Structural and optical properties of Dy3+ doped Sr2SiO4 phosphors

Open access

Abstract

Dysprosium doped strontium silicate phosphor namely (Sr2SiO4:Dy3+) was prepared by low-temperature solution combustion method using urea (CO(NH2)2) as a fuel. The material was characterized by powder X-ray diffraction (XRD), FT-IR, SEM and EDX. The average crystallite sizes was calculated by Scherer formula. Thermoluminescence study was carried out for the phosphor which showed single glow curve. The kinetic parameter were calculated by using Chen’s glow curve method. Photoluminescence spectra revealed strong transition at 473 nm (blue), 571 nm (yellow) and weak transition at 645 nm (red). These peaks were assigned to transition 4F9/26H15/2, 13/2, 11/2. CIE graph of Sr2SiO4:Dy3+ phosphor is suitable for the generation of white light emission.

[1] Feldmann C., Justel T., Ronda C.R., Schmidt P.J., Adv.Funct. Mater., 13 (2003), 511.

[2] Devaraju M.K., Yin S., Sato T., Nanotechnology, 20 (2009), 305302.

[3] Won J.K., Sung J.K., Lee K.S., Samoc M., Cartwright A.N., Prasad P.N., Nano Lett., 8 (2008), 3262.

[4] Singh A., Gunning R.D., Ahmed S., Barrett C.A., English N.J., Garatea J.A., Ryan K.M., J. Mater. Chem., 22 (2012), 1562.

[5] Pei L.Z., Pei Y.Q., Xie Y.K., Yuan C.Z., Li D.K., Zhang Q.F., Cryst Eng Comm, 14 (2012), 4262.

[6] Siriwong P., Thongtem T., Phuruangrat A., Thongtem S., Cryst Eng Comm, 13 (2011), 1564.

[7] Huang S., Xu J., Zhang Z., Zhang X., Wang L., Gai S., He F., Niu N., Zhang M., Yang P., J. Mater. Chem., 22 (2012), 16136.

[8] Hao E.C., Bailey R.C., Schatz G.C., Hupp J.T., Li S.Y., Nano Lett., 4 (2004), 327.

[9] Justel T., Nikol H., Ronda C., Angew. Chem. Int. Edit., 37 (1998), 3085.

[10] Feldmann C., Jüstel T., Ronda C.R., Schmidt P.J., Adv. Funct. Mater., 13 (2003), 511.

[11] Briche S., Zambon D., Boyer D., Chadeyron G., Mahiouet R., Opt. Mater., 28(2006), 615.

[12] Yu L., Li D., Yue M., Yao J., Lu S., Chem. Phys., 326 (2006), 478.

[13] Chen T.M., Chen S.C., Yu C.J., J. Solid State Chem., 144 (1999), 437.

[14] Jung K.Y., Lee H.W., Kang Y.C., Park S.B., Yang Y.S., Chem. Mater., 17 (2005), 2729.

[15] Sreekanth C.R.P., Nagabhushana B.M., Chandrappa G.T., Ramesh K.P., Rao J.L., Mater. Chem. Phys., 95 (2006), 169.

[16] Matsuzawa T., Aoki Y., Takeuchi N., Murayama Y., J. Electrochem. Soc., 143 (1996), 2670.

[17] Sun X.Y., Zhang J.H., Zhang X., Lu S.Z., Wang X.J., J. Lumin., 122 (2007), 955.

[18] Baginskiy I., Lui R.S., Wang C.L., Lin R.T., Yao Y.J., J. Electrochem. Soc., 158 (2011), 118.

[19] Catti M., Gazzoni G., Ivaldi G., Zanini G., Acta Crystallogr. B, 39 (1983), 674.

[20] Catti M., Gazzoni G., Ivaldi G., Acta Crystallogr. C, 39 (1983), 29.

[21] Hyde B.G., Sellar J.R., Stenberg L., Acta Crystallogr. B, 42 (1986), 423.

[22] Stenberg L., Hyde B.G., Acta Crystallogr. B, 42 (1986), 417.

[23] Dutczak D., Milbrat A., Katelnikovas A., Meijerink A., Ronda C., Justel T., J. Lumin., 132 (2012), 2398.

[24] Haranath D., Chander H., Sharma P., Singh S., Appl. Phys. Lett., 89 (2006), 173118.

[25] Su Q., Liang H., Li C., He H., Lu Y., Li J., Tao Y., J. Lumin., 122 (2007), 927.

[26] Gou Z., Chang J., Zhai W., J. Eur. Ceram. Soc., 25 (2005), 1507.

[27] Chandrasekhar M., Sunitha D.V., Dhananjaya N., Nagabhushana H., Sharma S.C., Nagabhushana B.M., Shivakumara C., Chakradhar R.P.S., J. Lumin., 132 (2012), 1798.

[28] Umesh B., Eraiah B., Nagabhushana H., Sharma S.C., Sunitha D.V., Nagabhushana B.M., Shivakumara C., Rao J.L., Chakradhar R.P.S., Spectrochim. Acta A, 93 (2012), 228.

[29] Chen R., J. Electrochem. Soc., 116 (1969), 1254.

[30] Yuan Z.X., Chang C.K., Mao D.L., Ying W.J., J. Alloy. Compd., 377(1) (2004), 268.

[31] Sahu I.P., Bisen D.P., Brahme N., Displays, 35 (2014), 279.

[32] Tamrakar R.K., Bisen D.P., Sahu I.P., Brahme N., J. Radiat. Res., 7 (2014), 417.

[33] Furetta C., Handbook of Thermoluminescence, World Scientific Press, Singapore, 2003.

[34] Chen R., McKeever S.W.S., Theory of Thermoluminescence and Related Phenomenon, World Scientific Press, Singapore, 1997.

[35] McKeever S.W.S., Thermoluminescence of Solids, Cambridge University Press, Cambridge, 1985.

[36] Van Uitert L.G., J. Electronchem. Soc., 114 (1967), 1048.

[37] Ozawa L., Jaffe P.M., J. Electronchem. Soc., 118 (1971), 1678.

[38] Dexter D.L., J. Chem. Phys., 21 (1953), 836.

[39] Mulak J., Mulak M., J. Phys. A-Math. Theor., 40(2007), 2063.

[40] Gruber J.B., Zandi B., Valiev U.V., Rakhimov S.A., J. Appl. Phys., 94 (2003), 1030.

[41] Chen Y., Cheng X., Liu M., Qi Z., Shi C., J. Lumin., 129 (2009), 531.

[42] Gupta S.K., Kumar M., Natarajan V., Godbole S.V., Opt. Mater., 35 (2013), 2320.

[43] Zukauskas A., Shur M.S, Gaska R., Introduction to Solid State Lighting, Wiley, New York, 2002.

[44] CIE, Proceedings of the 8th Session of CIE, Cambridge, England, 1931.

Journal Information


IMPACT FACTOR 2017: 0.854
5-year IMPACT FACTOR: 0.794



CiteScore 2017: 0.90

SCImago Journal Rank (SJR) 2017: 0.275
Source Normalized Impact per Paper (SNIP) 2017: 0.471

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 473 473 241
PDF Downloads 64 64 47