Effect of Sm concentration on optical and electrical properties of CdSe nanocrystalline thin film

Open access

Abstract

Present paper reports optical and electrical properties of samarium doped CdSe nanocrystalline thin film which was grown on a glass substrate by chemical bath deposition method (CBD). X-ray diffraction (XRD) analysis revealed that the deposited films were nanocrystalline with sphalerite cubic structure. The average crystallite size calculated from FWHM of XRD peaks was found to be 10.11 nm. The bandgap of the Sm doped CdSe nanocrystalline thin films was calculated to be 1.91 eV to 2.22 eV. The optical absorption edge of undoped (pure) and Sm doped CdSe films was obtained between 650 nm to 640 nm showing blue shift as compared to bulk CdSe. Sm doping further enhanced the photoconductivity of these films. The I-V characteristic confirmed the suitability of prepared films for photosensor applications.

[1] Califano M., Zunger A., Franceschetti A., Appl. Phys. Lett., 84 (2004), 2409.

[2] Schaller R.D., Petruska M.A., Klimov V.I., Appl. Phys. Lett., 87 (2005), 253102-1.

[3] Hendry E., Koeberg M., Wang F., Zhang H., Mello de Donega C., Vanmaekelbergh D., Bonn M., Phys. Rev. Lett., 96 (2006), 057408-1.

[4] Roth M., Nucl. Instrum. Meth. A, 283 (1989), 291.

[5] Vorobiev Yu., González-Hernández J., Vorobiev P., Bulat L., Sol. Energy, 80 (2006), 170.

[6] Moersch G., Rava P., Schwarz F., Paccagnella A., IEEE T. Electron. Dev., 36 (1989), 449.

[7] Murali K.R., Sivaramamoorthy K., Asath Bahadur S., Kottaisamy M., Chalcogenide Lett., 5 (2008), 249.

[8] Mishra S., Kshatri D.S., Khare A., Tiwari S., Dwivedi P.K., Mat. Lett., 183 (2016), 191.

[9] Mishra S., Kshatri D.S., Khare A., Tiwari S., Dwivedi P.K., Mat. Lett., 198 (2017), 101.

[10] Pawar S.M., Moholkar A.V., Rajpure K.Y., Bhosale C.H., J. Phys. Chem. Solids, 67 (2006), 2386.

[11] Chae D.Y., Seo K.W., Lee S.S., Yoon S.H., Shim I.W., Bull. Korean Chem. Soc., 27 (2006), 762.

[12] Deshpande M.P., Garg N., Bhatt S.V., Sakariya P., Chaki S.H., Mat. Sci. Semicon. Proc., 16 (2013), 915.

[13] Lokhande C.D., Lee E.H., Jung K.D., Joo Q.S., Mater. Chem. Phys., 91 (2005), 200.

[14] Kale R.B., Lokhande C.D., Semicond. Sci. Techol., 20 (2005), 1.

[15] Metin H., Erat S., Ari M., Bozoklu M., Optoelectron. Adv.Mat., 2 (2008), 92.

[16] Islam R., Banerjee H.D., Rao D.R., Thin Solid Films, 266 (1995), 215.

[17] Perna G., Capozzi V., Minafra A., Pallara M., Ambrico M., Eur. Phys. J.B, 32 (2003), 339.

[18] Sharma K., Al-Kabbi A.S., Saini G.S.S., Tripathi S.K., J. Alloy. Compd., 564 (2013), 42.

[19] Bhuse V.M., Mat. Chem. Phys. B, 91 (2005), 60.

[20] Sharma K., Alkabbi A.S., Saini G.S.S., Tripathi S.K., J. Alloy. Compd., 540 (2012), 198.

[21] Shinde S.K., Dubal D.P., Ghodake G.S., Fulari V.J., J. Electroanal. Chem., 727 (2014), 179.

[22] Ubale A.U., Ibrahim S.G., Arch. Phys. Res., 4 (2013), 37.

[23] Cullity B.D., Stock S.R., Elements of X-Ray Diffraction, Prentice Hall, New Jersey, 2001.

[24] Cullity B.D., Elements of X-ray Diffraction, Addition-Weasley, London, 1978.

[25] Williamson G.B., Smallman R.C., Philos. Mag., 1 (1956), 34.

[26] Wang G.Z., Chen W., Liang C.H., Wang Y.W., Meng G.W., Zhang L.D., Inorg. Chem. Commun., 4 (2001), 208.

[27] Wang W.Z., Geng Y., Yan P., Liu F.Y., Xie Y., Qian Y.T., Inorg. Chem. Commun., 2 (1999), 83.

[28] Erat S., Metin H., Ari M., Mat. Chem. Phys., 111 (2008), 114.

Journal Information


IMPACT FACTOR 2017: 0.854
5-year IMPACT FACTOR: 0.794



CiteScore 2017: 0.90

SCImago Journal Rank (SJR) 2017: 0.275
Source Normalized Impact per Paper (SNIP) 2017: 0.471

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 120 120 41
PDF Downloads 122 122 39