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Abstract: 
All electric powered machines offer the possibility of extracting information and calculating Key Performance Indicators 
(KPIs) from the electric current signal. Depending on the time window, sampling frequency and type of analysis, differ-
ent indicators from the micro to macro level can be calculated for such aspects as maintenance, production, energy 
consumption etc. On the micro-level, the indicators are generally used for condition monitoring and diagnostics and are 
normally based on a short time window and a high sampling frequency. The macro indicators are normally based on a 
longer time window with a slower sampling frequency and are used as indicators for overall performance, cost or con-
sumption. The indicators can be calculated directly from the current signal but can also be based on a combination of 
information from the current signal and operational data like rpm, position etc. One or several of those indicators can be 
used for prediction and prognostics of a machine’s future behavior. This paper uses this technique to calculate indicators 
for maintenance and energy optimization in electric powered machines and fleets of machines, especially machine tools. 

AGGREGATION OF ELECTRIC CURRENT CONSUMPTION FEATURES  
TO EXTRACT MAINTENANCE KPIs 

INTRODUCTION 

Today's business environment sets ever-higher require-
ments on reliability, availability and economic performance 
of plants and equipment. Loss of production due to ma-
chine damage, especially if it occurs unexpectedly, dimin-
ishes the economic success of an enterprise and must, 
therefore, be prevented. In recent years, emphasis in 
maintenance has shifted to using emerging technology to 
measure machine condition and predict maintenance re-
quirements. Key words like preventive, predictive and con-
dition-based maintenance reflect this tendency. If plant 
personnel can always make an accurate assessment of the 
condition of their machines and plant assets, they can plan 
and introduce appropriate maintenance measures prompt-
ly, before larger and more serious damage and associated 
unplanned machine downtime occur. The bottom line ben-
efits include gaining experience and learning relevant 
mechanisms or correlations to better control production 
processes. To achieve an accurate prediction of failure, 
however, it is essential to have an effective method of 
monitoring the status of an item or system. Clearly the ide-
al technique is one in which the condition of the equipment 
is known at all times and which accurately predicts any po-
tential failure on demand. Condition Monitoring (CM) 
attempts to fulfill these requirements. 

Maintenance strategies are methodologies able to cre-
ate and/or optimize a maintenance plan for an overall sys-
tem, with information from the maintenance pre-
processing level as input and maintenance decisions at the 
next decision-making level as output. 

Maintenance actions are defined, planned and priori-
tized according to the criteria and objectives of each availa-
ble maintenance strategy. Generally speaking, maintenance 
actions, whenever possible, should attack the components’ 
failure modes. The success of these actions depends largely 
on the time required to execute the action, the priority of 
the action, and the desired reliability to be achieved. 

In this context, the two main maintenance strategies 
are: 
1. Event Based Strategies: reactive and/or preventive 

maintenance, based on maintenance records, alarms 
and fault logs. 

2. Measurement Based Strategies: predictive maintenance 
and/or Condition-based Maintenance (CBM) and/or 
Prognostic and Health Management (PHM), using condi-
tion monitoring variables and all related post- processed 
information. 
Event Based Strategies are common in industry, while 

Measurement Based Strategies are the best option when a 
short-time maintenance plan is needed and the failure 
mode can directly be detected by health condition monitor-
ing. 

In Event Based Strategies, the most common mainte-
nance model applied in industrial asset maintenance analy-
sis, classic preventive maintenance information can be used 
to make good maintenance decisions, analyze assets and 
make fleet comparisons. Based on such analyses, an opera-
tor learn which assets are “better or worse” maintained 
and gain an initial idea of the effectiveness of the mainte-
nance plan based on fleet comparison. 
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Preventive time-based maintenance strategies use the 
historical information of events and the analysis of reliabil-
ity parameters to estimate the optimum Mean Time Be-
tween Maintenance (MTBM) or Mean Time To Mainte-
nance (MTTM), used to prepare the asset maintenance 
plan. In this context, the Weibull Distribution Maintenance 
Model is one of the most commonly used lifetime distribu-
tion models in industrial applications. The Weibull Distribu-
tion and its parameters can be easily fitted to various 
maintenance lifetime distribution cases, mainly when the 
maintenance rate changes during the asset life. 

As mentioned in the beginning of this section, the re-
sults from event based strategies could help the system 
operator to understand what assets are “better or worse” 
maintained and to get an initial sense of how efficient the 
maintenance plan is based on fleet comparison. Moreover, 
because input data to these models are usually available 
for any industrial asset under a preventive maintenance 
plan, the long-term maintenance actions can be resched-
uled according to the real asset life historical behavior. 

Preventive time based maintenance strategy analysis 
demonstrates that much of the information available in 
events data could help in maintenance rescheduling and 
decision- making; in general, such information is available 
without requiring a cost increase in data acquisition. 

Nevertheless, when short-term analysis is needed and 
when the asset is under different working conditions and 
regimes, the mean behavior evaluated, based on the 
events data, is not the best information source to estimate 
and schedule the “next” maintenance actions. In this con-
text, measurement based maintenance strategies should 
be used. 

Measurement based maintenance strategies use the 
available data on asset measurements to predict when a 
maintenance action needs to be carried out. CBM and PHM 
are the best known examples of these strategies. 

To rationalize failure prevention through predictive 
maintenance actions, measurement pre-processing results 
(based on both machine level and component level) can be 
applied to adopt either a CBM model, where the physical 
variables determining fault symptoms have been moni-
tored, or a PHM model, where the focus is on incipient 
fault detection, current system health assessment and pre-
diction of the remaining useful life in a component. 

It is important to understand that the event information 
is only used to determine the critical components and fail-
ure modes and to define the normal behavior time periods 
used as a “baseline” for the health condition assessment. 
Based on these ideas and considering that the monitored 
condition is available to a measurement based strategy, we 
only need to define the Maintenance Threshold (MT), i.e., 
the asset state or condition when the predictive mainte-
nance action is carried out. The main drawbacks of meas-
urement based strategies are the implementation cost 
(monitoring system, expert knowledge for health condition 
models, etc.) and the fact that incipient faults and “bad” 
health conditions cannot always be detected and/or pre-
dicted. 

To achieve and maintain good asset condition and oper-
ation, it is important to launch maintenance actions even 
when the health condition thresholds are not reached, thus 
guaranteeing the efficacy of all asset functions. This implies 
having a maintenance threshold that differs from the 
health condition threshold. 

Maintenance information includes unit life plans, job 
cataloguing, etc. for each unit in two different categories: 
preventive and corrective maintenance. These data are 
characterized by their identification (record numbers), by 
the parameters characterizing them (category, activities 
involved, impact, date), by the resources that imply their 
deployment (man/hours, equipment), and by outputs in 
terms of active maintenance time and downtime. 

Recording maintenance actions is crucial for successful 
knowledge extraction at some later date. 

The normal strategy to keep production systems in 
good condition is to apply preventive maintenance practic-
es, with a supportive workforce being “reactive” in the case 
of obvious malfunctions, as these have an impact on quali-
ty, cost and productivity. The uncertainty of machine relia-
bility at any given time also has an impact. For example, a 
worn-out mechanism can have higher energy consumption. 

The use of intelligent predictive technologies could im-
prove the situation, but these are not widely used in the 
production environment. Often sensors and monitors need-
ed in the production environment are non-standard and 
require costly implementation. 

Monitoring and profiling the electric current consump-
tion  in combination with operating data which describe the 
way the machine is used (the context) is an easy way to 
implement Green Condition Based Maintenance (Green 
CBM)  to  improve overall business effectiveness. Green 
CBM takes a triple perspective: 
1. Maintenance: Optimizing maintenance strategies based 

on the prediction of potential failure, scheduling 
maintenance operations in convenient periods and 
avoiding unexpected breakdowns. 

2. Operation: Managing energy as a production resource 
and reducing its consumption. 

3. Product reliability: Providing the machine tool builder 
with real data about the behavior of the product and its 
critical components. 
Green CBM opens up the possibility of creating new 

business models for maintenance and service providers. 
The Green CBM technique can be applied to many types 

of machines, but in this paper, we concentrate on machine 
tools. 

The paper is part of the Power Consumption Driven 
Reliability, Operation and Maintenance Optimization 
(Power OM) project (http://www.power-om.eu/), now in 
the middle of collecting operating and fingerprint data. The 
paper is, therefore, mostly conceptual and concentrates on 
possible techniques and methods to determine and predict 
the condition of machine tools and fleets of machine tools, 
especially problems/faults in the spindle drive train and 
linear axis. The proposed method for Condition Based 
Maintenance (CBM), based on fingerprint and operating 
data, gives information about both operating conditions 
and power consumption without increasing the complexity 
and can be seen as a Green Condition Based Maintenance 
platform (Green CBM) [1] for both CBM and energy optimi-
zation. 

CONDITION MONITORING OF MACHINE TOOLS 

It perhaps goes without saying that knowing and pre-
dicting the condition of an asset is valuable. During the last 
40 years, numerous diagnostic techniques have been devel-
oped, many based on signal analysis and statistical meth-
ods. 
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For stationary operating conditions, even prognostics of 
the failure work well, but the methods often require costly 
installation of transducers and signal analysis equipment 
handled by skilled personnel. 

For some time, there has been increasing interest in 
methods based on available operating data that do not 
require costly equipment or skilled personnel. This is espe-
cially relevant for those with a fleet of similar equipment 
where methods and experience can be reused, for exam-
ple, producers and owners of windmills, airplanes, ships, 
cars & trucks, elevators, packing machines and, in our case, 
machine tools. 

Machine spindle defects are responsible for frequent 
and cost-intensive downtimes in machine tools, so these 
are normally a focus of condition monitoring. But a ma-
chine tool consists of many sub-systems that also can be 
supervised. 

In the Power OM project, we concentrate on the spindle 
and the linear axis (Figure 1). 

The main technique for detecting mechanical and elec-
trical problems uses vibration analysis or Motor Current 
Signature Analysis (MCSA) in combination with context da-
ta. In the Power OM project, we use both, but in this paper 
we concentrate on MCSA in combination with context data. 
MCSA uses the electric motor as a transducer, allowing the 
user to evaluate the electrical and mechanical condition of 
the motor control and, by extension, of the machine. The 
basic idea is that any load or speed variation within an elec-
tro- mechanical system produces correlated variations in 
current and voltage. The resulting time and frequency sig-

natures reflect loads, stresses, and wear throughout the 
system, but seeing these requires a mapping process or 
pattern recognition. Comparing a reference, electric signa-
ture of equipment in good condition (the fingerprint), and 
equipment under monitoring supports fault identification. 

There are a number of commercial products in this area, 
including the ARTESIS system (www.artesis.com). The 
methods described in this paper are similar to those used in 
other systems but are more focused on other context data 
than is available in current, voltage and vibration signals. 

Power monitoring with a torque sensor is evaluated in 
[2]. Other work uses power analysis to detect production 
machine failures with current signals [3, 4] and machine 
internal signals [5]. 

As we learn from [6, 7], several failures can be detected 
using induction motor current analysis. The controlled val-
ues, for example, of a gearbox failure, can be compared in 
the stator current spectrum, because several peaks are 
related to shaft and gear speed (see Figure 2). Characteris-
tic gearbox frequencies can be detected in the stator cur-
rent spectrum. 

Current-based diagnosis of mechanical faults, such as 
imbalance and misalignment, can be performed in the 
same way. It is also possible to control the rotating move-
ment of the machine; in addition, some work has been 
done on linear movement. For example, Electro Mechanical 
Actuators (EMA) are widely used in aeronautic systems; the 
use of Health Monitoring is widespread [8, 9, 10] as well. 
Similar actuators are used in machine tools. 

Fig. 1 Main sub-system of a CNC Machine 
Source: Siemens.  

 

 

Fig. 2 Gear Failure detection with current signal 
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From testing to data collection 

Condition monitoring methods, such as vibration or 
acoustic monitoring, usually require expensive sensors. The 
application of Electrical Signature Analysis includes the di-
agnostics of electrical machines. Several authors have ap-
plied this technique to detect induction motor failures [11]. 
Others [12] have detected other failures using the induction 
motor current signature analysis. The controlled values, for 
example, of a gearbox failure, can be compared in the sta-
tor current spectrum, because certain peaks are related to 
shaft and gear speed. Characteristic gearbox frequencies 
can be detected in the stator current spectrum. Current-
based diagnosis of mechanical faults, such as imbalance and 
misalignment, can be performed in the same way. 

Good maintenance policies lead to less energy con-
sumption by assets, as stated by [13]. However, the rela-
tionship between an electric signal and wear for any com-
plex electro-mechanical system, for instance, a machine- 
tool spindle, is less evident. The potential correlation has to 
be learned based on experimental research.  The use of  
test benches allows us to identify a machine´s operating 
condition, to analyze and describe its various failure modes, 
to pinpoint the most significant signal to be used in tests for 
failure, and to design and execute a test plan for fault de-
tection and prognosis. 

Laboratory research gives us the ability to run compo-
nents to failure, working in a controlled failure environ-
ment. This helps us relate current and power signal analysis 
to the selection of features for failure diagnosis. 

To achieve statistical consistency, during the first phase 
of testing, i.e. failure diagnosis, various faults should be 
tested, along with the nominal one [14]. 

A local CBM module may consist of two main compo-
nents based on Condition Monitoring (CM) techniques: first, 
the fingerprint to be used for the health assessment of the 
critical elements of the machine and second, operational 
data to infer the use of the machine. 

A health monitoring system helps avoid component de-
fects; consequently, it can prevent poor performance or 
even breakdowns. In the case of the spindle, component 
defects include bearing damage, defects in rotary transmis-
sion, clamping malfunction, imbalance, stator error, and 
alignment error. Operational data (i.e. feed, speed) can be 
used for energy and reliability management. An example is 
the different usage ratios of the machine: loads, speeds, 
etc. Note that the collection of operational data (real- and 
non-real-time) and fingerprint collection do not need to be 
performed simultaneously. 

A fingerprint executed on a periodic basis (weekly, 
monthly etc...) generates raw data. These data are integrat-

ed with available inputs from the operational data to give 
information on the usage of the machine. These mixed data 
are pre-processed to obtain a set of relevant features that 
will be further analyzed for the nowcasting process. In par-
allel, data obtained from the machine are pre-processed to 
register the usage of the machine. The three main compo-
nents of this process are operational data, fingerprints, and 
health assessments (the latter belong to data manage-
ment). 

Monitoring working conditions (operational data) 

Determining the usage of the machine by the end user 
yields a more holistic understanding of the real status of a 
machine’s critical components. The historical use of the 
machine is found in the operational data. The main reason 
to collect operational data is to determine the operating 
environment of the machine with the purpose of finding 
possible reasons for malfunction or failure and optimizing 
reliability through the proper selection of component or 
machining parameters. Depending on the already installed 
or optional sensors, the solution may vary, but in any case, 
the required data rate should not be high (tens of Hertz). In 
modern Computer Numerical Control (CNC) systems, sever-
al configurations are available: sensors can be connected to 
the CNC or digital drive system or to specialized hardware 
(for accelerometers or main power monitoring). In any 
event, there are two options to obtain operational data 
from the machine. The first is dialoguing with the CNC using 
specific hardware; this facilitates higher acquisition speed 
and detailed data, enabling some pre-processing. The sec-
ond procedure requires the use of CNC internal data acces-
sible through various links, like OPC servers, libraries, etc.; 
this limits the information available on how the machine is 
being used to showing only its acquisition rate. 

Some processing is done to extract all the information 
from the data, using it to uild a historical register of the use 
of the machine and to obtain the data required for further 
service implementation. 

Co-relating operational data and machine condition data 
using the correct algorithms can guide component mainte-
nance, help change working conditions to extend compo-
nent life or even help select a different component, more 
appropriate for the real machine use. 

Operating data are collected with a sampling frequency 
between 1-100 Hz. The data are collected via interfacing 
with the Computer Numerical Control (CNC) controller of 
the Machine Tool (see Figure 3). In the Power-OM project, 
the research toolbox GEM OA (Open Architecture) hard-
ware from Artis is used for the data collection [15]. 

 
 

 

Fig. 3 Local data collection unit GEM OA (Artis)  
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Typical data collected are: 
 spindle power and rpm, 
 motor power and position for linear axis, 
 difference between commanded and actual position, 
 temperatures, 
 programme number, 
 tool number, 
 alarms (sampled from the CNC or taken from the log 

file). 
The operating data describe the way the machine has 

been used between the fingerprints. 

Machine fingerprint 

The term fingerprint has been coined to denote the 
electrical signature of a machine in a specific time domain. 

To obtain the main fingerprint features, machines are 
run in a pre-defined test cycle in a no-load condition to 
achieve better failure detection and to remove any noise 
that could affect the normal machine process load. Condi-
tion monitoring data are based on the fingerprints obtained 
from the machine. In the first stage, data analyzed during 
the experimentation phase may help in the selection of the 
type of sensors, acquisition rates and tests to be performed 
on the machine in the production plant. The idea behind 
the fingerprint is that any load and speed variation within 
an electro-mechanical system produces correlated varia-
tions in current and voltage. The resulting time and fre-
quency signatures reflect loads, stresses, and wear 
throughout the system, but identifying them requires a 
mapping process or pattern recognition. Comparing the 
electric signature of equipment in good condition and 
equipment under monitoring facilitates fault identification. 
Note that Signature Analysis is only applicable to cases 
where the principal cause-effect is verified and modelled. 

Fingerprint data are collected in a standardized way 
every day/week/month using a test procedure. As part of 
this standardized procedure, the machine runs a special 
CNC programme every time the fingerprint is collected. 

There is also a possibility of using standard sequences in 
ordinary production programmes like tool changing for part 
of the fingerprint collection. 

The data are collected with a sampling frequency be-
tween 100 Hz and 50 kHz, depending on the type of data. 

Typical data collected and synchronized in time are: 
 vibration, 
 motor power for spindle and linear axis (current sig-

nal and motor current signature analysis), 
 RPM and speed for spindle and linear axis and axis 

position. 
The data can be analyzed in both time and frequency 

domains [16], and a number of features (Table 1) can be 
calculated for each signal. In the frequency domain, the 
system follows the vibration levels on known frequencies 
like gear mesh frequencies, bearing frequencies, rotational 
speed etc. and their harmonics. 

For faults/problems in the gear train, such as the bear-
ing and gear problem, the most sensitive features are cho-
sen through the use of a test bench (see Figure 4) where 
different types of faults can be simulated and by using 
faulty components sent in by customers for repair (see Fig-
ure 5). 

Normally, the spindle rotates clockwise, but in certain 
operations, like threading and some milling, it operates 
counter clockwise. The latter operation normally has less 
power/torque. Therefore, comparing the difference in fea-

ture values in different rotational directions gives valuable 
information. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 Test bench for gear train  

Feature Definition 

Peak Value 

 
Root Mean Square 

 
Standard Deviation 

 
Kurtosis Value 

 
Crest Factor 

 
Clearance Factor 

 
Impulse Factor 

 
Shape Factor 

 
Normal Negative 
Likelihood value 

 

Table 1 
Time domain feature  

 

 

Fig. 5 Spindle head in test bench  
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Table 2 shows the testing of a spindle head before and 
after repair in both rotational directions. As the table 
shows, the degradation is greater in the “normal opera-
tion” direction (clockwise). 

For the linear axis, there can be problems with the drive 
train (motor/gearbox/ball screw/nut/rack/pinion) and the 
linear bearings (see Figure 6). 

For the drive train, the machine tool axis dynamics is an 
important factor; it can be analyzed by looking at the posi-
tion/speed/acceleration and jerk values and by comparing 
differences in commanded and actual position [17]. 

With high resolution power or vibration measurements 
on the linear axis, it is possible to isolate problems in the 
ball screw/nut, rack/pinion, hydraulic counter balance sys-
tem, and linear bearings [18]. 

KPI calculation 

From the operating data, a number of KPIs can be calcu-
lated for both condition monitoring and energy optimiza-
tion. Some examples are: 

 number of starts/stops/accelerations/retardations, 
 total travelled length for linear axis and distribution 

over the axis or ‘travelled load’ calculated from pow-
er need during acceleration of the axis, 

 mean power/torque for spindle and axis and distribu-
tion over the axis, 

 difference in behavior in different rotational direc-
tions for both spindle and linear axis, 

 running time in different rpm, direction and power 
intervals, 

 number of alarms per type/group, 
 total energy used for a certain product/programme 

in a certain machine, 
 total energy used for a certain tool. 
For each machine/component in the fleet, typical 

faults/problems are identified, and the most sensitive fin-
gerprint features and KPIs are chosen for each. This means 
each machine/component has a number of faults, and each 
fault has a number of features and KPIs that can be traced 
in a multi-dimensional space to estimate the condition of 
the machine/component. The threshold for the estimation 
is based on the results of tests with known faults using a 
test bench, tests of faulty components (for repaired and 
faulty spindle heads in this case) and the experience of this 
or similar machines in the fleet. 

To begin, the estimation can be based on the history of 
the machine tool, including: 

 age of component/machine tool, 
 designed lifetime of component/machine tool, 
 type of production/use (8h/24h/7d, heavy, medium, 

low), 
 maintenance history, 
 experience of similar machines in the fleet. 
After a while, however, the estimation can be based on 

results from fingerprint and operating data. 
The change in value of features between fingerprints 

indicates the degradation of the component; degeneration 
depends on both the previous condition and the way the 
machine has been used. 

This means that the future condition, the feature value 
Fn, is a function of previous condition value Fn-1 and subse-
quent operating data. 

   

Fn = f(Fn-1, Operational data) 
 

ENERGY OPTIMISATION 

A recent Directive of the European Parliament on Ener-
gy using Products [Directive 2009/125/EC] establishes a 
framework for the eco-design requirements of energy-
using products. The European Commission has published a 
working plan [Working plan for 2009-2011 under the Eco 
design Directive] with a list of energy-using product groups 
it has prioritized. Machine tools represent one of ten prod-
uct groups. 

As a result, the machine tool sector is beginning to 
change. An example is the German Machine Tool Builder 
Association (VDW) which has developed the label Blue 
Competence. 

In short, energy saving measures is increasingly rele-
vant, especially in the machine tool sector for metal work-
ing production, as this sector requires 15% of the entire 
electric power consumption (German statistics). 

Figures 7 and 8, extracted from an ISW study [20], show 
with more detail where energy is lost in the use of a ma-
chine tool and the share of energy consumed by each of its 
main components. Motor losses and idle running comprise 
35% of the energy loss; spindle and drives consume more 
than 30%. 

Power is normally optimized in machine tools in one of 
the following ways: 

Table 2 
Motor Current Analysis of the Spindle Motor showing the differ-

ence in behavior for a spindle head rotating in different  
diretions. CCW is the normal rotating direction 

Feature Value Rotational direction Spindle Status 

Crest Factor 1,96 Counter clockwise Repaired 

2,24 Counter clockwise Faulty 

1,96 Clockwise Repaired 

1,96 Clockwise Faulty 

Rotational  
Frequency 
sideband 

3,56 Counter clockwise Repaired 

12,7 Counter clockwise Faulty 

4,73 Clockwise Repaired 

4,64 Clockwise Faulty 

 
Fig. 6 Linear guides ball screw/nut  

 (1)  
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 limiting power output by optimizing production plan-
ning, 

 minimizing the use of energy by putting subsystems 
like cooling fluid, hydraulic pumps, cooling fans etc. 
into idle/sleep mode, 

 minimizing the use of energy by optimizing CNC pro-
grammes and processing paths, 

 reducing power consumption for deep whole ma-
chining with an adaptive pecking cycle, which exe-
cutes pecking as needed by sensing cutting load, 

 reducing power consumption by synchronizing the 
spindle acceleration/deceleration with the feed sys-
tem at rapid traverse stage, 

 minimizing the use of energy by cutting parameters 
and optimizing tool selection, 

 reducing power consumption for drilling and face/
end milling by setting the cutting conditions high, yet 
within a value range which does not compromise tool 
life and surface finish, thereby shortening machining 
time, 

 minimizing the cost for energy by optimizing produc-
tion planning based on different energy prices at 
different times of the day. 

 
 
 
 
 
 
 
 
 
 
 

The energy efficiency (ɳ) of a machine tool operation 
can be calculated in one of the following ways: 

 
Spindle used Energy           Total Energy 
 

      Total Energy                                        RMV 
where: 
RMV= Removed Material Volume [cm3] 

 

CONCLUSION 

The analysis of data from existing sensors and infor-
mation about a machine’s power consumption and oper-
ating conditions permit the use of a new, easy to imple-
ment, Green Condition Based Maintenance platform 
(Green CBM). 

For each machine/component in the fleet, typical 
faults/problems are identified, and the most sensitive fin-
gerprint features and KPIs are calculated for each. The cal-
culation is based on data extracted from the electric cur-
rent signal through MCSA in combination with context da-
ta. 

Green CBM does not increase the complexity and can 
be used for many types of manufacturing machines. By 
integrating all the information from individual machines, 
the fleet of machines, and even between companies, the 
Green CBM platform can act as a hub of technology, provid-
ing the different user profiles (Machine Tool users, Mainte-
nance Service Providers and Machine Tool Manufacturers) 
with services for Maintenance and Energy Optimization and 
increased machine Reliability. 
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