Structural, thermal and optical investigation of tin sulfide nanoparticles for next-generation photovoltaic applications

Open access


We report a simple approach for synthesizing monodispersed, crystalline and size-tunable tin sulfide nanoparticles for environment friendly next generation solar cell applications. Both SnS and SnS2 nanoparticles could be a potential nanomaterial for solar cells. The structural, morphological, thermal and optical properties were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), diffuse reflectance spectroscopy (DRS) and Fourier transform infrared spectroscopy (FT-IR). The XRD spectra revealed hexagonal and orthorhombic phases of SnS and SnS2 nanoparticles, respectively, where the grains size ranged from 11 nm to 30 nm. The weight percentage as a function of temperature was determined using TGA analysis. Functional groups were observed by FT-IR. The energy bandgap was determined as 1.41 eV showing usefulness of the nanoparticles in next generation environmental friendly solar energy applications.

[1] Zhirnov A., Karimova S., Ovsyannikova L., Gubenko O., Met. Sci. Heat Treat., 45 (2003), 23.

[2] Wakeham S., Hawkins G., Henderson G., Carthey N., Appl. Optics, 13 (2008), 206.

[3] Peralta G. L., Fontanos P. M., J. Mater. Cycles Waste, 1 (2006), 34.

[4] Zhao Y., Nalwa H.S., Nanotoxicology: Interactions Of Nanomaterials With Biological Systems, American Scientific Publishers, California, 2007.

[5] Singh S., Nalwa H. S., J. Nanosci. Nanotechno., 9 (2007), 3048.

[6] Burton L.A., Colombara D., Abellon R.D., Grozema F.C., Peter L.M., Savenije T.J., Dennler G., Walsh A., Chem. Mater., 24 (2013), 4908.

[7] Jomova K., Jenisova Z., Feszterova M., Baros S., Liska J., Hudecova D., Rhodes C., Valko M., J. Appl. Toxicol., 2 (2011), 95.

[8] Rauch T., Boberl M., Tedde S.F., Furst J., Kovalenko M.V., Hesser G., Lemmer U., Heiss W., Hayden O., Nat. Photonics, 6 (2009), 332.

[9] Reddy K.R., Reddy N.K., Miles R., Sol. Energ. Mat. Sol. C., 18 (2006), 3041.

[10] Albers W., Haas C., Vink H., Wasscher J.D., J. Appl. Phys., 10 (1961), 2220.

[11] Blaesser G., Rossi E., Sol. Cell., 2 (1988), 91.

[12] Kawano K., Nakata R., Sumita M., J. Phys. D Appl. Phys., 1 (1989), 136.

[13] Ettema A., De Groot R., Haas C., Turner T., Phys. Rev. B, 12 (1992), 7363.

[14] Yue G., Peng D., Yan P., Wang L., Wang W., Luo X., J. Alloy. Compd., 1 (2009), 254.

[15] Subramanian B., Sanjeeviraja C., Jayachandran M., Mater. Chem. Phys., 1 (2001), 40.

[16] Mahalingam T., John V., Rajendran S., Sebastian P., Semicond. Sci. Tech., 5 (2002), 465.

[17] Ortiz A., Alonso J., Garcia M., Toriz J., Semicond. Sci. Tech., 2 (1996), 243.

[18] Yue G., Wang W., Wang L., Wang X., Yan P., Chen Y. Peng D., J. Alloy. Compd., 1 (2009), 445.

[19] Devika M., Reddy N.K., Ramesh K., Gunasekhar K., Gopal E., Reddy K.R., J. Electrochem. Soc., 8 (2006), 727.

[20] Ullah H., Mari B., Superlattice. Microst., 2014, 148.

[21] Valmas A., Magiouf K., Fili S., Norrman M., Schluckebier G., Beckers D., Degen T., Wright J., Fitch A., Gozzo F., Acta Crystallogr. D, 4 (2015), 819

Journal Information

IMPACT FACTOR 2017: 0.854
5-year IMPACT FACTOR: 0.794

CiteScore 2017: 0.90

SCImago Journal Rank (SJR) 2017: 0.275
Source Normalized Impact per Paper (SNIP) 2017: 0.471


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 203 203 50
PDF Downloads 154 154 37