Modelling of electronic and optical properties of Cu2SnS3 quantum dots for optoelectronics applications

Open access

Abstract

Copper tin sulfide (Cu2SnS3) is a unique semiconductor, whose nanocrystals have attracted researchers’ attention for its tunable energy bandgap and wavelength in visible and near infrared range. Quantum dots which are fabricated from this material are highly suitable for optoelectronics and solar cell applications. This paper discusses the tunable energy bandgap, exciton Bohr radius and wavelength range of wurtzite structure of Cu2SnS3 quantum dots to assess the opportunity to use them in optoelectronics applications. The considerations show that the mole fraction of copper increases as energy bandgap decreases and tunable energy bandgap of this quantum dot material is inversely proportional to the wavelength.

[1] Sargent E.H., Adv. Mater., 17 (2005), 515.

[2] Jara D.H., Yoon S.J., Stamplecoskie K.G., Kamat P.V., Chem. Mater., 26 (2014), 7221.

[3] Ko D.K., Maurano A., Suh S.K., Kim D., Hwang G.W., Grossman J.C., Bulovic V., Bawendi M.G., ACS Nano, 10 (2016), 3382.

[4] Chen J., Zhao D., Li C., Xu F., Lei W., Sun L., Nathan A., Sun X.W., Sci. Rep., 4 (2014), 4085.

[5] Song W.S., Yang H., Chem. Mater., 24 (2012), 1961.

[6] Gong X., Yang Z., Walters G., Comin R., Ning Z.E., Beauregar D., Adinol V., Voznyy O., Sargent E.H., Nat. Photonics, 10 (2016), 253.

[7] Chuang C.H.M., Brown P.R., Bulovic V., Bawendi M.G., Nat. Mater., 13 (2014), 796.

[8] Zhang J., Gao J., Miller E.M., Luther J.M., Beard M.C., ACS Nano, 8 (2014), 614.

[9] Clifford J.P., Konstantatos G., Johnston K.W., Hoogland S., Levina L., Sargent E.H., Nat. Nanotechnol., 4 (2009), 40.

[10] Lhuillier E., Scarafagio M., Hease P., Nadal B., Aubin H., Xu X.Z., Lequeux N., Patriarche G., Ithurria S., Dubertret B., Nano Lett., 16 (2016), 1282.

[11] Qiao K., Deng H., Yang X., Dong D., Li M., Hu L., Liu H., Song H., Tang J., Nanoscale, 8 (2016), 7137.

[12] Dabbousi B., Rodriguez Viejo J., Mikulec F.V., Heine J., Mattoussi H., Ober R., Jensen K., Bawendi M., J. Phys. Chem. B, 101 (1997), 9463.

[13] Song W.S., Yang H., Chem. Mater., 24 (2012), 1961.

[14] Li L., Daou T.J., Texier I., Kimchi T.T., Liem N.Q., Reiss P., Chem. Mater., 21 (2009), 2422.

[15] Park J., Kim S.W., J. Mater. Chem., 21 (2011), 3745.

[16] Sadia Sulthana., Shah Alam MD., IEEE Int. Conf. Comp. Inform. Technol., (2015), 550.

[18] Kamalanathan M., Hussain Shamima., Gopalakrishnan R., Vishista K., Mater Technol, 2 (2017), 1.

[19] Bonk R., Brenot R., Meuer C., Vallaitis T., Tussupov A., Rode J.C., Sygletos S., Vorreau P., Lelarge F., Duan G.H., Krimmel H.G., Pfeiffer T.H., Bimberg D., Freude W., Leuthold J., IEEE Int. Conf. Opt. Fiber Commun., (2009), 1.

[20] Michal Borecki., Piotr Doroz., Przemyslaw Prus., Pawel Pszczólkowski., Jan Szmidt., Michael L., Korwin-Pawlowski., Jaroslaw Frydrych., Andrzej Kociubinski., Mariusz Duk., Int. J. Adv. Syst. Meas., 7 (2014), 57.

[21] Mikkelsen B., Durhuus T., Jorgensen C., Danielsen S.L., Pedersen R.J.S., Stubkjaer K., IEEE Proc. Opt. Fiber Commun. Conf., (1996), 121.

[22] Ramamurthy Byrav., Mukherjee Biswanath., IEEE J. Sel. Areas Commun., 7 (1998), 68.

[23] Meuer C., Schmidt-Langhorst C., Bonk R., Schmeckebier H., Arsenijevic D., Fiol G., Galperin A., Leuthold J., Schubert C., Bimberg D., Opt. Express., 6 (2011), 5134.

[24] Akiyama T., Hatori N., Nakata Y., Ebe H., Sugawara M., Phys. Status Solidi B., 2 (2003), 301.

[25] Contestabile G., Maruta A., Sekiguchi S., Morito K., Kitayama K., IEEE J. Quantum Electron., 4 (2011), 541.

[26] Contestabile G., Maruta A., Sekiguchi S., Morito K., Kitayama K., IEEE 35th Eur. Conf. Opt. Commun., (2009), 1.

[27] Borecki M., Geca M., Duk M, KorwinPawlowski M.L., J. Elec. Commu. Eng. Res., 2 (2017), 1.

[28] Sugawara M., Yamamoto T., Ebe H., Fujitsu Sci. Tech. J., 4 (2007), 495.

[29] Giampiero Contestabile., Yuki Yoshida., Akihiro Maruta., IEEE Photon. Technol. Lett., 9 (2013), 791.

[30] Kim H., Kwon B.H., Suh M., Kangd.S., Kim Y., Jeond.Y., Electrochem. Solid State Lett., 10 (2011), 55.

[31] Coe-Sullivan S., Liu W.Z., Allen P., Steckel J.S., ECS J. Solid State Sci. Technol., 2 (2013), 3026.

[32] Steckel J.S., Ho J., Hamilton C., Xi J., Breen C., Liu W., Allen P., Coe-Sullivan S., J. Soc. Inf. Disp., 7 (2015), 294.

[33] Sinem Erden Gulebaglan., Emel Kilit Dogan., Murat Aycibin., Mehmet Nurullah Secuk., Bahattin Erdinc., Harun Akkus., J. Mod. Phys., 5 (2014), 1546.

[34] Sima Aminorroaya Yamini., Vaughan Patterson., Rafael Santos., ACS Omega, 2 (2017), 3417.

[35] Brus L.E., J. Chem. Phys., 91 (1984), 4403.

[36] Chukwuocha E.O, Onyeaju M.C., Int. J. Sci. Technol. Res., 7 (2012), 21.

[37] Changiz V., Ali E., Res. J. Recent Sci., 1 (2013), 21.

[38] Baranowski L.L., McLaughlin K., Zawadzki P., Lany S., Norman A., Hempel H., Eichberger R., Unold T., Tobererand E., Zakutayev A.S., Phys. Rev. Appl., 4 (2015), 044017.

[39] Shen Y., Li C., Huang R., Tian R., Ye Y., Pan L., Koumoto K., Zhang R., Wan C., Wang Y., Sci. Rep., 6 (2016), 32501.

[40] Orletskii G., Solovan M.N., Pinna F., Cicero G., Maryanchuk P.D., Maistruk E.V., Tresso E., Phys. Solid State, 4 (2017), 801.

[41] Chen R., Doctoral Thesis, KTH Royal Institute of Technology, 2017.

[42] Flores-García E., González-García P., González-Hernández J., Ramírez-Bon R., Optik, 145 (2017), 589.

[43] Kumagai Y., Burton L., Walsh A., Oba F., Phys. Rev. Appl., 6 (2016), 014009.

Journal Information


IMPACT FACTOR 2017: 0.854
5-year IMPACT FACTOR: 0.794



CiteScore 2017: 0.90

SCImago Journal Rank (SJR) 2017: 0.275
Source Normalized Impact per Paper (SNIP) 2017: 0.471

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 329 329 176
PDF Downloads 50 50 26