Optical investigations of microwave induced synthesis of zinc oxide thin-film

Open access

Abstract

In this article, ZnO thin-film deposition on a glass substrate was done using microwave induced oxygen plasma based CVD system. The prepared thin-films were tested in terms of crystallinity and optical properties by varying the microwave power. The effect of power variation on the morphology and size of final products was carefully investigated. The crystal structure, chemical composition and morphology of the final products were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-Vis spectroscopy, Raman spectroscopy and photoluminescence (PL). This technique confirmed the presence of hexagonal ZnO nanocrystals in all the thin-films. The minimum crystallite grain size as obtained from the XRD measurements was ~9.7 nm and the average diameter was ~18 nm.

[1] Buot F.A., Phys Rep., 234(1993), 73.

[2] Huang S., Schlichthörl G., Nozik A., Grätzel M., Frank A., J. Phys. Chem. B, 101 (1997), 2576.

[3] Lu L., Li R., Fan K., Peng T., Sol. Energy, 84 (2010), 844.

[4] Zhang H., Chen B., Jiang H., Wang C., Wang H., Wang X., Biomaterials, 32 (2011), 1906.

[5] Chopra L., Major S., Pandya D.K., Rastogi R.S., Vankar V.D., Thin Solid Films, 1021 (1983), 1.

[6] Zang C.H., Liu Y.C., Zhao D.X., Zhang Y.S., Physica B, 404 (2009), 315.

[7] Lee J.S., Islam M.S., Kim S., Sensor. Actuat. Bchem., 126 (2007), 73.

[8] Liua Y.L, Liua Y.C., Liub Y.B., Shena D.Z., Lua Y.M., Zhanga J.Y., Fana X.W., Solid State Commun., 138 (2006), 521.

[9] Ismail L.Z., Youssif M.I., Moneim H.M.A., Mater. Chem. Phys., 76(2002), 69.

[10] Sun Y., Fuge G.M., Ashfold M.N.R., Chem. Phys. Lett., 396 (2004), 21.

[11] Al-Gaashani R., Radiman S., Tabet N., Daud A.R., Mater. Chem. Phys., 125 (2011) 846.

[12] Anitha S.N., Jayakumari I., J. Nanosci. Nanotechno., 1 (2015), 26.

[13] Sahoo T., Kim M., Lee M.H., Jang L.W., Jeon J.W., Kwak J.S., Ko I.Y., Lee I.H., J. Alloy. Compd., 491 (2010), 308.

[14] Azaroff L.V., Elements Of X-Ray Crystallography, Mcgraw Hill, New York, 1968.

[15] Vanheerden J.L., Swanepoel R., Thin Solid Films, 299 (1997), 72.

[16] Hong R.Y., Qian J.Z., Cao J.X., Powder Technol., 163 (2006), 160.

[17] Zhang R., Yin P.G., Wang N., Guo L., Solid State Sci., 11 (2009), 865.

[18] Aadila A., Afaah A.N., Asib N.A.M., Mahmud M.R., Alrokayan S.A.H., Khan H.A., Mohamed R., Rusop M., Khusaimi Z., Mater. Sci. Eng. B-Adv., 83 (2015), 012007.

[19] Wong E.M., Searson P.C., Appl. Phys. Lett., 74 (1999), 2939.

[20] Mahamuni S., Borgohain K., Bendre B.S., Leppert V.J., Risbud S.H., J. Appl. Phys., 85 (1999), 2861.

[21] Fonoberov V.A., Balandin A.A., Appl. Phys. Lett., 85 (2004), 5971.

[22] Liu Y.L., Liu Y.C., Feng W., Zhang J.Y., Lu Y.M., Shen D.Z., Fans X.W., Wang D.J., Zhao Q.D., J. Chem. Phys., 122 (2005), 174703.

[23] Chieng B.W., Loo Y.Y., Mater. Lett., 73 (2012), 78.

[24] Zak A.K., Abrishami M.E., Abdmajid W.H., Ceram. Int., 37 (2011), 393.

[25] Tauc J., Amorphous And Liquid Semiconductors Plenum, Springer, London, 1974.

[26] Davis E.A., Mott N.F., Philos. Mag., 22 (1970), 903.

[27] Kumar S.S., Venkateswarlu P., Rao V.R., Rao G.N., Int. Nano Lett., 3(2013), 30.

Journal Information


IMPACT FACTOR 2017: 0.854
5-year IMPACT FACTOR: 0.794



CiteScore 2017: 0.90

SCImago Journal Rank (SJR) 2017: 0.275
Source Normalized Impact per Paper (SNIP) 2017: 0.471

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 128 128 30
PDF Downloads 74 74 19