Structural, optical and vibrational study of zinc copper ferrite nanocomposite prepared by exploding wire technique

Open access

Abstract

We have synthesized zinc-copper ferrite (ZCFO) employing exploding wire technique (EWT). The X-ray diffraction (XRD) data confirm the formation of single phase spinel ZCFO, which is in good agreement with Fourier transform infrared spectroscopy (FT-IR), UV-Vis, and Raman spectroscopic analyses. It is also clearly seen in the SEM micrographs that the grains in ZCFO ferrite are very rough, which allows adsorption of gas like oxygen and therefore, the material can behave as active sensing surface. The size range of the grains in prepared sample is of 200 nm to 500 nm. The FT-IR spectrum of the nanocomposite consists of two broad bands, one at 580.4 cm−1 due to M–O stretching mode at the tetrahedral site and the other at 400.7 cm−1 due to M–O stretching mode at the octahedral site. The nanoparticles show a UV-Vis absorption band in the wavelength region of 400 nm to 700 nm. The energy band gap for the prepared nanomaterial was estimated to be 3.16 eV. Thus, the ferrite nanocomposite prepared by EWT is optically active. According to present literature, Raman spectroscopy study on zinc-copper ferrite system has not been reported till date. By suitable attributing various Raman modes, we have further confirmed the formation of ZCFO nanophase through the present novel approach.

[1] Thakur P., Sharma R., Kumar M., Katyal S.C., Negi N.S., Thakur N., Mater. Res. Express, 3 (2016), 75001.

[2] Lopez J., Gonzalez-Bahamon L.F., Prado J., Caicedo J.C., Zambrano G., Gomez M.E., Esteve J., Prieto P., J. Magn. Magn. Mater., 324 (2012), 394.

[3] Ghasemi A., Hossienpour A., Morisako A., Saatchi A., Salehi M., J. Magn. Magn. Mater., 302 (2006), 429.

[4] Komarneni S., Fregeau E., Breval E., Roy R., J. Am. Ceram. Soc., 71 (1988), C26.

[5] Hrianka I., Malaescu I., J. Magn. Magn. Mater., 150 (1995), 131.

[6] Wang C., Zhang X.M., Qian X.F., Xie J., Wang W.Z., Qian Y.T., Mater. Res. Bull., 33 (1998), 1747.

[7] Yamamoto Y., Makino A., J. Magn. Magn. Mater., 133 (1994), 500.

[8] Kodama R.H., Berkowitz A.E., Mcniff Jr. E.J., Foner S., Phys. Rev. Lett., 77 (1996), 394.

[9] Banerjee M., Verma N., Rasad R., J. Mater. Sci., 42 (2007), 1833.

[10] Jain A., Baranwal R.K., Bharti A., Vakil Z., Prajapati C.S., Sci. World J., 2013 (2013), 790359.

[11] Jaswal L., Singh B., J. Integr. Sci. Technol., 2(2) (2014), 67.

[12] Goswami N., Singh S., Katyal S.C., J. Laser. Opt. Photonics, 4 (2017) 158.

[13] Abdeen A.M., J. Magn. Magn. Mater., 185 (1998), 199.

[14] Gubbala S., Nathania H., Koizolb K., Misra R.D.K., Physica B, 348 (2004), 317.

[15] Daliya S.M., Ruey-Shin J., Chem. Eng. J., 129 (2007), 51.

[16] Toledo J.A., Valenzuela A., Bosch P., Amendariz H., Montoya A., Nova N., Vazquez A., Appl. Catal. A-Gen., 198 (2000), 235.

[17] Radheshyam A., Dwivedi R., Reddy V.S., Charry K.V.R., Prasad R., Green Chem., 4 (2002), 558.

[18] Sreekumar K., Mathew T., Devassy B.M., Rajgopal R., Vetrivel R., Rao B.S., Appl. Catal. A Gen., 20 (2001), 11.

[19] Pannaparayil T., Komarneni S., Marande R., Zardrho M., J. Appl. Phys., 67 (1990), 5509.

[20] Zhao W., Fang M., Wu F., Wu H., Wang L. Chen G., J. Mater. Chem., 20 (2010), 5817.

[21] Ramesh S., J. Nanosci. Nanotechno., 2013 (2013), 929321.

[22] Goswami N., Sen P., Solid State Commun., 132 (2004), 791.

[23] Goswami N., Sen P., J. Nanopart. Res., 9 (2007), 513.

[24] Goswami N., Sen P., Mater. Res. Express, 1 (2014), 25001.

[25] Sahai A., Goswami N., Kaushik S.D., Tripathi S., Appl. Surf. Sci., 390 (2016), 974.

[26] Goswami N., Sen P., Appl. Surf. Sci., 425 (2017), 576.

[27] Yamauchi S., Goto Y., Hariu T., J. Cryst. Growth, 260 (2004), 1.

[28] Siwach O.P., Sen P., J. Nanopart. Res., 10 (2008), 107.

[29] Kaufmann E.N., Characterization of Materials, John Wiley & Sons, Inc., Hoboken, New Jersey, 2003.

[30] Sahai A., Goswami N., Physica E, 58 (2014), 130.

[31] Zeng H., Cai W., Li Y., Hu J., Liu P., J. Phys. Chem. B, 109 (2005), 18260.

[32] Sahai A., Kumar Y., Agarwal V., Olivemendez S.F., Goswami N., J. Appl. Phys., 116 (2014), 164315.

[33] Pankove J.I., Optical Processes in Semiconductors, Dover, New York, 1971.

[34] Goswami N., Sharma D.K., Physica E, 42 (2010), 1675.

[35] Hu Y., Chen H.J., J. Nanopart. Res., 10 (2008), 401.

[36] Madelung O., Semiconductors: Data Handbook, Springer, New York, 2004.

[37] Kumar S., Mukherjee S., Singh R.K., Chatterjee S., Ghosh A.K., J. Appl. Phys., 110 (2011), 103508.

[38] Srivastava A.K., Deepa M., Bahadur N., Goyat M.S., Mater. Chem. Phys., 114 (2099), 194.

[39] Dijken A.V., Meulenkamp E., Vanmaekelbergh D., Meijerink A., J. Lumin., 90 (2000), 123.

[40] Shebanova O.N., Lazor P., J. Solid State Chem., 174 (2003), 424.

[41] Wang Z., Schiferl D., Zhao Y., O’neill H.ST.C., J. Phys. Chem. Solids, 64 (2003), 2517.

[42] Gonzalez-Angeles A., Mendoza-Suarez G., Gruskova A., Papanova M., Slama J., Mater. Lett., 59 (2005), 26.

[43] Saikiaa K., Kaushikb S.D., Sen D., Mazumder S., Deb P., Appl. Surf. Sci., 379 (2016), 530.

[44] Romcevic N., Kostic R., Romcevic M., Hadzic B., Kudelska I.K., Dobrowolski W., Narkiewicz U., Sibera D., Acta Phys. Pol. A, 114 (2008), 1323.

[45] Damen T.C., Porto S.P.S., Tell B., Phys. Rev., 142 (1966), 570.

[46] Arguello C.A., Rousseau D.L., Porto S.P.S., Phys. Rev., 181 (1969), 1351.

[47] Goswami N., Sahai A., Mater. Res. Bull., 48 (2013), 346.

[48] Graves P.R., Johnston C., Campaniello J.J., Mater. Res. Bull., 23 (1988), 1651.

[49] Gasparov L.V., Tanner D.B., Romero D.B., Berger H., Margaritondo G., Forro L., Phys. Rev. B, 62 (2000), 7939.

[50] Dunnwald J., Otto A., Corros. Sci., 29 (1989), 1167.

[51] Verble J.L., Phys. Rev. B, 9 (1974), 5236.

[52] Hart T.R., Adams S.B., Tempkin H., Balkanski M., Leite R., Porto S., Proc. Inter. Conf. Light Scatter. Sol., (1976), 254.

[53] Degiorgi L., Blatter-Mörke I., Wachter P., Phys. Rev. B, 35 (1987), 5421.

[54] Gupta R., Sood A.K., Metcalf P., Honig J.M., Phys. Rev. B, 65 (2002), 104430.

[55] Bersani D., Lottici P.P., Montenero A., J. Raman Spectrosc., 30 (1999), 355.

[56] De Faria D.L.A., Silva S.V., De Oliveira M.T., J. Raman Spectrosc., 28 (1997), 873.

[57] Ohtsuka T., Kubo K., Sato N., Corrosion-US, 42 (1986), 476.

[58] Boucherit N., Goff A.H., Joiret S., Corros. Sci., 32 (1991), 497.

[59] Thierry D., Persson D., Leygraf C., Boucherit N., Goff A.H., Corros. Sci., 32 (1991), 273.

[60] Li J.M., Huan A.C.H., Phys. Rev. B, 61 (2000), 6876.

[61] Wang Z., Lazor P., Saxena S.K., O’neill H.S.C., Mat. Res. Bull., 37 (2002), 1589.

Journal Information


IMPACT FACTOR 2017: 0.854
5-year IMPACT FACTOR: 0.794



CiteScore 2017: 0.90

SCImago Journal Rank (SJR) 2017: 0.275
Source Normalized Impact per Paper (SNIP) 2017: 0.471

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 118 118 37
PDF Downloads 86 86 21