Electron Work Functions of (H K L)-Surfaces of W, Re, and Cu Crystals

Open access

Abstract

Work function (WF) and some physicochemical data for several most prominent crystal planes of three metals of typical structures are calculated within the linear approximation employing the surface dipole and 2D gas models. “Composite” crystal of a homogeneous bulk phase and a thick surface composed of eight (h k l)-oriented facets with different unsaturated bonds is treated as a nine-phase nine-component system with two degrees of freedom. It contains the two-dimensional metal-lattice plasma of free electrons and the immobile atom-core network. For twenty four (h k l) surfaces, the WF and dipole barrier term, chemical and electrostatic potential levels, electron charge densities, surface dipole fields, and other parameters are calculated and tabularized. WF values obtained from the thermodynamics based formula are compared to the ones obtained from the quantum mechanics based formula, which shows good agreement with experiment and also reveals a specific deviation in the case of field emission method for the most packed plane. A set of accurate face dependent data can be of interest to electronics and materials science workers

[1] Herring C., Nichols M.H., Rev. Mod. Phys., 21 (1949), 185.

[2] Kiejna A., Wojciechowski K.F., Metal Surface Electron Physics, Pergamon, Oxford, 1996.

[3] Halas S., Mater. Sci.-Poland, 24 (2006), 951.

[4] Bardeen J., Phys. Rev., 49 (1936), 653.

[5] Smoluchowski R., Phys. Rev., 60 (1941), 661.

[6] Lang N.D., Kohn W., Phys. Rev. B, 1 (1970), 4555.

[7] Lang N.D., Kohn W., Phys. Rev. B, 3 (1971), 1215.

[8] Boudreaux D.S., Phys. Rev. B, 1 (1970), 4552.

[9] Hohenberg P., Kohn W., Phys. Rev., 136, B864 (1964).

[10] Methfessel M., Hennig D., Scheffler M., Phys. Rev. B, 46 (1992), 4816.

[11] Knapp A.G., Surface Sci., 34 (1973), 289.

[12] Wojciechowski K.F., Kiejna A., Bogdanów H., Modern Phys. Lett. B, 13 (1999), 1081.

[13] Kiejna A., Phys. Rev. B, 47 (1993), 7361.

[14] Halas S., Durakiewicz T., J. Phys.-Condens. Mater., 10 (1998), 10815.

[15] Durakiewicz T., Halas S., Arko A., Joyce J.J., Moore D.P., Phys. Rev. B, 64 (2001), 045101. [16] Brodie I., Chow S.H., Yuan H., Surface Sci., 625 (2014), 112.

[17] Brodie I., Phys. Rev. B, 51 (1995), 13660.

[18] Baribeau J-M., Lopez J., Le Bosse J.-C., J. Phys. C-Solid State Phys., 18 (1985), 3083.

[19] Surma S.A., Phys. Status Solidi A, 183 (2001), 307.

[20] Surma S.A., Brona J., Ciszewski A., Mater. Sci.- Poland, 33 (2015), 430.

[21] Mackenzie J.K., Moore A.J.W., Nicholas J.F., J. Phys. Chem. Solids, 23 (1962), 185.

[22] Artsimovich L.A., Elementarnaya Fizika Plazmy, Atomizdat, Moscow, 1969.

[23] Knor Z., Müller E.W., Surface Sci., 10 (1968), 21.

[24] Guggenheim E.A., Thermodynamics, North-Holland Elsevier, Amsterdam, 1993.

[25] Landau L.D., Lifshits E.M., Statistical Physics, Pergamon, London, 1980.

[26] Koryta J., Dvorak J., Bohackova V., Lehrbuch Der Elektrochemie, Springer, Wien/Newyork, 1975.

[27] Wigner E.P., Bardeen J., Phys. Rev., 48 (1935), 84.

[28] Schulte F.K., J. Phys. C-Solid State Phys. 7 (1974), L370.

[29] Tavares F W., Prausnitz J.M., Colloid. Polym. Sci., 282 (2004), 620.

[30] Rado´N T., Acta Phys. Polon. A, 118, (2010), 596.

[31] Chen Y., Zhao C., Huang F., Zhan R., Deng S., Xu N., Chen J., Sci. Rep., 6 (2016), 21270.

[32] Wojciechowski K.F., Phys. Rev. B, 60 (1999), 9202.

[33] Herman M.H., Tsong T.T., Phys. Rev. Lett., 48 (1982), 1029.

[34] Tomaszewski P.E., Ferroelectrics, 375 (2008), 74.

[35] Plummer E.W., Rhodin T.N., J. Chem. Phys., 49 (1968), 3479.

[36] Smith J.R., Phys. Rev. Lett., 25 (1970), 1023.

[37] Young R.D., Clark H.E., Phys. Rev. Lett., 17 (1966), 351.

[38] Skriver H.L., Rosengaard N.M., Phys. Rev. B, 46 (1992), 7157.

[39] Drechsler M., The Equilibrium Shape Of Metal Crystals, In: Vu T.B. (Ed.), Surface Mobilities On Solid Materials, Plenum Press, New York/London, 1983, Pp. 405 - 457.

[40] Kern R., The Equilibrium Form Of A Crystal, In: Sunagawa I. (Ed.), Morphology Of Crystals, Terrapub, Tokyo, 1987, Pp. 77 - 206.

[41] Mueller E.W., Tsong T.T., Field Ion Microscopy - Principles And Applications, American Elsevier, New York, 1969, P. 70.

[42] Li D.Y., Li W., Appl. Phys. Lett., 79 (2001), 4337.

[43] Haas G.A., Thomas R.E., J. Appl. Phys., 48 (1977), 86.

[44] Rowe J.E., Smith N.V., Phys. Rev. B, 10 (1974), 3207.

[45] Gartland P.O., Berge S., Slagsvold B.J., Phys. Rev. Lett., 28 (1972), 738.

[46] Delchar T.A., Surf. Sci., 27 (1971), 11.

[47] Michaelson H.B., J. Appl. Phys., 48 (1977), 4729.

[48] Fomenko V.S., Podchernyaeva I.A., Emissionnye I Adsorbtsionnye Svoistva Veshchestv I Materialov, Atomizdat, Moscow, 1975.

[49] Haas G.A., Thomas R.E., J. Appl. Phys., 40 (1969), 3919.

Journal Information


IMPACT FACTOR 2017: 0.854
5-year IMPACT FACTOR: 0.794



CiteScore 2017: 0.90

SCImago Journal Rank (SJR) 2017: 0.275
Source Normalized Impact per Paper (SNIP) 2017: 0.471

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 24 24 23
PDF Downloads 18 18 17