Correlation between Structural, Magnetic and Spectroscopic Properties of Mg Substituted CoFe2O4

Open access

Abstract

Mg substituted cobalt ferrite spinel powder samples with the general formula MgxCO1-xFe2O4(x = 0 to 0.25) were synthesized chemically through sol-gel method and annealed at 1100 °C for 2 h. They were initially screened for the structural and morphological properties by X-ray diffraction and field emission scanning electron microscopy, respectively. Vibrational properties of the samples were studied by Raman and infrared spectroscopies. X-ray diffraction confirmed the formation of single pure or near-pure phase with cubic spinel structure for all the samples with expected occupancy values. The field emission scanning electron microscopy revealed a decrease in the particle size with an increase in Mg concentration. Both structural and magnetic properties of the samples were characterized using Mössbauer spectroscopy while the magnetic properties were studied using vibrating sample magnetometry. The changes in magnetic moment of ions, their coupling with neighboring ions and cation exchange interactions were confirmed from the Mössbauer spectroscopy analysis. Saturation magnetization and coercivity values can be explained based on the Slater-Pauling curve. The magnetometry results showed a decrease in saturation magnetization of the samples with increase in Mg concentration

[1] Yi N., Alivisatos A.P., Nature, 437 (2005), 664.

[2] Geng B.Y., Ma J.Z., Liu X.W., Du Q.B., Kong M.G., Zhang L.D., J. Appl. Phys, 90 (2007), 043120.

[3] Sun S., Murray C.B., Weller D., Folks L., Moser A., Science, 287 (2000), 1989.

[4] Jiles D.C., Lo C.C.H., Sensor. Actuat. A-Phys., 106 (2003), 3.

[5] Slick P.I., Wohlfrath E.P. (Ed.) In: Ferromagnetic Materials, Vol. 2, North-Holland, Amsterdam, 1980, 796.

[6] Zawrah M.F., El-Okr M.M., Ashery A., Abou Hammad A.B., Middle E. J. Appl. Sci., 2077 (2016), 362.

[7] Rajendran M., Pulla R.C., Bhattacharya A.K., Das D., Chintalapudi S., Nmajumdar C.K., J. Magn. Magn. Mater., 232 (2001), 71.

[8] Liu C., Zou B., Rondinone A.J., Zhang Z.J., J. Am. Chem. Soc., 122 (2000), 6263.

[9] Zhang Z.J., Wang Z.L., Chakoumakos B.C., Yin J.S., J. Am. Chem. Soc., 120 (1998), 1800.

[10] Templeton T.L., Arrott A.S., Curzon A.E., Gee M.A., Li X.Z., Yoshida Y., Schurer P.J., Lacombe J.L., J. Appl. Phys., 73 (1993), 6728.

[11] Haneda K., Morrish A., J. Physique, 38 (1977), C1-321.

[12] Hosono T., Takahashi H., Fijitha A., Joseyphus J.R., Tohji K., Jeyadevan B., J. Magn. Magn. Mater., 321 (2009), 3019.

[13] Blaskov V., Petkov V.R., Martinez L., Martinez B., Monos J., Mikhov M., J. Magn. Magn. Mater., 162 (1996), 331.

[14] Sraravanan P., Alam S., Mathur G., J. Mater. Sci. Lett., 22 (2003), 1283.

[15] Maity D., Kale S.N., Kaul-Ghanekur R., Xue J.-M., Jun D., J. Magn. Magn. Mater., 321 (2009), 3093.

[16] Hua Z., Chen R., Li C., Yang S., Lu M., Gu B., Du Y., J. Alloy. Compd., 427 (2007), 199.

[17] Liu M., Imrane X.L.H., Chen X.L.H., Googrich T., Cai Z., Zeimer K., Huang J., Sun N., Appl. Phys. Lett., 90 (2007), 152501.

[18] Santra R., Tape S., Theodoropoulous N., Dobson J., Hebard A., Tan W., Langmuir, 17 (2001), 2900.

[19] Chae K.P., Kim W.K., Lee S.H., Lee Y.B., J. Magn. Magn. Mater., 232 (2001), 133.

[20] Bae C.Y., Lee K.P., Lee J.G., Lee S.H., J. Magn. Magn. Mater., 220 (2000), 59.

[21] Yu T., Shen Z.X., Shi Y., Ding J., J. Phys.-Condens. Mat., 14 (2002), 613.

[22] Daliya S.M., Ruey S.J., J. Chem. Eng., 129 (2007), 51.

[23] Corliss L.M., Hastings J.M., Phys. Rev., 90 (1953), 1013.

[24] Chae K.P., Lee J., Kweon H.S., Lee Y.B., J. Magn. Magn. Mater., 283 (2004), 103.

[25] Sepelak V., Menzel M., Becker K.D., Krumeich F., J. Phys. Chem. B, 106 (2002), 6672.

[26] Harrison R.J., Putnis A., Phys. Chem. Miner., 80 (1995), 213.

[27] Mittal V.K., Santanu B., Nithya R., Srinivasan M.P., Velmurugan S., Narasimhan S.V., J. Nucl. Mater., 335 (2004), 302.

[28] Young R.A., The Rietveld Method, Iucr, L5, Oxford University Press, Oxford, 1993, Pp. 1 - 39.

[29] Rodriguez-Carvajal J., Fullprof - A Program For Rietveld Refinement And Pattern Matching Analysis, Abstracts Of The Satellite Meeting On Powder Diffraction Of The Xv Congress Of The Iucr, Toulouse, 1990, 127.

[30] Williamson W.H., Hall G.K., Acta Metall., 1 (1953), 22.

[31] George T., Sunny A.T., Varghese T., Mat. Sci. Eng., 73 (2015), 012050.

[32] Shannon R.D., Acta Crystallogr. A, 32 (1976), 751.

[33] Horn Van D.J., Electronic Table Of Shannon Ionic Radii, On: Http://V.Web.Umkc.Edu/Vanhornj/Shannonradii.Htm, Accessed On: 2011.02.14.

[34] Ferreira T.A.S., Waerenborgh J.C., Mendonca M.H.R.M., Nunes F.M., Costa M.R., Solid State Sci., 5 (2003), 383.

[35] Sezgin N., Sahin M., Yalcin A., Koseoglu Y., Ekoloji, 22 (2013), 89.

[36] Ammundsen B., Burns G.R., Islam M.S., Kanoh H., Roziere J., J. Phys. Chem. B, 103 (1999), 5175.

[37] Kreisel J., Lucazeau G., Vincent J., J. Solid State Chem., 137 (1998), 127.

[38] Yu T., Shen Z. X., Shi Y., Ding J., J.Phys,: Condens. Matter, 14 (2002), 613.

[39] Varshney D., Varma K., Kumar A., J. Mol. Struct., 1006 (2011), 447.

[40] Naik S.R., Salker A.V., J. Mater. Chem., 22 (2012), 2740.

[41] Wu A., Yang X.W., Yang H., Dalton T., 42 (2013), 4978.

[42] Jiles D., Introduction To Magnetism And Magnetic Materials, Taylor & Francis, New York, 1998.

[43] Kogachi M., Tadachi N., Ishibashi H., Intermetallics, 13 (2005), 535.

[44] Brand R.A., Nucl. Instrum. Meth. B, 28 (1987), 398.

[45] Brand R.A., Nucl. Instrum. Meth. B, 28 (1987), 416.

[46] Kuncser V.V., Schinteie G., Sahoo B., Bica K.W., Vekas D., Filoti G., J. Phys.-Condens. Mat., 19 (2007), 016205.

Journal Information


IMPACT FACTOR 2017: 0.854
5-year IMPACT FACTOR: 0.794



CiteScore 2017: 0.90

SCImago Journal Rank (SJR) 2017: 0.275
Source Normalized Impact per Paper (SNIP) 2017: 0.471

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 82 82 28
PDF Downloads 65 65 17