to correlate well with the number of support vectors 
employed in the prediction. For a support vector regression 
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model using a smaller number of support vectors, the 
prediction accuracies are also found to be high irrespective of 
the subjects. And the accuracy in prediction is found to be 
high for normal subjects compared to the abnormal subjects. 
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Fig.4   Variations in the average prediction error for normal and 
abnormal subjects with the number of support vectors employed by 
the polynomial kernels at chosen orders of the kernel and 
regularization constant of C=10. 

4.  CONCLUSIONS 
Forced expiratory volume in one second is a very useful 

index for clinical monitoring and assessment. It has been 
shown that many times spirometric measurements result in 
incomplete dataset. Hence, the prediction of FEV1 has been 
considered significant. There are some earlier reports where 
prediction of FEV1 has been demonstrated using neural 
networks [10].  

In this work, attempt has been made to predict FEV1 
values using support vector regression in order to enhance the 
spirometric investigations. For this analysis both normal and 
abnormal subjects were used. Support vector regression 
technique with polynomial kernel was employed in the 
prediction. Optimum value of the order of the kernel was 
chosen based on the accuracy in prediction. Further, the 
support vectors that characterize the regression results were 
also analyzed. The optimum value of the order of the 
polynomial kernel was found to be 2 and the regularization 
constant was 10. The prediction accuracy for normal subjects 
is found to be high when compared to the abnormal subjects. 
Further, it seems that optimization of the upper bound of the 
regularization constant and the kernel width using standard 
optimization techniques would yield better prediction of FEV1 
with maximum accuracy. We have observed that the degree of 
severity and classification of abnormalities could be achieved 
by trying the prediction process with other kernels.  
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