Substitutional effect of copper on the cation distribution in cobalt chromium ferrites and their structural and magnetic properties

Open access

Abstract

A series of copper substituted cobalt chromium ferrites, CuxCo1 - xCr0.5Fe1.5O4 (x = 0, 0.2, 0.4, 0.6, 0.8, 1.0) has been synthesized, by employing powder metallurgy method. Calcination of the samples has been carried out for 24 hours at 1100 °C. The resultant materials have been investigated by using a variety of techniques, including X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM)), scanning electron microscopy (SEM), and ultraviolet visible spectroscopy (UV-Vis). The XRD patterns confirmed that all compositions had a cubic spinel structure with a single phase and the lattice parameter was found to increase with increasing copper concentration. FT-IR spectroscopy has been used for studying the chemical bonds in the spinel ferrite. Shifting of the bands ν1 and ν2 has been observed. It has been revealed from VSM analysis that saturation magnetization and coercivity decrease with rising the Cu+2 doping. Magnetic properties have been explained on the basis of cation distribution. Scanning electron microscopy (SEM) has been used to study the surface morphology of prepared samples. UV-Vis analysis revealed the optical absorption of the samples. An increase in band gaps has been observed with increasing copper concentration in the sample.

[1] Tartag P., Morales M.D., Sabin V.V., J. Appl. Phys., 36 (2003), 182.

[2] Badar S.D., J. Phys., 78 (2006), 1.

[3] Ross C.A., J. Mater. Res., 31 (2001), 203.

[4] Wood R.W., Miles J., Olson T., Ieee T. Magn., 38 (2002), 1711.

[5] Swant S.R., Patail R.N., J. Appl. Phys., 20 (1982), 353.

[6] Ahmad I., Abbas T., Islam M.U., Maqsood A., J.Ceram. Int., 39 (2013), 6735.

[7] Briceo S., Castillo H.D., Sagredo V., Bramerescamilla W., Silva P., J. Surf. Sci., 263 (2012), 100.

[8] Tailhades P., Villette C., Rousset A., Kulkarni G., Kannan K., Rao C., Lenglet M., J. Solid State Chem., 141 (1998), 56.

[9] Mathew T., Shiju N., Sreekumar K., Rao B.S., Gopinath C.S., J.Catal., 210 (2002), 405.

[10] Abraham T., J. Ceram. Soc. Bull., 62 (1994), 73.

[11] Cullity B.D., Elements Of X-Ray Diffraction, Addison Wesley, India, 1956.

[12] Pecchal R.M., Madhuri W., Ramananhar R.N., Siva Kumar K.V., Murthy V.R., Ramakrishna R., J. Sci. Eng., 30 (2010), 1094.

[13] Gabal M.A., Ahmed M.A., J Mater. Sci., 40 (2005), 388.

[14] Salah L.M., Moustafa A.M., Ahmed Farag I.S., J. Ceram. Int., 38 (2012), 5605

[15] Shaikh P.A., Kambale R.C., Rao A.V., Kolekar Y.D., J. Alloy. Compd., 482 (2009), 276.

[16] Belavi P.B., Chavan G.N., Naik L.R., Somashekar R., Kotnala R.K., J. Mater Chem Phys., 132 (2012), 138.

[17] Ladgaonkar B.P., Kolekar C.B., Vaingankar A.S., J. Mater. Sci., 25 (2002), 351.

[18] Waldron R.D., J. Phys. Rev., 99 (1955), 1727.

[19] Pradeep A., Priyadharsini P., Chandrasekaran G., J. Magn. Magn. Mater., 2774 (2008), 23.

[20] Zuo X., Yang A., Victoria C., Harris V.G., J. Appl. Phys., 99 (2006), 909.

[21] Neel L., J. Phys., 3 (1948), 137.

[22] Fargh Ali Aa., Khedr Mh, Abdel Khalek Aa., J. Mater. Process Technol., 81 (2007), 181.

[23] Stoner E.C., Wohlfarth E.P., Philo S., J. Trans. Magn., 27 (1991), 3475.

[24] Lin K.F., Cheng H.M., Hsu H.C., Lin L., Hsieh W.F., J. Chem. Phys. Lett., 409 (2005), 208.

[25] Polezhaeva O.S., Yaroshinskaya N.V., Ivanov V.K., J. Inorg. Chem., 52 (2007), 1184.

[26] Lin H., Huang C.P., Li W., Ni C., Shah S.I., Tseng Y.H., J. Appl. Catal. B, 68 (2006), 1.

Journal Information


IMPACT FACTOR 2017: 0.854
5-year IMPACT FACTOR: 0.794



CiteScore 2017: 0.90

SCImago Journal Rank (SJR) 2017: 0.275
Source Normalized Impact per Paper (SNIP) 2017: 0.471

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 73 73 26
PDF Downloads 45 45 14