Research on energy absorption properties of open-cell copper foam for current collector of Li-ions

Open access

Abstract

Quasi-static uniaxial compressive tests of open-cell copper (Cu) foams (OCCF) were carried out on an in-situ bi-direction tension/compress testing machine (IBTC 2000). The effects of strain rate, porosity and pore size on the energy absorption of open-cell copper foams were investigated to reveal the energy absorption mechanism. The results show that three performance parameters of open-cell copper foams (OCCF), involving compressive strength, Young modulus and yield stress, increase simultaneously with an increase of strain rate and reduce with increasing porosity and pore size. Furthermore, the energy absorption capacity of OCCF increases with an increase of porosity and pore size. However, energy absorption efficiency increases with increasing porosity and decreasing pore size. The finite element simulation results show that the two-dimensional stochastic model can predict the energy absorption performance of the foam during the compressive process. The large permanent plastic deformation at the weak edge hole is the main factor that affects the energy absorption.

[1] Chiang Y. M., Science, 330(2010), 1485.

[2] Kalnausa S., Rhodes K., Daniel C., J. Power Sources, 196 (2011), 8116.

[3] Liang B., Liu Y.P., Xu Y.H., J. Power Sources, 267 (2014), 469.

[4] Xie W., Zhu X.K., Yi S.H., Kuang J.C., Cheng H.F., Mater. Des., 90 (2016), 38.

[5] Wu X.W., Li Y.H., Li C.C., He Z.X., Xiang Y.H., J. Power Sources, 300 (2015), 453.

[6] Chen J.L., Chen J., Chen D., Zhou Y., Li W., Mater. Lett., 117 (2014), 162.

[7] Li W., Chen J., Liang H., Li C., Mater. Sci., 33 (2015), 356.

[8] Yao M., Okuno K., Iwaki T., Awazu T., Sakai T., J. Power Sources, 195 (2010), 2077.

[9] Baggetto L., Verhaegh N.A.M., Niessen R.A.H., Roozeboom F., Jumas J.C., Notten P.H.L., J. Electrochem. Soc., 157 (2010), 340.

[10] Chou C.Y., Kim H., Hwang G.S., J. Phys. Chem. C, 115 (2011), 20018.

[11] McDowell M. T., Lee S.W., Wang C.M., Cui Y., Nano Energy, 1 (2012), 401.

[12] Nguyen C.C., SONG S.W., Electrochim. Acta, 55 (2010), 3026.

[13] Beaulieu L.Y., Beattie S.D., Hatcharda T.D., Dahn J.R., J. Electrochem. Soc., 150 (2003), 419.

[14] Bogart T.D., Chockla A.M., Korgel B.A., Curr. Opin. Chem. Eng., 2 (2013), 286.

[15] Jiang T., Zhang S.C., Qiu X.P., Zhu W.T, Chen L.Q., J. Power Sources, 166 (2007), 503.

[16] Huang L., Cai J.S., He Y., Ke F. S., Sun S.G., Electrochem. Commun., 11 (2009), 950.

[17] Ke F.S., Huang L., Wei H.B., Cai J.S., Fan X.Y., Yang F.Z., Sun S.G., J. Power Sources, 170 (2007), 450.

[18] Ke F.S., Huang L., Cai J.S., Sun S.G., Electrochim. Acta, 52(2007), 6741.

[19] Shin H.C., Liu M., Adv. Funct. Mater., 15 (2005), 582.

[20] Arbizzani C., Beninati M., Lazzari M., Mastragostino M., J. Power Sources, 158 (2006), 635.

[21] Zhao H.P., Jiang C.Y., He X.M., Ren J.G., Wan C.R., J. Membr. Sci., 310 (2008), 1.

[22] Ionica B.C.M., Lippens P.E., Aldon L., Olivier F.J., Jumas J.C., Chem. Mater., 18 (2006), 6442.

[23] Qin F., Zhang J.H., Zhang Y.D., Liu J.C., Gong Z.M., Compos. Struct., 124 (2015), 409.

[24] Jung A., Beex L.A.A., Diebels S., Bordas S.P.A., Mater. Des., 87 (2015), 36.

[25] Sun Y., Rigoberto B., Vanderklok A. J., Tekalur S. A., Wang W., Lee I., Mater. Sci. Eng. A-Adv., 592 (2014), 111.

[26] Rajak D.K., Kumaraswamidhas L.A., Das S., Kumaran S.S., J. Alloy. Compd., 656 (2016), 218.

[27] Zuman P., Microchem J., 75(2003), 139.

Journal Information


IMPACT FACTOR 2017: 0.854
5-year IMPACT FACTOR: 0.794



CiteScore 2017: 0.90

SCImago Journal Rank (SJR) 2017: 0.275
Source Normalized Impact per Paper (SNIP) 2017: 0.471

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 327 327 183
PDF Downloads 71 71 49