

Role of molybdenum ions in lead zinc phosphate glass system by means of dielectric studies

P. VENKATESWARA RAO^{1,*}, G. NAGA RAJU², P. SYAM PRASAD³, T. SATYANARAYANA⁴, L. SRINIVASA RAO⁵, F. GOUMEIDANE⁶, M. IEZID⁷, W. MARLTAN¹, G. SAHAYA BASKARAN⁸, N. VEERAIAH²

¹Department of Physics, University of the West Indies, Mona Campus, Jamaica

²Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, AP, India

³Department of Physics, National Institute of Technology Warangal, Warangal, Telangana, India

⁴Department of Electronics and Instrumentation Engineering, Lakireddy Bali Reddy College of Engineering (A), AP, India

⁵Department of Humanities and Sciences (Physics), VNR Vignana Jyothi Institute of Engineering and Technology, Bachupally, Nizampet (S.O), Hyderabad, Telangana, India

Daenuparty, Mizamper (5.0), Hyderabad, Telangana, India

⁶Laboratory of Active Components and Materials; Larbi Ben M'hidi University, Oum El Bouaghi, 04000, Algeria

⁷Laboratoire d'Innovation en construction, Eco-conception et Génie Sismique (LICEGS); Université Mostafa Ben Boulaid Batna 2, Algeria

⁸Departmentof Physics, Andhra Loyola College, Vijayawada, India

PbO-ZnF₂-P₂O₅ glasses doped with different mol% (0.1 to 1.0) of MoO₃ have been prepared. Dielectric properties $\epsilon'(\omega)$, tan δ , σ_{AC} , of the synthesized samples were calculated from frequency measurements versus temperature. Space charge polarization was used to analyze the temperature and frequency dispersions of dielectric constant $\epsilon'(\omega)$ and dielectric loss tan δ . Quantum mechanical tunneling model was employed to explain the origin of AC conductivity. The AC conductivity exhibited an increasing trend with increasing concentration of MoO₃ (up to 0.2 mol%) but the activation energy for conduction decreased. The plots of AC conductivity revealed that the relaxation dynamics depends on MoO₃ dopant concentration.

Keywords: electrical and dielectric properties; quantum mechanical tunneling; AC conductivity; relaxation dynamics

1. Introduction

In recent years, the study of electrical properties, including dielectric characteristics in glasses plays a significant role in solid state electronic devices [1]. The main applications of glassy dielectrics involve capacitance elements in electronic circuits and electrical insulators. Transition metal ions (TMI) in glasses are beneficial in electrochromic devices, such as smart windows and flat panel displays [2–7]. A small percentage concentration of TMI in oxide glasses resulted in their semiconducting properties [8, 9] and for these glasses the dielectric relaxation effect was due to electron hoping pairs [10].

Phosphate glasses exhibit distinctive physical properties when compared to the other borate and silicate glasses. The phosphate glasses have lower coefficient of thermal expansion, high ultraviolet transmission and comparatively lower melting temperature [11-13]. The semiconductor oxide MoO₃ acts as a conditional glass former as well as a modifier. When phosphate glasses are mixed with this oxide, their physical properties and chemical durability are expected to be improved [14, 15]. The MoO₃ mixed glasses find potential applications in developing alphanumeric displays, microbatteries, gas sensors, and memory devices [16, 17]. The stable oxidation states, Mo^{5+} and Mo^{6+} of MoO_3 , are anticipated to change the dielectric properties depending on the composition of glass.

PbO-P₂O₅ glasses are recognized for their stability and moisture resistance. PbO plays a dual

© 2018. This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. (http://creativecommons.org/licenses/by-nc-nd/4.0/)

^{*}E-mail: pvrao54@gmail.com

role: a modifier for Pb–O ionic bond and a glass former for Pb–O covalent bond [18–20]. The addition of ZnF_2 to this type of glass system increases liquidus temperature and corrosion resistance of the glasses [21]. Zn^{2+} cation is responsible for the good glass forming ability.

2. Experimental

Lead zinc phosphate glasses of the composition (20 - x)PbO-30ZnF₂-50P₂O₅:xMoO₃, with x = 0.1, 0.2, 0.3, 0.4, 0.8 and 1.0 mol% (labeled as M_1 , M_2 , M_3 , M_4 , M_8 and M_{10}) were prepared by the melt quenching method [22, 23]. The chemicals (from Acros Co.) PbO ≥ 99 %, ZnF₂ \geq 99.8 %, $P_2O_5 \ge 99$ % and $MoO_3 \ge 99$ % were weighed and the mixture of the compounds was melted in a platinum crucible in a PID electric furnace at a temperature of 1273 K for one hour. The bubble free liquid melt was transferred into a preheated brass mould and the samples were annealed at 523 K for five hours. The density of the prepared glass samples was measured by the Archimedes principle with distilled water as a buoyant liquid. The actual compositions of the glass samples and other physical parameters such as average molecular weight, ion concentration, mean ion separation distance and polaron radius have been evaluated and tabulated in Table 1.

X-ray diffraction study confirmed the amorphous nature of the prepared glass samples. SEIFERT diffractometer model SO-DEBYE FLUX 202 was used for X-ray diffraction analysis of the prepared samples. Silver coating on both sides of the sample acted as electrodes for measurement of dielectric properties [24, 25]. The dielectric measurements of the samples in the present investigation were performed with HP 4263B LCR Meter in the frequency range of 10^2 Hz to 10^5 Hz and the temperature range of $30 \,^{\circ}$ C to $350 \,^{\circ}$ C. Radart Q-Meter was used for high frequency measurements.

3. Results

Fig. 1 shows the frequency variation of dielectric constant ϵ' and loss tan δ

of the PbO-ZnF₂-P₂O₅:MoO₃ glasses. At room temperature and at high frequency of 100 kHz the values of ϵ' and tan δ were found as 9.3 and 0.0074, respectively, for the pure sample M₀. These values have increased with increasing concentration of MoO₃ up to 0.2 mol% (inset of Fig. 1) further, larger dielectric constant values were noted at the low frequency 1 kHz.

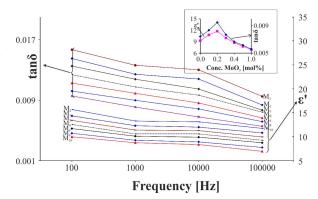


Fig. 1. Variation of dielectric constant and loss tangent with frequency at room temperature for PbO-ZnF₂-P₂O₅:MoO₃ glasses. The inset figure represents the variation of ϵ' and tan δ with the concentration of MoO₃ at 100 kHz.

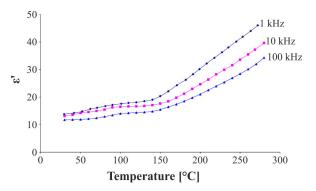


Fig. 2. Variation of dielectric constant of glass M₂ with temperature at different frequencies.

Fig. 2 presents the variation of dielectric constant with temperature at different frequencies for the glass sample M_2 . The measured ϵ' values of the sample were found to increase with temperature and the rate of the increase was larger at low frequencies; the other samples also followed the same trend.

Sample	Glass composition	Density [g/cm ³]	Average molecular weight	Concentration of molybdenum ions N_i [×10 ²¹ ions per cm ³]	Interionic distance r _i [Å]	Polaron radius r _p [Å]
M ₀	20.0 PbO-30ZnF ₂ -50P ₂ O ₅	2.7018	116.4	-	_	_
M_1	19.9PbO-30ZnF ₂ -50 P ₂ O ₅ :0.1MoO ₃	2.7047	116.5	1.65	7.78	2.95
M_2	19.8PbO-30ZnF2-50P2O5:0.2MoO3	2.7099	116.6	2.79	7.09	2.86
M ₃	19.7PbO-30ZnF2-50P2O5:0.3MoO3	2.7105	116.7	4.19	6.20	2.50
M_4	19.6PbO-30ZnF2-50P2O5:0.4MoO3	2.7176	116.8	5.66	5.63	2.27
M ₈	19.2PbO-30ZnF ₂ -50P ₂ O ₅ :0.8MoO ₃	2.7870	117.2	11.458	4.44	1.79
M ₁₀	19.0PbO-30ZnF ₂ -50P ₂ O ₅ :1.0MoO ₃	2.8210	117.4	12.356	4.33	1.74

Table 1. Data on various physical properties of PbO-ZnF₂-P₂O₅:MoO₃ glasses.

Fig. 3 depicts a comparison of dielectric constant variation with temperature for PbO-ZnF₂-P₂O₅:MoO₃ glasses measured at 1 kHz. The temperature dependent dielectric constant ϵ' is the highest for sample M₂. The variation of dielectric loss (tan δ) with temperature at different frequencies for sample M₄ and comparison of tan δ variation with temperature for PbO-ZnF₂-P₂O₅:MoO₃ glasses have been shown in Fig. 4 and Fig. 5, respectively. The relaxation peak and tan δ values are found to increase with the MoO₃ up to 0.2 mol%. The activation energy AE of the samples has been calculated from equation 1 and tabulated in Table 2. The activation energy of 2.51 eV is the lowest for sample M₂:

$$f = f_o e^{-W_d/KT} \tag{1}$$

where W_d is the activation energy, f is resonance frequency, f_o is a constant, K is the Boltzmann constant and T is temperature.

The AC conductivity of the samples was evaluated from the equation:

$$\sigma_{AC} = \omega \varepsilon' \varepsilon_o \tan \delta \tag{2}$$

The plots of σ_{AC} versus 1/T (evaluated at 100 kHz) for PbO-ZnF₂-P₂O₅:MoO₃ glasses are shown in Fig. 6. The activation energy for conduction in the high temperature region was evaluated from these plots, and collected in Table 2. Fig. 7 presents the isotherms (drawn at 200 °C, 220 °C and 240 °C) of σ_{AC} for PbO-ZnF₂-P₂O₅:MoO₃ glasses at 10 kHz. Fig. 8 shows the X-ray diffraction patterns of the prepared glasses and does not

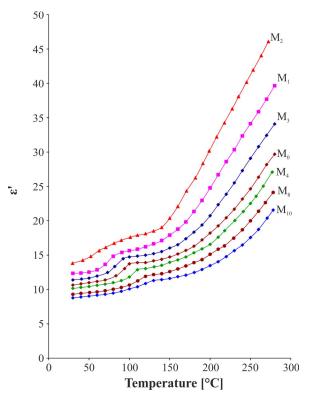


Fig. 3. A comparison of variation of dielectric constant with temperature measured at 1 kHz for PbO-ZnF₂-P₂O₅:MoO₃ glasses.

indicate any line of diffraction which confirms the amorphous nature of the glass samples.

4. Discussion

Molybdenum, belonging to the intermediate class of glass forming ions, was found to exist in two ionic states, i.e. Mo^{5+} and Mo^{6+} .

Sample	Temp	Dielectric constant		Dielectric loss			AE for dipoles	
	$[^{\circ}C]$	1 kHz	10 kHz	100 kHz	1 kHz	10 kHz	100 kHz	[eV]
	30	10.62	10.61	09.30	0.011	0.010	0.007	
M_0	100	13.72	12.29	10.38	0.020	0.012	0.009	2.95
	250	24.64	22.68	19.64	0.103	0.087	0.070	
	30	12.33	12.20	10.80	0.012	0.011	0.009	
M_1	100	15.62	14.90	13.11	0.016	0.015	0.018	2.65
	250	34.12	30.46	26.50	0.219	0.210	0.180	
	30	13.28	13.12	11.76	0.014	0.013	0.010	
M ₂	100	17.59	16.50	14.04	0.174	0.017	0.016	2.51
	250	40.18	33.61	28.46	0.402	0.397	0.329	
	30	11.40	11.28	09.98	0.011	0.011	0.008	
M ₃	100	14.73	13.85	11.58	0.014	0.020	0.011	2.58
	250	29.08	26.76	23.31	0.103	0.087	0.070	
	30	10.15	09.94	08.76	0.011	0.008	0.006	
M_4	100	11.82	10.89	09.51	0.013	0.009	0.007	3.10
	250	22.53	20.16	16.67	0.069	0.055	0.047	
	30	09.30	08.96	07.77	0.009	0.008	0.006	
M ₈	100	10.65	09.69	08.35	0.010	0.009	0.007	3.25
	250	20.00	17.68	14.09	0.050	0.034	0.032	
	30	08.77	08.37	06.96	0.008	0.006	0.005	
M ₁₀	100	10.09	08.93	09.27	0.009	0.007	0.006	3.42
	250	17.54	14.77	11.90	0.036	0.023	0.021	

Table 2. Dielectric properties of PbO-ZnF₂-P₂O₅:MoO₃ glasses.

Table 3. AC conductivity of PbO-ZnF₂-P₂O₅:MoO₃ glasses.

Sample	Austin N(E _f) [$10^{21} \text{ eV}^{-1}/\text{cm}^{3}$]	Butcher N(E _f) $[10^{21} \text{ eV}^{-1}/\text{cm}^3]$	Pollak N(E _f) $[10^{21} \text{ eV}^{-1}/\text{cm}^3]$	AE for conduction [eV]
M ₀	1.318	0.555	1.339	0.356
M_1	1.530	0.638	1.555	0.332
M_2	1.712	0.714	1.739	0.311
M ₃	1.414	0.590	1.437	0.343
M_4	1.228	0.512	1.248	0.408
M ₈	1.099	0.459	1.117	0.445
M ₁₀	1.027	0.428	1.043	0.489

The structure of phosphate network significantly depends on its oxidation state and position it occupies. Mo^{5+} ions acting as modifier disrupt the phosphate glass network leading to dangling bonds with non-bridging oxygens (NBO), similar to divalent zinc ions [26– 31]. The defected dangling bonds cause the relocation of charge carriers, increase the space charge polarization and facilitate the enhancement of dielectric values ϵ' , tan δ and σ_{AC} , of PbO-ZnF₂-P₂O₅:MoO₃ glasses up to 0.2 mol% of the dopant.

The measured decrease in dielectric values of the glasses beyond 0.2 mol% suggests a decrease in the concentration of free charge carriers [32, 33].

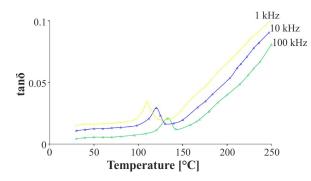


Fig. 4. Variation of dielectric loss with temperature measured at different frequencies for PbO-ZnF₂-P₂O₅ glasses doped with 0.4 mol% of MoO₃.

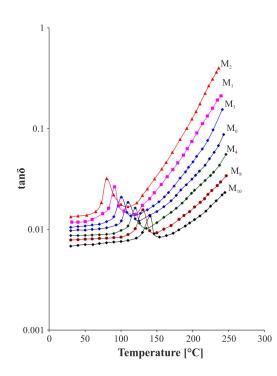


Fig. 5. A comparison of variation of dielectric loss with temperature for PbO-ZnF₂-P₂O₅:MoO₃ glasses measured at 10 kHz.

In other words, the fraction of Mo^{5+} ions in such glass samples is relatively low, hence, there is a reduction in the rate of increase of dielectric constant. The plots of variation of tan δ with the temperature for PbO-ZnF₂-P₂O₅:MoO₃ glasses exhibit dipolar relaxation effects due to Mo⁵⁺ ions state in Mo(V)O³⁻ [34, 35]. In the present glass system, beyond 0.2 mol% of MoO₃, we have

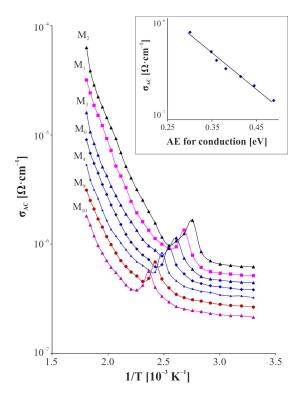


Fig. 6. Variation of AC conductivity with 1/T measured at 100 kHz for PbO-ZnF₂-P₂O₅ glasses doped with different concentrations of MoO₃.

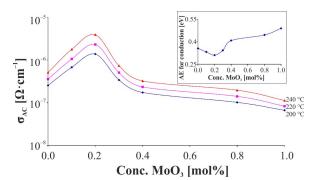


Fig. 7. Variation of AC conductivity with the concentration of MoO_3 measured at different temperatures and at a frequency of 10 kHz for PbO-ZnF₂-P₂O₅ glasses. The inset presents the variation of activation energy for conduction with the concentration of MoO_3 .

observed a decrease in the intensity of the relaxation peaks and increasing trend of activation energy for dipoles. This observation confirms the existence of Mo^{6+} ions that participate in the glass network forming

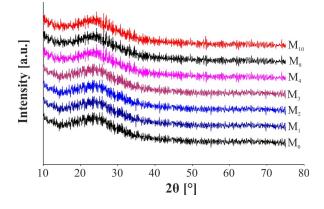


Fig. 8. XRD patterns of PbO-ZnF₂-P₂O₅:MoO₃ glasses.

for the samples from M_3 to M_{10} . A linear relationship between σ_{AC} and AE for conduction (inset of Fig. 6), suggests that the development of conductivity is directly related to the thermally stimulated mobility of the charge carriers [36]. Fig. 6 shows that σ_{AC} is maximum and AE for conduction (in the inset of Fig. 7) is minimum for sample M_2 due to transition from ionic (up to 0.2 mol%) to electronic conductivity (beyond 0.2 mol%) [37].

The active centers for the ionic conduction are due to the gradual increase of the content of modifier Mo^{5+} ions and either mobile electrons or polarons by the transition of Mo^{5+} to Mo^{6+} . Quantum mechanical tunneling (QMT) model was adapted to explain the AC conductivity of the present glass system at low temperatures. According to QMT, equation for AC conductivity is:

$$\sigma(\omega) = \eta e^2 K_B T [N E_F]^2 \alpha^{-5} \omega \left[\ln \frac{v_{ph}}{\omega} \right]^4 \quad (3)$$

where NE_F is density of the defect energy states at the Fermi level, α is a decay constant (~0.485 Å⁻¹), e is a charge of electron, K_B is the Boltzmann constant, ω is an angular frequency, ν_{ph} is phonon frequency (5 × 10¹² Hz), T is temperature, η is a constant and its value is given by $\eta = \pi/3$ (Austin et al. [38]), = 3.66 $\pi^2/6$ (Butcher et al. [39]), = $\pi^4/96$ (Pollak [40]).

The value of NE_F is observed to be maximal for the glasses mixed with 0.2 mol% of MoO_3 and beyond this range it is found to decrease (Table 3). Such variations are consistent with our prediction that in the glass M_2 there is a predominant existence of molybdenum Mo^{5+} states that act as modifier, whereas in the samples M_3 to M_{10} the fraction of molybdenum is in Mo^{6+} states and these molybdenum ions participate in the glass network forming with MoO_4 structural units.

5. Conclusions

PbO-ZnF₂-P₂O₅:MoO₃ glasses (0 mol% to 1.0 mol%) were synthesized. Dielectric parameters ϵ' , tan δ , and σ_{AC} , were measured over a wide range of frequency at low temperature. It has been stated that the space charge polarization plays a vital role in the ϵ' and tan δ of prepared glasses. We have observed an increase in the dielectric constant ϵ' , dielectric loss tand and AC conductivity σ_{AC} up to 0.2 mol% of MoO₃, suggesting that a major portion of molybdenum ions got reduced to Mo⁵⁺ state. These ions acted as modifiers, which produced disorder in the glass network and enabled an increase of dielectric constant by contributing to the space charge polarization. The overall analysis indicated that glasses containing up to 0.2 mol% of MoO₃ are more appropriate for attaining good electrical conductivity.

Acknowledgements

One of the authors, P. Venkateswara Rao, wishes to thank the University of the West Indies, Mona campus, Jamaica, for providing the financial support in the form of the Principal's New Initiative Grant to carry out this work.

References

- DOREMUS R.H., Glass Science, John Wiley&Sons, New York, 1994.
- [2] MONEY B.K., HARIHARAN K., Solid State Ionics, 179 (2008), 1273.
- [3] MUÑOZ F., MONTAGNE L., PASCUAL L., DURAN A., J. <u>Non-Cryst.</u> Solids., 355 (2009), 2571.
- [4] RAGUENET B., TRICOT G., SILLY G., RIBES M., PRADEL A., Solid State Ionics, 208 (2012), 25.
- [5] FERGUS J.W., J. Power Sources, 162 (2006), 30.
- [6] YOSHIOKA H., TANASE S., Solid State Ionics, 176 (2005), 2395.
- [7] NGAI T., TAMURA S., IMANAKA N., Sensor. Actuat. B-Chem., 147 (2010), 735.

- 4629.
- [9] MURAWSKI L., CHUNG C.H., MACKENZIE J.D., J. Non-Cryst. Solids, 32 (1979), 91.
- [10] MANSINGH A., REYES J.M., J. Non-Cryst. Solids, 7 (1972), 12.
- [11] AHSAN M.R., MORTUZA M.G., Phys. Chem. Glasses-*B*, 42 (2001), 1.
- [12] MOSTAFA Y.M., EL-ADAWY A., Phys. Status Solidi A., 179 (2002), 83.
- [13] BROW R.K., J. Non-Cryst. Solids., 263 264 (2000), 1.
- [14] VENKATESWARA RAO P., NAGARAJU G., RAGHAVA RAO P., NARSIMHA RAO N., SYAMPRASAD P., Karbala Int. J. Mod. Sci., (2015), 101.
- [15] ABID M., SHAIM A., ET-TABIROU M., Mater. Res. Bull., 36 (2001), 2453.
- [16] BISHAY A.M., J. Am. Ceram. Soc., 43 (1960), 417.
- [17] PAL M., TSUJIGAMI Y., YOSHIKADO A., SAKATA H., Phys. Status Solidi A, 182 (2000), 727.
- [18] CORMIER G., CAPOBIANCO J.A., MONTEIL A., J. Non-Cryst. Solids., 168 (1994), 115.
- [19] INGRAM M.D., Phys. Chem. Glasses-B, 28 (1987), 215.
- [20] MUSIC S., J. Mater. Sci., 29 (1994), 1227.
- [21] LAKSHMANARAO B., RAVIBABU Y.N.CH., PRASAD S.V.G.V.A., Physica B, 429 (2013), 68.
- [22] ELLIOT S.R., Physics of amorphous materials, Longman, London, 1990.
- [23] SHACKELFORD J.F., Introduction to Materials Science for Engineers, Macmillan, New York, 1985.
- [24] PAVIC L., NARASIMHARAO N., MOGUS MI-LANKOVIC A., SANTIC A., RAVI KUMAR V., PIASECKI M., KITYK I.V., VEERAIAH N., Ceram. Int., 40 (2014), 5989.
- [25] VIJAY R., RAMES BABU P., RAGHAVAIAH B.V., VINAYATEJA P.M., PIASECKI M., VEERAIAH N., KR-ISHNA RAO D., J. Non-Cryst. Solids., 386 (2014), 67.

- [8] SAYER M., MANSINGH A., Phys. Rev. B., 6 (1972), [26] MIROSHNICHENKO O.YA., KHVEDCHENYA G.M., J. Appl. Chem., 54 (1981), 563.
 - [27] JAGER C.H.R., HAUBENREISSER U., Phys. Chem. Glasses-B, 26 (1985), 152.
 - [28] LINE K., BRAY P., Phys. Chem. Glasses-B, 7 (1966), 41.
 - [29] RAO K.J., Structural Chemistry of Glasses, Elsevier, Amsterdam, 2002.
 - [30] CICEOLUCACEL R., HULPUS A.O., SIMON V., ARDE-LEAN I., J. Non-Cryst. Solids, 355 (2009), 425.
 - [31] SRINIVASARAO G., VEERAIAH N., J. Solid State Chem, 166 (2002), 104.
 - [32] VENKATESWARA RAO P., RAVI KUMAR V., VEERA-IAH N., Indian J. Pure Appl. Phys., 38 (2) (2000), 146.
 - [33] RAGHAVAIAH B.V., VEERAIAH N., Phys. Status Solidi A, 199 (2003), 389.
 - [34] SYAMPRASAD P., RAGHAVAIAH B.V., BALAJIRAO R., LAXMIKANTH C., VEERAIAH N., Solid State Commun., 132 (2004), 235.
 - [35] SUBBALAKSHMI P., VEERAIAH N., Indian J. Eng. Mater. S., 8 (2001), 275.
 - [36] MONTANI R.A., FRECHERO M.A., Solid State Ionics, 158 (2003), 327.
 - [37] EL-DAMARAWI G., J. Phys.-Condens. Mat., 7 (1995), 1557.
 - [38] AUSTIN I.G., MOTT N.F., Adv. Phys., 18 (1969), 657.
 - [39] BUTCHER P., HYDEN K., Philos. Mag., 36 (1977), 657.
 - [40] POLLAK M., Philos. Mag., 23 (1971), 519.

Received 2017-07-11 Accepted 2018-04-20