Synthesis, sintering, specific heat and magnetism of Eu3S4 by low-temperature CS2-gas sulfurization of Eu2O3 nanospheres

Open access

Abstract

Single-phase Eu3S4 was obtained via CS2 gas sulfurization of Eu2O3 nanospheres at 773 K for longer than 0.5 h. The primary particle size of Eu3S4 became larger than that of Eu2O3 during the sulfurization process. Pure synthetic Eu3S4 powders were unstable and transformed to EuS at 873 K under vacuum. Eu3S4 compacts were sintered in temperature range of 773 K to 1173 K and they transformed to EuS at 1473 K during spark plasma sintering. Specific heat of sintered Eu3S4 did not show an anomalous behavior in the range of 2 K to 50 K. The magnetic susceptibility of polycrystalline Eu3S4 followed a Curie-Weiss law from 2 K to 300 K. Magnetization of polycrystalline Eu3S4 was larger than that of single crystal Eu3S4 when the magnetic field was less than 3.5 kOe.

[1] Nemkovski K.S., Kozlenko D.P., Alekseev P.A., Mignot J.-M., Menushenkov A.P., Yaroslavtsev A.A., Clementyev E.S., Ivanov A.S., Rols S., Klobes B., Phys. Rev. B, 94 (2016), 195101.

[2] Haque Z., Thakur G.S., Parthasarathy R., Gerke B., Block T., Heletta L., Pöttgen R., Joshi A.G., Selvan G.K., Arumugam S., Inorg. Chem., 56 (2017), 3182.

[3] Ramakrishnan T., Annu. Rev. Conden. Ma. P., 7 (2016), 1.

[4] Li L., Hirai S., Nakamura E., Yuan H., MRS Adv., (2016), 1.

[5] Luo X., Zhang M., Ma L., Peng Y., J. Rare Earth, 29 (2011), 313.

[6] Massenet O., Coey J.M.D., Holtzberg F., J. Phys. Colloq., 37 (1976), C4-297.

[7] Nakao H., Ohwada K., Shimomura S., Ochiai A., Namikawa K., Mizuki J., Mimura H., Yamauchi K., Murakami Y., Garrett R., AIP Conf. Proc., 1234 (2010), 935.

[8] Shafer M.W., Mater. Res. Bull., 7 (1972), 603.

[9] Li L., Hirai S., Yuan H., J. Alloy. Compd., 618 (2015), 742.

[10] Li L., Hirai S., Yuan H., Nakamura E., Key Eng. Mater., 655 (2015), 224.

[11] Felser C., J. Alloy. Compd., 262 (1997), 87.

[12] Adroja D.T., Malik S.K., J. Magn. Magn. Mater., 100 (1991), 126.

[13] Li L., Hirai S., Nakamura E., Yuan H., J. Alloy. Compd., 687 (2016), 413.

[14] Davis H.H., Bransky I., Tallan N.M., J. Less Common Met., 22 (1970), 193.

[15] Bransky I., Tallan N.M., Hed A.Z., J. Appl. Phys., 41 (1970), 1787.

[16] Ohara H., Sasaki S., Konoike Y., Toyoda T., Yamawaki K., Tanaka M., Physica B, 350 (2004), 353.

[17] Boncher W.L., Görlich E.A., Tomala K., Bitter J.L., Stoll S.L., Chem. Mater., 24 (2012), 4390.

[18] Pott R., Güntherodt G., Wichelhaus W., Ohl M., Bach H., Phys. Rev. B, 27 (1983), 359.

[19] Kwon Y.S., Haga Y., Ayache C., Suzuki T., Kasuya T., Physica B, 186 (1993), 605.

[20] Wachter P., Phys. Lett. A, 58 (1976), 484.

[21] Wickelhaus W., Simon A., Stevens K.W.H., Brown P.J., Ziebeck K.R.A., Philos. Mag., 46 (1982), 115.

Journal Information


IMPACT FACTOR 2017: 0.854
5-year IMPACT FACTOR: 0.794



CiteScore 2017: 0.90

SCImago Journal Rank (SJR) 2017: 0.275
Source Normalized Impact per Paper (SNIP) 2017: 0.471

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 152 152 64
PDF Downloads 69 69 19