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Electron work functions of (h k l)-surfaces
of W, Re, and Cu crystals
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Work function (WF) and some physicochemical data for several most prominent crystal planes of three metals of typical
structures are calculated within the linear approximation employing the surface dipole and 2D gas models. “Composite” crystal
of a homogeneous bulk phase and a thick surface composed of eight (h k l)-oriented facets with different unsaturated bonds
is treated as a nine-phase nine-component system with two degrees of freedom. It contains the two-dimensional metal-lattice
plasma of free electrons and the immobile atom-core network. For twenty four (h k l) surfaces, the WF and dipole barrier term,
chemical and electrostatic potential levels, electron charge densities, surface dipole fields, and other parameters are calculated
and tabularized. WF values obtained from the thermodynamics based formula are compared to the ones obtained from the
quantum mechanics based formula, which shows good agreement with experiment and also reveals a specific deviation in the
case of field emission method for the most packed plane. A set of accurate face dependent data can be of interest to electronics
and materials science workers.
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1. Introduction

Electron work function (WF) is an important
physicochemical characteristics of nanostructures,
thin films, and solid metal or semiconductor sur-
faces [1–3]. The WF, or the smallest external en-
ergy loss required to transfer an electron from
the crystal to the outside vacuum, depends on the
electronic structure and crystallinity of the surface
phase apart from the homogeneous bulk chemi-
cal potential. Bardeen [4], taking into considera-
tion the electronic effects of exchange and correla-
tion (XC), calculated the surface double layer (DL)
moment as the WF contribution for a simple metal.
Smoluchowski [5] considered the WF anisotropy
as caused by the effects of the (h k l)-dependent
electronic charge-density redistribution responsible
for the existence of the negative DL moment as the
resultant of two inverse surface dipole moments.
His calculated differences of WF between the
(h k l) surfaces of a bcc crystal decreased with de-
creasing atomic surface density and the relative sur-
face energies increased in the same order. The order
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appeared to be quite a general qualitative crite-
rion to check the face-dependent results for met-
als, which is known as the Smoluchowski rule. For
the classical self-consistent calculation of the WF,
Lang et al. [6, 7] used the surface dipole contri-
bution and the jellium model. Boudreaux [8], in a
quantum-mechanical attempt to calculate the one-
electron potential energy functions, considered the
potentials interactions of an electron with each lat-
tice site rather than the jellium model.

Methfessel et al. [10] approached the face-
dependent WF problem starting with Poisson equa-
tion and using the Hohenberg-Kohn DFT formal-
ism [9] to treat the interacting inhomogeneous
electron gas. Knapp [11] applied Herring-Nichols
thermodynamics-based approach to WFs of (h k l)
faces with the electrostatic patch fields. Woj-
ciechowski et al. [12], Kiejna [13] employed the
local metal-lattice plasma (MLP) polarization con-
cept of Halas and Durakiewicz [14, 15] to calcu-
late the face-dependent WF using the Kiejna self-
consistent electron density profiles of stabilized jel-
lium. Brodie et al. [16] proposed a general phe-
nomenological model using the Maxwell classi-
cal image force and assuming Brodie minimum
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uncertainty distance [17] for the surface 2D
plasma, to cover both clean and electropositive
adsorbate covered surfaces. An LEED experi-
mental and theoretical study of the 1D surface-
potential barrier for the W(1 1 0) and (1 0 0) sur-
faces was done by Baribeau et al. [18]. In their
model, the potential-energy space was divided into
three structural parts including the vacuum, and
showed a distinct boundary between the surface
skin (or selvedge) of 2 to 3 atomic layers and
the volume structure.

Based on the Helmholtz 2D gas concept, the
surface dipole barrier was related to MLP den-
sity fluctuations; many (h k l)-dependent WF val-
ues were computed for nine d transition metals
by the linear regression method applied to a set
of data from a great number of existing experi-
mental WF values [19]. Employing the plasma po-
larization concept, we have presented an approx-
imate formula for the WF by considering the to-
tal energy of a neutral two-component two-phase
polycrystalline system of the 2D surface and 3D
bulk [20]. Moreover, the semi-empirical expression
for the screened electrostatic potential with its two
extrema included both the effect of crystallinity and
the XC effects.

In the present study, an attempt to resolve the
face-dependent WF problem is made; the W, Re,
and Cu metals have been chosen to represent three
typical bcc, hcp and fcc structures. In contrast to
our previous case with the interfaces of the un-
defined “polycrystalline” orientation [20], a set of
eight atomically flat (h k l) surfaces of Me crystals
has been taken into consideration to define the pri-
mary MLP parameters. The seven crystallographic
planes of the conventional close-class [19] for each
structure was defined in accord with the empirical
relative prominence rule of face orientations that
appear upon crystallization. The ds(h k l) module,
which is proportional to the scalar product of the
surface normal multiplied by the primary bond vec-
tor [21], was treated as the local MLP characteris-
tic dimension which determines the phase bound-
ary position between an Me face and the bulk.

2. Basics
Procedures of crystallography based calculation

and definitions of the parameters were previously
described [20]. The calculations are continued in
the system CGS ESU; units of (1 Å = 1 × 10−10 m,
1 eV ≈ 1.602 × 10−19 J and 1 D (debye)
≈ 3.3356 × 10−30 C·m) are also used. Potential en-
ergies are relative to the zero chosen at infinity in
vacuum. The origin shift x0 is taken equal to the
polarization length L(h k l) of the low-temperature
isothermal MLP and is calculated by using the
electronic density ns(h k l) of metal surface (MS)
phases. The first geometrical plane is chosen as the
origin of the coordinate system; the ideal physi-
cal surface location is ∼2 Å from it. Any (h k l)-
oriented surface has the normal: (h k l) ≡ h; index
h hereafter stands for (h k l). Parameters used to
calculate the densities and MLP associated quanti-
ties are collected in Table 1.

The vacuum dielectric constant equal to unity
was usually ascribed to metals. The MLP is treated
as having the dielectric constant in the range of
0 < ε 6 1. Like in the case of gas discharge
plasma, enhancement of the inner electric field lo-
cally occurs in the DL rather than the dielectric-
type reduction [22]. The effect is due to the leak
of free electrons outside the outer atomic layers,
which corresponds to the Smoluchowski electron
cloud. The electronic MS consists of nondegen-
erate or thermalized electrons that are subject to
the Maxwell-Boltzmann velocity distribution. The
x-dependence of the electron electrostatic potential
V has been expressed [20] by the set of equations:

V (x) = Φv for x 6 −ds in bulk phase,

V (x) = Φs for −ds < x < xl in surface phase,

V (x) = Ψc for x > xl (1)

where xl is the potential lacing point equal to
Rd − ls/4; ls is the dipole length attributed to
the DL, and 2Rd is the mean size of a polarized
MS atom.

To deal with the WFs we use a field-emitter-
like model of a hemispherical crystal. Multifaceted
body in the form of an h-oriented crystal with a
finite curvature radius well reflects the difference
in bonding between the bulk-lattice ions and the
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Table 1. Face dependent metal-lattice plasma parameters for W, Re, and Cu.

Tungstena,b

rheniuma,b

coppera

(1 1 0)
(0 0 1)
(1 1 1)

(2 1 1)
(1 0 0)d

(1 0 0)

(1 0 0)
(1 0 1)d

(1 1 0)

(1 1 1)
(1 0 2)
(3 1 1)

(3 2 1)
(1 1 0)
(3 3 1)

(3 1 0)
(1 1 1)
(2 1 0)

(3 3 2)
(1 1 2)
(2 1 1)

(6 1 1)c

(1 1 4)c

(3 2 0)c

poly-
crystal

Primitive unit
cell area
S0,h/a2

(
√

2)/2
(
√

3)/2
(
√

3)/4

(
√

6)/2
1.615

0.5

1
1.832

(
√

2)/2

√
3

2.368
(
√

11)/4

(
√

14)/2
2.797

(
√

19)/4

(
√

10)/2
2.928

(
√

5)/2

(
√

22)/2
3.289

(
√

6)/2

(
√

38)/2
4.452

(
√

13)/2

1.494
2.242
0.843

MS thicknesse

ds,h [Å]

2.238
2.228
2.087

2.584
2.390
1.808

1.583
2.106
2.556

2.741
2.445
2.180

2.538
2.760
2.488

2.002
2.636
2.425

2.699
2.347
2.214

2.054
2.601
2.507

2.737
2.950
2.685

Polarization
lengthf (x0)
L0

h [Å]

0.434
0.427
0.410

0.502
0.487
0.393

0.370
0.472
0.481

0.542
0.524
0.466

0.535
0.561
0.512

0.471
0.557
0.510

0.568
0.545
0.501

0.534
0.595
0.558

0.529
0.553
0.503

Effective dipole
length ls,h [Å]

0.1011
0.0738
0.099

0.1167
0.0791
0.0875

0.0715
0.0698
0.1236

0.1238
0.0810
0.1053

0.1147
0.0914
0.1204

0.0905
0.0873
0.1172

0.1219
0.0777
0.1071

0.0928
0.0861
0.1212

0.1283
0.0987
0.0657

e-charge
coverage
θs,h

0.6666
0.8130
0.8130

0.3846
0.4367
0.6757

0.3534
0.3774
0.4975

0.2717
0.2933
0.4167

0.2519
0.2519
0.3236

0.2604
0.2387
0.3115

0.2008
0.2101
0.2841

0.1335
0.1565
0.1938

0.303
0.311
0.413

MS atomic
density
nc,h [Å−3]

0.0631g

0.0680g

0.0847g

0.0315
0.0340
0.0847g

0.0631g

0.0340
0.0423

0.0210
0.0227
0.0423

0.0210
0.0170
0.0282

0.0315
0.0170
0.0282

0.0158
0.0170
0.0282

0.0158
0.0113
0.0169

0.0244
0.0198
0.0338

MS electronic
density
ns,h [Å−3]

0.1536h

0.1692
0.2155

0.0641
0.0766
0.2783

0.4010i

0.0928
0.0828

0.0402
0.0497
0.0996

0.0436
0.0327
0.0567

0.0932
0.0342
0.0582

0.0306
0.0393
0.0650

0.0443
0.0231
0.0337

0.0467
0.0359
0.0631

Number of free
electrons/atom
nc,h/ns,h

0.41
0.40
0.39

0.49
0.44
0.30

0.16
0.37
0.51

0.52
0.46
0.42

0.48
0.52
0.50

0.34
0.50
0.48

0.52
0.43
0.43

0.36
0.49
0.50

0.52
0.55
0.54

aThe first seven planes for each structure are those of the crystallographic close-class; for the planes’ class
discrimination [19].
bUsing the linear regression constants by Surma [19], based on a large set of experimental data of the years:
1945 – 2000: BW = 1.34 eVa, AW = 4.267 eV; BRe = 1.085 eVa, ARe = 4.736 eV.
cOne of the morphologically prominent crystallographic open-class planes.
dCalculated taking the high-coordination variant of surface structure.
eComputed using equation 2 by Surma [19].
fComputed using equation 5 by Surma et al. [20].
gValue coinciding with Ω−1.
h∼0.1533 the free electron average density ñ.
iSame value was used for the polarizability in the Hohenberg-Kohn theory of inhomogeneous electron gas [9].
Note, their dielectric constant ε(ω) > 1 and tends to unity for largeω.

surface-phase atoms. An instructive model of di-
rectional unsaturated surface bonds was proposed
by Knor et al. [23]. A crystal of several h-oriented
grains, which are ended with atomically flat sur-
faces, has a curved surface with a finite radius.
Brodie, in his original model [16], has shown
in fact that the sphere-symmetry WF practically
corresponds to that of a planar system. Conse-
quently, the MLP physicochemical system can

comprise m independent species, and m phases
(here, m = 9) in accord with the commonly ac-
cepted picture of the two-dimensional MLP. The
arbitrarily chosen number nine covers the sys-
tem’s components of the free electron gas and
eight surface-atom cores of different symmetry;
the surface phases of the model crystal are eight
facets of different symmetry each and the ambient
vacuum. This is illustrated in Fig. 1.
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Fig. 1. Ball model of the nearly hemispherical multi-
faceted field emitter tip of a bcc metal. The right-
hand side picture shows edge atoms that most
contribute to the field ion current. Taken from
Mueller et al. [41]; courtesy of Professor T.T.
Tsong, with permission by Elsevier.

2.1. Definition: inner potential Φs,h

In the previous study [20], the inner electro-
static potential level Φs was applied to find the
screened two-extremum potential ΨES shown in
Fig. 2. The Φs,h is defined as the face dependent
sum of the outer electrostatic (or Volta) potential
level Ψc,h and the surface potential change χs,h:

Φs,h = Ψc,h +χs,h (2)

In that study we dealt with a polycrystalline
two-phase two-component system with its resul-
tant surface dipole barrier. For the h-surfaces,
we have started treating, for the first time, the
WF problem from the Gibbs function defined as
G = Nf(T,P) = Nµ. The chemical, or electrochem-
ical [24], potential µ of free electrons can be identi-
fied with the thermodynamic (TD) potential of the
Gibbs function per particle [25]. In terms of statis-
tical physics, the sum µ0(T,P) + u(x,y,z) is constant
at a constant temperature T in the presence of the
field u with the degree of homogeneity −1. This is
simply the case of the inner electrostatic potential.
Consequently, for the local virtual Fermi levels,
the relation:

µT,h = µ
0 + eΦs,h (3)

is constant in equilibrium [24–26]; relation 16 in
the work by Surma et al. [20].

Fig. 2. The screened “double well” electrostatic poten-
tial ΨES with its first f(x) and second n(x) deriva-
tives, and the inner potential levels Φ. Small cir-
cles enclose inflexion points, larger circle indi-
cates the potential lacing point at∼1.4 Å. Chain
line xs shows the position of an ideal physi-
cal surface. Lines A show affinity levels; letters
n indicate a conventional distribution of main
electron number densities, Dx denotes the nor-
mal field component; the MLP limiting density
n∗ = 21.2 × 1023 cm−3. Diagram taken from
Surma et al. [20].

2.2. Assumption 1: division of the system
into regions

The conducting system of interest can be di-
vided into regions treated as TD open systems
with their partial volumes vs,h. Each of the single-
crystal phases is treated as being in the TD quasi-
equilibrium state. Each phase taken separately con-
tains a 2D body of MLP ions and free electrons.
Note that the Boltzmann factor kT of the two-
dimensional plasma-energy scale is present both in
the MLP statistics and the Fermi-Dirac distribution.

2.3. Assumption 2: the limiting point xc,h
on the XC interactions

The face-dependent outer electrostatic potential
Ψc,h, for a neutral crystal in the absence of applied
field, can be calculated by summing δW the virtual,
purely electrostatic works which are executed on a
massless test particle of the charge e by infinites-
imally slow bringing it in a quasi-static reversible
process, from infinity in the vacuum, under action
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of the long range image (Coulomb) force down to
the position xc,h outside the Me surface. The works
are associated with the infinitesimal drops in poten-
tial energy, −δeΨx each. In such a reversible pro-
cess being a dense set of consecutive equilibrium
states, the closest surface atom still retains its orig-
inal screening; then the dipole repulsion together
with the electron XC effects may be neglected at a
distance from the geometrical surface. We assume
the image force to be applicable safely down to a
point xc,h equal to or higher than ds,h + x0. Then,
the outer-potential levels Ψc,h(x) are calculated
by integration:

Ψc,h =
∫ xc,h

∞

−e

4(x− x0)
2 dx =−∆Ψ∞,x (4)

where Ψx = ∞ = 0. For an h-oriented facet this gives
Ψc,h = −e/4ds,h. For x < xc,h the XC interactions
cannot be ignored.

2.4. WF basic formulae

The quantum mechanics based definition of the
WF was given by Wigner et al. [27] and reads as
follows. The electron work function of a crystal,
for an electron removed outside from the highest
energy state of the neutral crystal, is the difference
in energy between a lattice with N electrons and
the lattice with N − 1 electrons, which equals −µ,
augmented by the minimum work e∆Φs,h required
to transfer the electron across an h-facet to the vac-
uum:

WFQM = e∆Φs,h−µ (5)

where the difference ∆Φs,h equals Ψc,h − Φv; the
Ψc,h equals −e/4ds,h (Assumption 2); e is the el-
ementary charge; Φv is the average inner electro-
static potential of bulk Me, which was calculated
from the dipole moment p0 by Surma et al. [20].
The ∆Φs,h is the resultant dipole barrier at an h-
oriented MS/vacuum interface. Alternatively, ac-
cording to the thermodynamics based WF formula
of Herring and Nichols:

WFT d = eΨc,h−µT,h (6)

where µT,h is the local Fermi level equal to µ0

+ eΦs,h, maximum WF is sometimes defined as
the energy required to remove an electron of a
metal from the Fermi level to a point at infinity in
the vacuum [28], i.e. taking the value zero for the
outer potential Ψc,h. The calculated potentials are
collected in Table 2, where the WFs are compared
to experimental WFX values.

3. Local electron number densities

MS parameters used to calculate electronic den-
sities are presented below. The ds,h values are com-
puted using the formula given by Surma et al. [20].
The MLP local surface dipole moment ps,0 was in-
troduced as the product:

els,h =
Bds,h

2πe
(7)

where B is the constant, numerically equal to the
slope of linear regression [19]. The semi-empirical
parameter ls,h for the h surfaces is the surface-
dipole length of the DL moment p of the magnitude
θps,0 where θ is the face-dependent surface-charge
redistribution factor, or electron “coverage” factor.
The product of the dipole length ls and the area S0
of a 2D primitive unit cell of an MS was defined
as the inverse of the unit electron density n0 of the
locally polarized 2D plasma. The intensive param-
eter ñ, or the density of free electrons, was defined
as the reciprocal of the crystal volume per atom re-
duced by the conventional volume of a lattice ion
itself, i.e. using the van der Waals-type correction:

1
ñ
= Ω− 4

3
π(Ra− ld)3 (8)

where ld is the face-dependent surface dipole half-
length, Ω is the volume per atom of the crystal, and
Ra is the metallic radius of an atom.

Density parameter nc(ds,h) is defined as the re-
ciprocal of the specific volume of the infinite DL
space. It is associated with lattice points and corre-
sponds to the number density of MS atomic cores:

1
nc,h

= Shds,h (9)
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Table 2. Calculated local electrostatic fields, potential energies and work function for (h k l) surfaces of W, Re,
and Cu.

Tungsten
rhenium
coppera

(1 1 0)
(0 0 1)
(1 1 1)

(2 1 1)
(1 0 0)
(1 0 0)

(1 0 0)
(1 0 1)
(1 1 0)

(1 1 1)
(1 0 2)
(3 1 1)

(3 2 1)
(1 1 0)
(3 3 1)

(3 1 0)
(1 1 1)
(2 1 0)

(3 3 2)
(1 1 2)
(2 1 1)

(6 1 1)
(1 1 4)
(3 2 0)

poly-
crystal

Local virtual
DL field
Fv,h [VÅ(1]

25.55
27.43
31.98

14.74
14.7

27.69

18.05
12.96
19.58

10.42
10.02
16.7

9.65
8.5
12.7

11.44
8.13

12.39

7.72
7.23
11.3

5.84
5.3

7.69

12.09
10.59
16.42

DL potential
change χs,h [V]

−1.722
−1.646
−1.328

−0.662
−0.508
−0.83

−0.456
−0.34
−0.61

−0.351
−0.238
−0.37

−0.279
−0.196
−0.25

−0.269
−0.168
−0.228

−0.189
−0.118
−0.174

−0.073
−0.072
−0.092

−0.470
−0.321
−0.446

Outer
potential
Ψc,h [V]

−1.61
−1.62
−1.73

−1.39
−1.51
−1.99

−2.28
−1.71
−1.41

−1.31
−1.47
−1.65

−1.42
−1.31
−1.45

−1.80
−1.37
−1.49

−1.33
−1.53
−1.63

−1.75
−1.38
−1.44

−1.315
−1.22
−1.34

Inner potential
Φs,h [V]

−3.33
−3.27
−3.06

−2.05
−2.02
−2.82

−2.74
−2.05
−2.02

−1.66
−1.71
−2.02

−1.70
−1.51
−1.70

−2.07
−1.54
−1.72

−1.52
−1.65
−1.80

−1.82
−1.45
−1.53

−1.785
−1.54
−1.79

Local Fermi
levelb

µT,h [eV]

−7.36
−6.19
−7.23

−6.08
−6.59
−6.99

−6.77
−6.62
−6.19

−5.69
−6.28
−6.19

−5.73
−6.08
−5.87

−6.10
−6.11
−5.89

−5.55
−6.22
−5.97

−5.85
−6.02
−5.70

−5.817
−6.11
−5.96

local Fermi
energy
EF

h [eV]

10.46
11.16
13.11

5.84
6.58

15.54

19.83
7.47
6.93

4.28
4.93
7.84

4.52
3.73
5.38

7.50
3.84
5.48

3.57
4.22
5.90

4.57
2.96
3.80

4.73
3.97
5.78

Effective
barrier
Wm

h [eV]

17.82
17.35
20.34

11.92
13.17
22.53

26.60
14.09
13.12

9.97
11.21
14.03

10.25
9.81

11.25

13.60
9.95

11.37

9.12
10.44
11.87

10.42
8.98
9.50

10.55c

10.08
11.74

Calculated
TD-based WF
WFTd [eV]

5.75
4.57
5.50

4.69
5.08
5.00

4.49
4.91
4.78

4.38
4.81
4.54

4.31
4.77
4.42

4.30
4.74
4.40

4.22
4.69
4.34

4.10
4.64
4.26

4.50
4.89
4.62

Calculated
QM-based WF
WFQM [eV]

5.13
5.56

(5.06)

4.60
4.99

(4.81)

4.50
4.91

(4.70)

4.44
4.85

(4.58)

4.41
4.83

(4.52)

4.40
4.82

(4.51)

4.36
4.79

(4.48)

4.30
4.77

(4.44)

4.50
4.89
4.62

Experimentald

work function
WFX [eV]

5.25
5.53
4.98

4.71
5.10
4.59

4.63
5.04
4.48

4.47
–
–

–
4.80

–

4.30
4.70

–

–
–

4.53

4.30
4.72

–

4.54
5.0

4.65
aCu data were recalculated in this paper using more experimental data [42–46] of four measurement
methods. New linear regression constants BCu = 0.612 eVa and ACu = 4.394 eV.
bComputed from equation 3; value recognized as the electrochemical potential.
cThis value being close to the Fermi energy EF

(110) agrees with most of theoretical data for tungsten.
dFor tungsten, data come from [47–49]. For rhenium, they were selected from [19].

where Sh is the area of a primitive unit cell of a
surface. The associated local electron density ns,h
is defined as the reciprocal of an MLP volume v0

h:

1
ns,h

= v0
h (10)

where v0
h equals ShRd,h and the Rd,h is:

Rd,h = ds,h−Ra + ld (11)

Density ns,h represents the face-dependent con-
centration of MS thermalized electrons, which
qualitatively reflects the local variation of the den-
sity of states. The local densities nc,h and ns,h are
associated with respective volumes because the
surface comprises up to three atomic layers. The
ratio nc,h/ns,h defines the average number of free
electrons per atom in the local volumes v0

h.
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4. Selected applications
4.1. Intrinsic electric fields

The force fx, normal to the surface and act-
ing on an electron between two infinite planes at a
short distance, slightly higher than Rd from the ge-
ometrical plane, is expressed by the product −eDx
(Fig. 2). The normal component is an analogue of
the field displacement vector of a lattice plasma; it
represents the effective field of an h-surface layer.
The normal component Dx of the effective field dis-
placement vector D is ascribed to the local MLP
polarization of the surface layer; its effective value
equals 4πσ̄. The corresponding average surface po-
tential level χs is then equal to −4πσ̄l. The field
strength component Dx/ε represents the virtual in-
trinsic field Fv of the magnitude 4πσ, and de-
picts the force acting along the polarized plasma
medium. The charge distribution is discrete, and re-
spective field components vary over the DL region
like those of an electric dipole field.

Assuming the relation D = εF valid for the
MLP, we put ε = θ which is a real number such
that 0 < θ 6 1, or the surface charge redistribu-
tion factor defined in Refs. [19] and [20]. The max-
imum virtual field Fv component in the MS dipole
approximation is given by:

Fv =
4πθe
εS0

=
4πe
S0

(12)

The continuous distribution of the surface
charge density σ̄ at the physical surface is approx-
imated by the average density ∆q/∆S which can be
expressed as the ratio eθ/S0; thus:

Dx,h =
4πeθ s,h

S0,h
(13)

where θs,h is the surface charge redistribution fac-
tor for an h-oriented surface. Accordingly, div D
or dDx,h/dx equals 4πρ̄s, where the average den-
sity of electronic charge ρ̄s equals ∆qs,h/∆ve which
we approximate by ens,h. The face dependent vir-
tual fields are then calculated from the relation
θFv,h = Dx,h. Values of virtual field strengths are
collected in Table 2.

4.2. Face-dependent dipole term of WF
DL of electrostatic charge is treated as com-

posed of two discretely charged planes which are
separated by a finite distance in the x-direction par-
allel to the normal dimension ds,h of the surface
phase (i.e. the skin thickness), and infinite in the
lateral y, z dimensions. The respective field com-
ponents vary over the DL region like those of an
electric dipole field. After the surface dipole ap-
proach [19] for the discrete charge distribution of
locally polarized MLP, the normal component Dx,h
is treated as the DL field.

The surface potential levels χs,h within the
Me/vacuum interface, between the two infinite DL
planes y, z distant by ls,h and uniformly charged
with the free charge density σ̄s, are given by the
product −Dx,hls,h, or:

χs,h =−4πσ̄ sls,h (14)

where the product – σ̄sls,h represents the effective
moment Ms,h; the resultant moment is the sum of
potential difference originated from the positive
charge density and that from the electronic-density
redistribution [19].

χ0,h =−4πσ̄0ls,h (15)

The effective surface potential χs and the vir-
tual potential χ0 should fulfill the Poisson equa-
tion ∇2χ=−4πρ. The pseudo-permittivity ε is re-
placed with a factor θ being a real number such that
0 < θ 6 1. Consequently, we are driving at the ap-
proximate relation:

χs/χ0 ≈ ρ̄s/ρ0 = ñ/n0 ≤ ε = θ (16)

The inner-potential energy difference e∆ϕ cor-
responds to the electrostatic part of the Gibbs free
energy difference within the face-dependent unit
volume v0

h of DL with its local virtual field Fv,h.
Assuming that dielectric constant is independent
of electric field, and using, for the h-surfaces, the
well-known formula on the electrostatic energy, the
face-dependent dipole energy can be expressed as:

∆G0 = ε(Fv,h)
2v0

h/8π =−2πeMs,h (17)
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where Ms,h =−θels,h/Sh; which appears to express
the Helmholtz dipole. In such a way, this calculated
energy-per-electron portion ∆G0, which is equal
to the useful (or inner) work in the MLP system,
represents the effective dipole barrier e∆Φ, i.e. the
dipole contribution to the WF.

4.3. Face-dependent Fermi energies and
barriers of W, Re, Cu

The MS phase with the h-dependent set of
unsaturated bonds [21], exhibits the well-known
difference in chemical specificity between differ-
ent surfaces of catalytic metals. Hence, for eight
surface phases, the virtual Fermi energy levels
µT,h(T,P) of MLP electrons will vary from plane to
plane. In thermal equilibrium (Te ≈ Tc), the lo-
cal polarization of the surface phase appears. The
local Fermi kinetic energy EF

h of an electron and
other Fermi energies are obtained from the classi-
cal Sommerfeld relation for the kinetic energy of
free electron gas:

EF
h =

1
2

h̄2m−1(3π
2ns)

2/3 (18)

These calculated face-dependent Fermi ener-
gies are shown in Table 2 including also potential
energy barriers Wmh.

The maximal kinetic energy W which is needed
for emission of an electron being at rest in the
metal can be determined by keeping the condition
mev2

x/2 > W, where vx is the x-component of the
electron velocity. The vy and vz velocities are par-
allel to the surface and do not contribute to electron
emission. For different crystallographic faces, this
energy can be expressed by the formula:

W m
h = EF

h +WF∞
h (19)

where WF∞
h , equal to −µT,h, is the maximum pla-

nar WF measured from the Fermi level. Negative of
these local maximum kinetic energies determines
the respective conduction-band bottoms.

5. Discussion
5.1. Basic surface phase parameters

The ds,h quantity [19–21], which determines
the phase boundary position, was calculated

in the hard-sphere approximation. Homogeneous
bulk Me phase was defined as the interior part of
the crystal, where the surface dipole layer is ab-
sent, which occurs for x 6 −ds,h. In contrast to
purely crystallographic parameters, the ds,h is inde-
pendent of the Miller indices parity because it is
an atomic coordination-type function of the spac-
ing between h planes. Therefore, it is dependent on
the fine structure of the outer atomic monolayers.
It accounts for a variety of the unsaturated surface
bonds, i.e. the semi-directional or quasi-covalent
physicochemical bonding at the h surfaces. The
calculated numbers of free electrons per atom in
local volumes do not exceed 0.55 for all the three
of metals, which is in accord with the classical
theory of conductivity. Worthy of mention is the
polycrystalline electron potential ΨES which re-
veals a maximum and a minimum which are both
located outside the geometrical surface [20]. In-
terestingly, it nearly coincides with the form of
the Tavares-Prausnitz total perturbed hard-sphere
potential [29].

The extrema-related inflexion points determine
the affinity levels, and the ground state level A0 is
lower than these χs,h levels for more-open struc-
ture planes of W, Re, Cu. It should be the case
of surface states; and the difference A1 − A0 is
equal to a resonance energy of about 0.12 eV. In the
linear approximation, the XC effects should van-
ish outside each (h k l)-oriented surface, practi-
cally from the distance xc,h close to the minimum
of the ΨES(x), for which we have approximated the
outer potential level Ψc. It is also interesting that a
nano-surface phase with its normal dimension ds,h
of few angstroms can be treated as a quantum well.
A nano-surface phase of such a thickness clearly
corresponds to the field-emitter tip ending of the
minimum thickness d responsible for the photo-
electron emission oscillations [30]. Other quantum
size effects (quantum wells) were also observed
experimentally [31–34].

5.2. The face-dependent WF data vs. ex-
periment and theory

The calculated WF values in Table 2 agree
well with the experimental results except for that,
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the TD formula based WFs and the quantum-
mechanics based ones differ in magnitude for the
most packed plane of each metal. Such a deviation
of experimental WF, resulting chiefly from the field
emission method, is systematically observed in the
literature; in the latter case for the W(1 1 0) face,
the WFs exceed 6 eV. This anomalous feature of
the W(1 1 0) surface was discussed by Plummer et
al. [35]. The effect of the strong electric field on the
WF of W(1 1 0) was explained by Smith [36] in a
self-consistent investigation. As asserted by Young
et al. [37], the densest packed plane (1 1 0) with
its minimum surface free energy and the highest
WF, is the most representative of physicochemical
properties for bcc metals. In fact, the most packed
planes have appeared to be critical for the best fit
in the previous linear regression calculations for all
the nine of d transition metals [19].

The face dependent WF correlates with the sur-
face free energy and agrees well with theoreti-
cal [10, 38] and experimental values of WF and
surface energy for bcc an fcc metals, which is in
accord with the Smoluchowski rule. The correla-
tion can be confirmed by the results on the crys-
tallographic anisotropy of surface free energy in
the literature [39, 40] and references therein. All
values for W and Re are close to the thermionic
emission data obtained by linear regression. Gen-
erality of Brodie, Chow and Yuan’s phenomeno-
logical model is burdened by a deviation from the
Smoluchowski rule, e.g. for tungsten and silver
facets [17]. Their general WF model, however, in-
cludes electropositive adsorbates on clean metals
and oxides. To conclude, dipole models based re-
sults seem to be most proper for clean metals.

The calculated potential energy functions in-
clude the XC or polarization effects, which is in
accord with the Boudreaux assertion [8]. The in-
ner electrostatic potential of bulk Me, Φv, was ex-
pressed in the previous study as an average of (ΦMS
+ ΨMS)/2. Validity of such approximation of the
potential difference was shown by Knapp for the
mean WF [11], which was extended in his argu-
mentation for the WF of an i-th face of a crystal
with its i-th patch field. The WFTd of equation 6
is in accord with Knapp argumentation for the face
dependent WFs.

6. Conclusion
The model of a “composite” metal similar

to the multifaceted field emitter enabled us to
compute work function values for the chosen met-
als of three main structures, for 24 different faces
in total. The accuracy of the predicted values is
estimated to be ±0.1 eV. They are in accord with
available experimental values. Two WF formulae
were used for comparison of the computed val-
ues, of which the thermodynamics based one bet-
ter corresponds to the experimental values ob-
tained by the FE method, especially in case of
the W(1 1 0) face.

Two discontinuous quantities: the local Fermi
levels µT,h of an electron and the electronic num-
ber densities ns,h, which jump at each interface,
are intensive parameters. In the limiting case, the
electron density of the lattice plasma may reach
a figure of 21 × 1023 cm−3, which is only fifty
times lower than the maximum laboratory obtain-
able density of inertial confinement plasma. Vir-
tual electrostatic fields related to the metal-lattice
plasma are calculated to spread up to as high as
about 32 V/Å (Cu(1 1 1)), whereas the typical field
evaporation field intensities range from 3 to 6 V/Å
for metals [41].
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