Facile microwave-assisted synthesis of Al:Mn co-doped PbI2 nanosheets: structural, vibrational, morphological, dielectric and radiation activity studies

Open access

Abstract

Herein, we report a successful development of nano-scale pure and Al and Mn co-doped PbI2 using facile microwaveassisted route. Structural study was done through X-ray diffraction analysis of grain size, dislocation density and lattice strain. The crystallite size was found to vary from 28 nm to 40 nm due to Al:Mn co-doping in PbI2. The presence of various vibrational modes was confirmed by FT-IR spectroscopy and red shifting was observed in peak positions compared to the bulk. Surface morphology, examined using a scanning electron microscope, confirmed the formation of single crystal nanosheets of a thickness in the range of 10 nm to 30 nm. The single crystal nanosheets were found to be transformed to large area nanosheets due to the doping. Enhancement in dielectric constant from ~7.5 to 11 was observed with increasing Al doping concentration. Linear attenuation coefficient was calculated and showed the enhancement of blocking gamma rays with increasing doping concentration. Its value was found to increase from 7.5 to 12.8 with the doping. The results suggest that the synthesized nanostructures can be used for detection and absorption of gamma rays emitted by 137Cs and 241Am sources.

[1] Dugan A., Henisch H., J. Phys. Chem. Solids, 28 (1967), 971.

[2] Zhu X., Wei Z., Jin Y., Xiang A., Cryst. Res. Technol., 42 (2007), 456.

[3] Silva Da F.A., Veissid N., Veissid C., Pepe C., N. Olivaira De B.N., Silva Da B.A., Appl. Phys. Lett, 69 (1996) 1930.

[4] Chaudhary S.K., Cryst. Struct. Theor. Appl., 1 (2012) 21.

[5] Finlayson C., Sazio P., J. Phys. D Appl. Phys., 39 (2006), 1477.

[6] Kleim R., Raga F., J. Phys. Chem. Solids, 30 (1969), 2213.

[7] Ando M., Yazaki M., Katayama I., Ichida H., Wakaiki S., Kanematsu Y., Takeda J., Phys. Rev. B, 86 (2012), 155206.

[8] Quilettes De D.W., Vorpahl S.M., Stranks S.D., Nagaoka H., Eperon G.E., Ziffer M.E., Snaith H.J., Ginger D.S., Science, 348 (2015), 683.

[9] Chen Q., Zhou H., Hong Z., Luo S., Duan H.-S., Wang H.-H., Liu Y., Li G., Yang Y., J. Am. Chem. Soc., 136 (2013), 622.

[10] Shkir M., Yahia I.S., Alfaify S., Abutalib M.M., Muhammad S., J. Mol. Struct., 1110 (2016), 83.

[11] Shkir M., Yahia I.S., Ganesh V., Algarni H., Alfaify S., Mater. Lett., 176 (2016), 135.

[12] Goldberg M., Langer R., Jia X., J. Biomat. Sci.- Polym. E., 18 (2007), 241.

[13] Klabunde K.J., Richards R., Nanoscale Materials In Chemistry, Wiley Online Library, 2001.

[14] Kaviyarasu K., Sajan D., Selvakumar M.S., Thomas S.A., Anand D.P., J. Phys. Chem. Solids, 73 (2012), 1396.

[15] Dag I., Lifshitz E., J. Phys. Chem., 100 (1996), 8962.

[16] Kasi G.K., Dollahon N.R., Ahmadi T.S., J. Phys. D Appl. Phys., 40 (2007), 1778.

[17] Zhu G., Liu P., Hojamberdiev M., Zhou J.-P., Huang X., Feng B., Yang R., Appl. Phys. A-Mater., 98 (2010), 299.

[18] Chen X., Mao S.S., Chem. Rev., 107 (2007), 2891.

[19] Rogers J., Lagally M., Nuzzo R., Nature, 477 (2011), 45.

[20] Kim D.-H., Lu N., Ghaffari R., Rogers J.A., Npg Asia Mater., 4 (2012), E15.

[21] Shkir M., Alfaify S., Yahia I.S., Ganesh V., Shoukry H., Physica B, 508 (2017), 41.

[22] Yahia I., Abutalib M., J. Mol. Struct., 1138 (2017), 215.

[23] Yahia I.S., Shkir M., Alfaify S., Ganesh V., Zahran H.Y., Kilany M., Mat. Sci. Eng. C, 72 (2017), 472.

[24] Shkir M., Alfaify S., Sci. Rep., 7 (2017), 16091.

[25] Shkir M., Kilany M., Yahia I.S., Ceram. Int., 43 (2016), 39.

[26] Condeles J., Mulato M., J. Phys. Chem. Solids., 89 (2016), 39.

[27] Ahmed W., Jackson M.J., Emerging Nanotechnologies For Manufacturing, William Andrew, 2014.

[28] Harald I., Lüth H., Solid-State Physics: An Introduction To Principles Of Materials Science, Springer-Verlag, 1996.

[29] Jilani A., Abdel-Wahab M.S., Zahran H., Yahia I., Al-Ghamdi A.A., Appl. Phys. A, 122 (2016), 862.

[30] Shkir M., Alfaify S., Ganesh V., Yahia I., Solid State Sci., 70 (2017), 81.

[31] Shanmugam G., Thirupugalmani K., Rakhikrishna R., Philip J., Brahadeeswaran S., J. Therm. Anal. Calorim., 114 (2013), 1245.

[32] Kaygili O., Dorozhkin S.V., Ates T., Alghamdi A.A., Yakuphanoglu F., Ceram. Int., 40 (2014), 9395.

[33] Jonscher A.K., Nature, 267 (1977), 673., Solid State Sci., 70 (2017), 81.

[34] Jain V.K., Verma A., Physics Of Semiconductor Devices: 17th International Workshop On The Physics Of Semiconductor Devices 2013, Springer Science & Business Media, 2013.

[35] Shapiro J., Radiation Protection: A Guide For Scientists, Regulators, And Physicians, La Editorial, Upr, 2002.

[36] Hubbell J.H., Int. J. Appl. Radiat. Isotopes, 33 (1982), 1269.

[37] Badran H., Yahia I., Hamdy M.S., Awwad N., Radiat. Phys. Chem., 130 (2017), 85.

[38] Martin J.E., Physics For Radiation Protection: A Handbook, John Wiley & Sons, 2006.

[39] Shkir M., Alfaify S., Yahia I.S., Hamdy M.S., Ganesh V., Algarni H., J. Nanopart. Res., 19 (2017), 328.

Journal Information


IMPACT FACTOR 2017: 0.854
5-year IMPACT FACTOR: 0.794



CiteScore 2017: 0.90

SCImago Journal Rank (SJR) 2017: 0.275
Source Normalized Impact per Paper (SNIP) 2017: 0.471

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 95 95 26
PDF Downloads 83 83 22